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Sergio Maćıas and César Piceno

Universidad Nacional Autónoma de México, México

Abstract. We continue our study of strong size maps. We show
that strong size levels for the n-fold hyperspace of a continuum contain
(n − 1)-cells. We give two constructions of strong size maps. We intro-
duce reversible strong size properties. We prove that each of the following
properties: being a continuum chainable continuum, being a locally con-
nected continuum, and being a continuum with the property of Kelley, is
a reversible strong size property. Following Professors Goodykoontz and
Nadler, we define admissible strong size maps and show that the levels of
admissible strong size maps for the n-fold hyperspace of a locally connected
continuum are homeomorphic to the Hilbert cube. Professor Benjamı́n Es-
pinoza defined Whitney preserving maps for the hyperspace of subcontinua
of a continuum. We define strong size preserving maps and show that this

class of maps coincides with the class of homeomorphisms.

1. Introduction

We continue our study of strong size maps ([17]). Professor H. Hosokawa
defines strong size maps for the n-fold hyperspace of a continuum X in [11]
as a natural generalization of a Whitney map for the hyperspace of subcon-
tinua of X . We characterize strong size levels for the n-fold hyperspace of
a continuum as antichains that are intersected by order arcs (Theorem 3.1)
and prove that such levels contain (n − 1)-cells (Corollary 3.3). We present
two constructions of strong size maps (Examples 4.1 and 4.2). We introduce
reversible strong size properties and show that each of the following properties
is a reversible strong size property: being a continuum chainable continuum
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(Theorem 5.6), being a locally connected continuum (Theorem 5.7) and being
a continuum with the property of Kelley (Theorem 5.8). Following Profes-
sors Goodykoontz and Nadler ([9]), we define admissible strong size maps and
show that the levels of admissible strong size maps for the n-fold hyperspace
of a locally connected continuum are homeomorphic to the Hilbert cube (The-
orem 6.22). Professor Benjamı́n Espinoza defines Whitney preserving maps
for the hyperspace of subcontinua of a continuum in [8]. We define strong size
preserving maps and show that this class of maps coincides with the class of
homeomorphisms (Theorem 7.4).

In some of our results we include a citation, that means that our theorem is
similar to the one cited, in most cases, we include the proof for the convenience
of the reader.

2. Definitions and notation

If (Z, d) is a metric space, then given a subset A of Z and ε > 0, the open
ball about A of radius ε is denoted by Vd

ε (A), the interior of A is denoted by
IntZ(A), the boundary of A is denoted by BdZ(A), and the closure of A is
denoted by ClZ(A). The identity map on Z is denoted by 1Z .

By a map we mean a continuous function. Let Z be a metric space and
A a nonempty subset of Z. Then a map r : Z →→ A is a retraction provided
that r(a) = a for all a ∈ A. In this case A is a retract of Z.

Let Z be a metric space. By a deformation we mean a map H : Z ×
[0, 1] →→ Z such that H((z, 0)) = z for each z ∈ Z. Let A = {H((z, 1)) | z ∈
Z}. If the map r : Z →→ A given by r(z) = H((z, 1)) is a retraction from
Z onto A, then H is a deformation retraction from Z onto A. If H is a
deformation retraction from Z onto A and for each a ∈ A and each t ∈ [0, 1],
H((a, t)) = a, then H is a strong deformation retraction from Z onto A. The
set A is called a deformation retract of Z (strong deformation retract of Z,
respectively). A metric space Z is an absolute retract provided that for each
metric space Y and each embedding e : Z → Y of Z into Y such that e(Z) is
a closed subset of Y , e(Z) is a retract of Y .

A continuum is a nonempty compact connected metric space.
Given a continuum X and two points x1 and x2 of X , a finite collection

{L1, . . . , Lm} of subsets of X is called a chain from x1 to x2 provided that
x1 ∈ L1, x2 ∈ Lm and Li ∩ Lj 6= ∅ if and only if |i− j| ≤ 1. A chain is called
a continuum chain if each of its elements is a continuum. A continuum chain
is an ε-continuum chain if the diameter of each of its elements is less than
ε. The continuum X is said to be continuum chainable continuum provided
that for each pair of points x1 and x2 of X and each ε > 0, there exists an
ε-continuum chain from x1 to x2.
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An arc is any space homeomorphic to [0, 1], the end points of an arc are
the images of 0 and 1 under a homeomorphism. A continuum X is arcwise
connected if each pair of its points can be joined by an arc in X .

