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CLASSIFICATION OF ROTATIONAL SURFACES IN

PSEUDO-GALILEAN SPACE

Dae Won Yoon

Gyeongsang National University, South Korea

Abstract. In the present paper, we study rotational surfaces in the
three dimensional pseudo-Galilean space G1

3. Also, we characterize rota-

tional surfaces in G1
3 in terms of the position vector field, Gauss map and

Laplacian operator of the second fundamental form on the surface.

1. Introduction

Let M be a connected n-dimensional submanifold of the m-dimensional
Euclidean space E

m, equipped with the induced metric. Denote by ∆ the
Laplacian of M acting on smooth functions on M . Takahashi ([17]) classified
the submanifolds in E

m in terms of an isometric immersion x and the Lapla-
cian of M . He proved that M satisfying ∆x = λx, that is, all coordinate
functions are eigenfunctions of the Laplacian with the same eigenvalue λ ∈ R

are either the minimal submanifolds of Em or the minimal submanifolds of
hypersphere S

m−1 in E
m. As a generalization of Takahashi’s theorem for the

case of hypersurfaces, Garay ([8]) considered the hypersurfaces in E
m whose

coordinate functions are eigenfunctions of the Laplacian, that is, he studied
the hypersurfaces satisfying the condition

(1.1) ∆x = Ax,

where A ∈ Mat(m,R) is an m×m- diagonal matrix.
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On the other hand, the study of an isometric immersion satisfying (1.1)
can be extended to Gauss map on a hypersurface of Euclidean space. The
Gauss map is a useful tool to examine the character of the hypersurfaces in
Euclidean space. In [6], Dillen, Pas and Verstraelen studied the surfaces of
revolution in Euclidean 3-space E

3 such that its Gauss map G satisfies the
condition

(1.2) ∆G = AG,

where A ∈ Mat(3,R) is a 3 × 3-real matrix. Several geometers have studied
surfaces satisfying the conditions (1.1) and (1.2) in the ambient spaces, and
many interesting results have been obtained in [1–4, 18, 19] etc.

If a surface M in the ambient spaces has a non-degenerate second fun-
damental form II or a non-degenerate third fundamental form III, then it
is regarded as a new (pseudo-)Riemannian metric on M . So, considering the
conditions (1.1) and (1.2), we may have a natural question as follows: What
are the surfaces in the ambient spaces satisfying the conditions

(1.3) ∆px = Ax,

(1.4) ∆pG = AG,

where ∆p is the Laplacian with respect to p of M , p = II or III and A ∈
Mat(3,R)?

Several results for the above question were obtained, when the ambient
spaces are the Euclidean space ([11]) and the Minkowski space ([5, 9, 10, 12,
14, 15].

The main purpose of this paper is to complete classification of rotational
surfaces in the three dimensional pseudo-Galilean space G1

3 satisfying (1.3)
and (1.4) with p = II.

2. Preliminaries

The pseudo-Galilean geometry is one of the real Cayley-Klein geometries
(of projective signature (0, 0,+,−), explained in [13]). The absolute of the
pseudo-Galilean geometry is an ordered triple {ω, f, I}, where ω is the ideal
(absolute) plane, f the line in ω and I the fixed hyperbolic involution of f .

In affine coordinates defined by (x0 : x1 : x2 : x3) = (1 : x : y : z), the
distance between the points Pi = (xi, yi, zi) (i = 1, 2) is defined by (cf. [16])

d(P1, P2) =

{

|x2 − x1|, if x1 6= x2,
√

|(y2 − y1)2 − (z2 − z1)2|, if x1 = x2.
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The group motions of G1
3 is a six-parameter group given (in affine coordinates)

by
x̄ = a+ x,

ȳ = b+ cx+ y coshϕ+ z sinhϕ,

z̄ = d+ ex+ y sinhϕ+ z coshϕ.

Let x = (x1, y1, z1) and y = (x2, y2, z2) be vectors in G1
3. A vector x

is called isotropic if x1 = 0, otherwise it is called nonisotropic. The pseudo-
Galilean scalar product of x and y is defined by

〈x,y〉 =
{

x1x2, if x1 6= 0 or x2 6= 0,

y1y2 − z1z2, if x1 = 0 and x2 = 0.