Remark 2.1. Observe that every arcwise connected continuum is a con-
tinuum chainable continuum.

If X is a continuum and n is a positive integer, then Ȟn(X) denotes
the reduced nth Čech cohomology group of X with integer coefficients. A
continuum X is said to be acyclic if Ȟ1(X) is trivial.

Given a compactum X , we consider the following hyperspaces of X :

2X = {A ⊂ X | A is nonempty and closed}

and

Cn(X) = {A ∈ 2X | A has at most n components},

where n is a positive integer. Cn(X) is called the n-fold hyperspace of X .
These spaces are topologized with the Hausdorff metric defined as follows:

H(A,B) = inf{ε > 0 | A ⊂ Vd
ε (B) and B ⊂ Vd

ε (A)},

H always denotes the Hausdorff metric on 2X . When n = 1, we write C(X)
instead of C1(X). Given an element B ∈ Cn(X), the mesh of B, denoted by
mesh(B), is

mesh(B) = max{diam(K) | K is a component of B}.

The symbol Fn(X) denotes the n-fold symmetric product of X ; that is:

Fn(X) = {A ∈ Cn(X) | A has at most n points}.

Note that, by definition, Fn(X) ⊂ Cn(X). It is known, that if X is a contin-
uum, then 2X and Cn(X) are arcwise connected continua (for 2X and C(X)
see [19, (1.13)]; for Cn(X) and n ≥ 2, see [16, 1.8.12]). Also, Fn(X) is a
continuum for all positive integers n ([3, p. 877]). Let X be a continuum and
let n be a positive integer. An order arc in Cn(X) is an arc α : [0, 1] → Cn(X)
such that if 0 ≤ s < t ≤ 1, then α(s) ⊂ α(t) and α(s) 6= α(t).

Let X a continuum and let n a positive integer. If B ∈ Cn(X), define:

Cn(B,X) = {A ∈ Cn(X) | B ⊂ A}.

A map µ : Cn(X) →→ [0, 1] is a size map if µ({x}) = 0 for all x ∈ X ; if
A,B ∈ Cn(X) and A ⊂ B, then µ(A) ≤ µ(B), and µ(X) = 1.

A map µ : Cn(X) →→ [0, 1] is said to be a strong size map provided that
µ(A) = 0 for each A ∈ Fn(X); if A,B ∈ Cn(X), A ⊂ B, A 6= B and
B 6∈ Fn(X), then µ(A) < µ(B), and µ(X) = 1.

By [11, Theorem 2.2], strong size maps exist for each continuum X and
each positive integer n. Note that for n = 1 a strong size map is just a
Whitney map (see [19, (0.50)] for definition).
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LetX be a continuum, let n be a positive integer and let µ : Cn(X)→→ [0, 1]
be a strong size map. A strong size level of µ in Cn(X) is a set of the form
µ−1(t) for some t ∈ [0, 1].

A topological property P is called strong size property if whenever the
continuum X has property P , then for every positive integer n and each
strong size map µ for Cn(X), we have that every strong size level of µ in
Cn(X) has property P .

Let X be a continuum and let S be a subset of Cn(X)\Fn(X). Then S is
said to be an antichain if given two elements S and S′ of S such that S ⊂ S′,
then S = S′.

3. Properties of strong size levels

Theorem 3.1 ([14, 23.8]). Let X be a nondegenerate continuum. Then a
nonempty closed subset S of Cn(X) is a strong size level if and only if either
S = Fn(X) or S ∩ Fn(X) = ∅, S is an antichain and every order arc from
an element of Fn(X) to X intersects S.

Proof. If S is a strong size level, it is clear that either S = Fn(X) or
S ∩ Fn(X) = ∅, S is an antichain and every order arc from an element of
Fn(X) to X intersects S.

Suppose that S ∩Fn(X) = ∅, S is an antichain and every order arc from
an element of Fn(X) to X intersects S.