From this, the pseudo-Galilean norm of a vector x in G1
3 is given by ||x|| =

√

|〈x,x〉| and all unit nonisotropic vectors are the form (1, y1, z1). There are
four types of isotropic vectors: spacelike (y21 − z21 > 0), timelike (y21 − z21 < 0)
and the two types of lightlike (y1 = ±z1) vectors. A non-lightlike isotropic
vector is a unit vector if y21 − z21 = ±1.

The pseudo-Galilean cross product of x and y on G1
3 is defined by

x× y =

∣

∣

∣

∣

∣

∣

0 −e2 e3
x1 y1 z1
x2 y2 z2

∣

∣

∣

∣

∣

∣

,

where e2 = (0, 1, 0) and e3 = (0, 0, 1).
Consider a Cr-surface M , r ≥ 1, in G1

3 parametrized by

(2.1) x(u1, u2) = (x(u1, u2), y(u1, u2), z(u1, u2)).

Let us denote gi =
∂x
∂ui

, hij = 〈 ∂x̃
∂ui

, ∂x̃
∂uj

〉(i, j = 1, 2), where ∼ stands for the

projection of a vector on the pseudo-Euclidean yz-plane. A surfaceM is called
admissible if it does not have Euclidean tangent planes. Therefore a surface
M is admissible if and only if x,i 6= 0 for some i = 1, 2.

Let M be an admissible surface. Then the unit normal vector field U of
a surface M is defined by

(2.2) U =
1

W
(0, x,1z,2 − x,2z,1, x,1y,2 − x,2y,1),

where

W =
√

|(x,1y,2 − x,2y,1)2 − (x,1z,2 − x,2z,1)2|.
On the other hand, the matrix of the first fundamental form ds2 of a

surface M in G3 is given by ([16])

ds2 =

(

ds21 0
0 ds22

)

,

where ds21 = (g1du1 + g2du2)
2 and ds22 = h11du

2
1 + 2h12du1du2 + h22du

2
2.

Here gi = x,i and hij = 〈x̃,i, x̃,j〉 (i, j = 1, 2). In such case, we denote the
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coefficients of ds2 by g∗ij . A surface is spacelike or timelike if the determinant

of the matrix (g∗ij) is positive or negative, respectively.
The coefficients Lij , i, j = 1, 2 of the second fundamental form II, which

are the normal components of x,i,j , i, j = 1, 2, that is,

(2.3) Lij =
1

g1
〈g1x̃,i,j − gi,jx̃,1, U〉 = 1

g2
〈g2x̃,i,j − gi,j x̃,2, U〉.

If a surface M in G1
3 has a non-degenerate second fundamental form

II, then it is regarded as a new (pseudo-)Riemannian metric on (M, II).
Let {u1, u2} be a local coordinate system of M and Lij(i, j = 1, 2) be the
coefficients of the second fundamental form II on M . We denote by (Lij)
(resp. L) the inverse matrix (resp. the determinant) of the matrix (Lij).
Then, the Laplacian ∆II of the second fundamental form II on M is defined
by

(2.6) ∆II = − 1
√

|L|

2
∑

i,j=1

∂

∂ui

(
√

|L|Lij ∂

∂uj

).

3. Rotational surfaces in G1
3

In the pseudo-Galilean space G1
3 we distinguish between two types of

circles and between two types of rotational surfaces. The first type occurs as
the result of a pseudo-Euclidean rotation and the second as the result of an
isotropic rotation. It is well-known that the normal form of pseudo-Euclidean
rotations is given by

(3.1)

x̄ = x,

ȳ = y cosh t+ z sinh t,

z̄ = y sinh t+ z cosh t

and the normal form of isotropic rotations is given by

(3.2)

x̄ = x+ bt,

ȳ = y + xt+ b
t2

2
,

z̄ = z,

where t ∈ R and b = constant > 0 (cf. [16]).
The trajectory of a single point under a pseudo-Euclidean rotation is a

pseudo-Euclidean circle (i.e., a rectangular hyperbola)

x = constant, y2 − z2 = r2, r ∈ R.

The invariant r is the radius of the circle. Pseudo-Euclidean circles intersect
the absolute line f in the fixed points of the hyperbolic involution (F1, F2).
There are three kinds of pseudo-Euclidean circles: circles of real radius, of
imaginary radius, and of radius zero. Circles of real radius are timelike curves
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(having timelike tangent vectors) and imaginary radius spacelike curves (hav-
ing spacelike tangent vectors).

The trajectory of a point under an isotropic rotation is an isotropic circle
whose normal form is

z = constant, y =
x2

2b
.

The invariant b is the radius of the circle. The fixed line of the isotropic
rotation (3.2) is the absolute line f .

Let α be a plane curve and l a given line. It is convenient, but not
necessary, to start with a plane curve α. A rotational surface is a surface
obtained when α is displaced in a pseudo-Euclidean rotation or an isotropic
rotation about l ([7]).

First of all, we consider a nonisotropic curve α parameterized by

α(u) = (f(u), g(u), 0) or α(u) = (f(u), 0, g(u))

around the x-axis by the pseudo-Euclidean rotation (3.1), where g is a positive
function and f is a smooth function on an open interval I. Then the rotational
surface M can be written as

(3.3) x(u, v) = (f(u), g(u) coshv, g(u) sinh v),

or

(3.4) x(u, v) = (f(u), g(u) sinh v, g(u) cosh v),

for any v ∈ R, which is called a nonisotropic rotational surface.
Next, we consider the isotropic rotations. By an isotropic curve α(u) =

(0, f(u), g(u)) about the z-axis by an isotropic rotation (3.2), we obtain a
surface

(3.5) x(u, v) =

(

v, f(u) +
v2

2b
, g(u)

)

,

where f and g are smooth functions and b 6= 0. This surface is called an
isotropic rotational surface.

4. Rotational surfaces satisfying ∆IIx = Ax

In this section, we classify rotational surfaces in G1
3 satisfying the condi-

tion

(4.1) ∆IIx = Ax,

where A = (aij), i, j = 1, 2, 3.
First of all, let M be a rotational surface in G1

3 defined by (3.3). Assume
that the rotated curve α is parameterized by arc-length, that is,

α(u) = (u, g(u), 0).
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In this case, the parametrization of M is given by

(4.2) x(u, v) = (u, g(u) coshv, g(u) sinh v),

where g is a positive function.
From now on, we shall often not write the parameter u explicitly in our

formulas. By (2.3), the coefficients of the second fundamental form II on M
are obtained by

(4.3) L11 = g′′, L12 = 0, L22 = g.

Here the prime denotes the derivative with respect to u. Since the surface
has a non-degenerate second fundamental form II, the functions g and g′′ are
non-vanishing everywhere. By a straightforward computation, the Laplacian
∆II of the second fundamental form II on M can be expressible as

(4.4) ∆II = − 1

2g′′
(
g′

g
− g′′′

g′′
)
∂

∂u
− 1

g′′
∂2

∂u2
− 1

g

∂2

∂v2
.

Suppose that M satisfies (4.1). Then, from (4.2) and (4.4), we have the
following system of differential equations:

(4.5)

− 1

2g′′
(
g′

g
− g′′′

g′′
) = a11u+ a12g cosh v + a13g sinh v,

(

− g′

2g′′
(
g′

g
− g′′′

g′′
)− 2

)

cosh v = a21u+ a22g cosh v + a23g sinh v,

(

− g′

2g′′
(
g′

g
− g′′′

g′′
)− 2

)

sinh v = a31u+ a32g cosh v + a33g sinh v.

From (4.5) we easily deduce that a12 = a13 = a21 = a23 = a31 = a32 = 0
and a22 = a33, that is, the matrix A is diagonal. We put a11 = λ and
a22 = a33 = µ. Then the system (4.5) reduces now to the following equations

(4.6)
g′g′′ − gg′′′ = −2λugg′′

2
,

g′(g′g′′ − gg′′′) = 2µg2g′′
2
+ 4gg′′

2
.

Combining two equations in (4.6) we get

(4.7) λug′ + µg + 2 = 0.

Thus its general solution is either

(4.8) g(u) = − 2

λ
lnu+ c1

if λ 6= 0 and µ = 0, or

(4.9) g(u) =
1

µ
(c1u

−µ
λ − 2)

if λ 6= 0 and µ 6= 0, where c1 is constant. The remained cases with respect to
λ and µ are do not appear. Consequently, we have
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Theorem 4.1. Let M be a nonisotropic rotational surface generated by
a curve α(u) = (u, g(u), 0) in the three dimensional pseudo-Galilean space
G1

3. If M satisfies the condition (4.1), then M is a timelike surface and
parameterized as

x(u, v) = (u, g(u) coshv, g(u) sinh v),

where

(1) either g(u) = − 2
λ
lnu+ c1,

(2) or g(u) = 1
µ
(c1u

−µ
λ − 2) with λ 6= 0, µ 6= 0, c1 ∈ R.

Remark. For the specific constants λ, µ, c1 of (1) and (2) in Theorem 4.1,
we have the graphs shown in Figure 1 and Figure 2, respectively.

Figure 1. A nonoisotopic rotational surface with g(u) = lnu.

Let M be a nonisotropic rotational surface given by (3.4) in the three
dimensional pseudo-Galilean space G1

3. Assume that a nonisotropic curve α
is a unit speed curve, that is, α(u) = (u, 0, g(u)). In the case, the surface M
is parameterized by

(4.10) x(u, v) = (u, g(u) sinh v, g(u) cosh v).

Suppose that the surface M satisfies (4.1). Then, by using the similar method
of Theorem 4.2, we can find the same equation (4.7). Consequently, we have

Theorem 4.2. Let M be a nonisotropic rotational surface given by (4.10)
in the three dimensional pseudo-Galilean space G1

3. If M satisfies the condi-
tion (4.1), then M is a spacelike surface and parameterized as

x(u, v) = (u, g(u) sinh v, g(u) cosh v),
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Figure 2. A nonoisotopic rotational surface with g(u) =
u2 − 2.

where

(1) either g(u) = − 2
λ
lnu+ c1,

(2) or g(u) = 1
µ
(c1u

−µ
λ − 2) with λ 6= 0, µ 6= 0, c1 ∈ R.

Next, we consider rotational surfaces M in G1
3 generated by an isotropic

curve α(u) = (0, f(u), g(u)). Assume that the parameter u is the arc-length
parameter of α, that is,

(4.11) f ′(u)
2 − g′(u)

2
= −ǫ(= ±1).

Then the parametrization of M is given by

(4.12) x(u, v) =

(

v, f(u) +
v2

2b
, g(u)

)

,

where f and g are smooth functions and b 6= 0.
On the other hand, the coefficients of the second fundamental form II on M
are obtained by

(4.13) L11 = ǫ(f ′g′′ − f ′′g′), L12 = 0, L22 =
ǫ

b
g′.

Since L = − ǫ
b
f ′′, the function f ′′ is non-vanishing everywhere. From this and

(4.11), the function g′ is also non-vanishing everywhere. By (4.11) we find
g′′ = (f ′/g′)f ′′, it follows that L11 = −f ′′/g′. Thus the Laplacian ∆II of M
is easily obtained by

(4.14) ∆II = − 1

f ′′

(

g′′ − f ′′′g′

2f ′′

)

∂

∂u
− g′

f ′′

∂2

∂u2
+

ǫb

g′
∂2

∂v2
.
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Equation (4.1) is equivalent to an expression

(4.15)

0 = a11v + a12

(

f +
v2

2b

)

+ a13g,

− f ′

f ′′

(

g′′ − f ′′′g′

2f ′′

)

− g′ + ǫ
1

g′
= a21v + a22

(

f +
v2

2b

)

+ a23g,

− g′

f ′′

(

g′′ − f ′′′g′

2f ′′

)

− g′g′′

f ′′
= a31v + a32

(

f +
v2

2b

)

+ a33g.

We can easily find a11 = a12 = a13 = a21 = a22 = a31 = a32 = 0. In this case,
(4.15) is rewritten as the following:

(4.16)

− f ′

f ′′

(

g′′ − f ′′′g′

2f ′′

)

− g′ + ǫ
1

g′
= a23g,

− g′

f ′′

(

g′′ − f ′′′g′

2f ′′

)

− g′g′′

f ′′
= a33g.

If we multiply the first equation of (4.16) by g′ and the second equation of
(4.16) by −f ′, and add the resulting equations, we get a33f

′ = a23g
′. Up to

a rigid motion, there exists a real number k ∈ R such that g(u) = kf(u).
Consequently, the following theorem holds.

Theorem 4.3. Let M be an isotropic rotational surface generated by an
isotropic curve in the three dimensional pseudo-Galilean space G1

3. If M sat-
isfies the condition (4.1), then, for any smooth function f(u), M is parame-
terized as

x(u, v) =

(

v, f(u) +
v2

2b
, kf(u)

)

,

where k is constant.

5. Rotational surfaces satisfying ∆IIG = AG

In this section, we classify rotational surfaces in G1
3 satisfying the condi-

tion

(5.1) ∆IIG = AG,

where A = (aij), i, j = 1, 2, 3.
First, we consider a nonisotropic rotational surface M in G1

3 generated by
a curve α(u) = (u, g(u), 0). Then the parametrization of M is given by

(5.2) x(u, v) = (u, g(u) coshv, g(u) sinh v),

where g is a positive function. For the nondegeneracy of the second funda-
mental of M , we assume that g′′ is nonvanishing everywhere. From (2.2) the
Gauss map G of M is obtained by

(5.3) G =

(

1

||xu × xv||

)

xu × xv = (0, cosh v, sinh v).
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Then, the Laplacian ∆IIG of the Gauss map G together with (4.4) and (5.3)
gives

(5.4) ∆IIG = −1

g
G.

Theorem 5.1. Let M be a nonisotropic rotational surface given by (5.2)
in the three dimensional pseudo-Galilean space G1

3. Then the Gauss map G
of M satisfies (5.4).

If a nonisotropic rotational surface M satisfies (5.1), then the function g
is constant. It is a contradiction. Thus, we have

Theorem 5.2. There is no nonisotropic rotational surfaces given by (5.2)
satisfying (5.1) in the three dimensional pseudo-Galilean space G1

3.

On a nonisotropic rotational surface given by (4.10), we can also obtain
the following result:

Theorem 5.3. Let M be a nonisotropic rotational surface given by (4.10)
in the three dimensional pseudo-Galilean space G1

3. Then the following state-
ments hold:

(1) The Gauss map G of M satisfies ∆IIG = 1
g
G.

(2) There is no the surface M satisfying (5.1) in G1
3.

Next, let M be an isotropic rotational surface generated by a unit speed
isotropic curve in G1

3. Then M is parameterized by

(5.5) x(u, v) =

(

v, f(u) +
v2

2b
, g(u)

)

.

From this the Gauss map G of M is given by

(5.6) G = (0,−g′(u),−f ′(u)).

Suppose thatM satisfies (5.1). Then from (4.14) and (5.6) we get the following
system of differential equations:

(5.7) a12g
′(u) + a13f

′(u) = 0,

(5.8) −a22g
′(u)− a23f

′(u) =
1

f ′′

(

1

2
f ′f ′′′ + f ′′2

)

,

(5.9) −a32g
′(u)− a33f

′(u) =
1

f ′′

(

1

2
f ′′′g′ + f ′′g′′

)

.

If we multiply (5.8) by g′2 and (5.9) by −f ′g′, and add the resulting equations,
we obtain

(5.10) ǫf ′′ = (a32 − a23)f
′(f ′2 + ǫ) +

(

(a33 − a22)f
′2 − a22ǫ

)

g′.
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Thus, (5.7) and (5.10) imply

(5.11) λf ′′ + µf ′3 + νf ′ = 0,

where
λ = a12,

µ = ǫ (a13(a33 − a22)− a12(a32 − a23)) ,

ν = a12(a23 − a32)− a13a22.

Then a general solution of this equation is

(5.12) f(u) = ± λ
√

|µν|
arctan





√

|e 2ν
λ
(u+d1) − µ|
√

|µ|



+ d2.

From (5.7) and (5.12), the function g(u) becomes

(5.13) g(u) = ∓ δ
√

|µν|
arctan





√

|e 2ν
λ
(u+d1) − µ|
√

|µ|



+ d3,

where δ = a13 and d1, d2, d3 are constants of integration. The surface gener-
ated by (5.12) and (5.13) is showed in Figure 3.

Figure 3. A isotropic rotational surface with f(u) =

arctan(
√
e2u − 1) and g(u) = −3f(u).

Theorem 5.4. An isotropic rotational surface in the three dimensional
pseudo-Galilean space G1

3 satisfies the condition ∆IIG = AG if and only if
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the surface is a sphere given by

x(u, v) =

(

v, f(u) +
v2

2b
, g(u)

)

,

where f(u) = ± λ√
|µν|

arctan

(

√

|e
2ν
λ

(u+d1)−µ|√
|µ|

)

+ d2 and g(u) = − δ
λ
f(u).
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