Define µ′ : S → [0, 1], by µ′(S) = 1
2 for each S ∈ S. Observe that µ′ is a

strong size map for S. Hence, by [17, Theorem 5.4], there exists a strong size
map µ : Cn(X) →→ [0, 1] such that µ|S = µ′. By construction, S ⊂ µ−1(12 ).

To show that µ−1(12 ) ⊂ S, let A ∈ µ−1(12 ) and let αA : [0, 1] → Cn(X) be an
order arc from some point of Fn(X) to X passing through A, by hypothesis,
αA([0, 1]) ∩ S 6= ∅, let A′ ∈ αA([0, 1]) ∩ S. Since µ is a strong size map,
A′ ∈ µ−1(12 ), and either A′ ⊂ A or A ⊂ A′, we have that A = A′. Therefore,

S = µ−1(12 ).

If S = Fn(X), then S = µ−1(0) for each strong size map µ.

Theorem 3.2. Let X be a continuum, let n ≥ 2, let µ : Cn(X) →→ [0, 1]
be a strong size map and let t ∈ (0, 1). If A ∈ (Cn(X) \ Cn−1(X)) ∩ µ−1(t),
then there exist an (n− 1)-cell A contained in µ−1(t) such that A ∈ A.

Proof. Let A ∈ (Cn(X) \ Cn−1) ∩ µ−1(t). Let A1, . . . , An be the
components of A. For each j ∈ {1, . . . , n}, let aj be a point of Aj ,
and let αj : [0, 1] → C(X) be an order arc such that αj(0) = {aj},
αj(1) = X and αj(

1
2 ) = Aj . Define the function ξ : [0, 1]n → Cn(X) by

ξ((r1, . . . , rn)) =
⋃n

j=1 αj(rj). Then ξ is well defined and continuous. Since

A ∈ Cn(X) \ Cn−1(X) and ξ is continuous, there exists an ε > 0 such that
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ξ
(

∏n
j=1

[

1
2 − ε, 1

2 + ε
]

j

)

⊂ Cn(X) \ Cn−1(X), where
[

1
2 − ε, 12 + ε

]

j
is a copy

of
[

1
2 − ε, 12 + ε

]

.

Note that A = ξ((12 , . . . ,
1
2 )) and µ

(

ξ((12 , . . . ,
1
2 + ε))

)

> t. By the conti-
nuity of α and µ, there exists a δ > 0 such that δ < ε and

µ

(

ξ

((

s1, . . . , sn−1,
1

2
+ ε

)))

> t

for all (s1, . . . , sn−1) ∈
∏n−1

j=1

[

1
2 − δ, 12 + δ

]

j
.

Define θ :
∏n−1

j=1

[

1
2 − δ, 12

]

j
→

[

0, 1
2 + ε

]

as follows: For each point

(s1, . . . , sn−1) of
∏n−1

j=1

[

1
2 − δ, 12

]

j
, let θ((s1, . . . , sn−1)) be the unique element

of
[

0, 1
2 + ε

]

such that µ(ξ((s1, . . . , sn−1), θ((s1, . . . , sn−1)))) = t.

To prove that θ is a continuous function, let {(sk1 , . . . , s
k
n−1)}

∞

k=1 be

a sequence of elements of
∏n−1

j=1

[

1
2 − δ, 12

]

j
converging to (s1, . . . , sn−1) ∈

∏n−1
j=1

[

1
2 − δ, 12

]

j
. Consider the sequence {θ((sk1 , . . . , s

k
n−1))}

∞

k=1 of elements

of
[

0, 1
2 + ε

]

. Since this set is compact, {θ((sk1 , . . . , s
k
n−1))}

∞

k=1 has a conver-

gent subsequence {θ((skℓ

1 , . . . , skℓ

n−1))}
∞

ℓ=1 converging to s ∈
[

0, 1
2 + ε

]

. Then,
since µ and ξ are continuous, we have:

lim
ℓ→∞

µ
(

ξ
(

(skℓ

1 , . . . , skℓ

n−1), θ((s
kℓ

1 , . . . , skℓ

n−1))
))

= µ

(

ξ

(

lim
ℓ→∞

(skℓ

1 , . . . , skℓ

n−1), lim
ℓ→∞

θ((skℓ

1 , . . . , skℓ

n−1))

))

= µ(ξ((s1, . . . , sn−1, s))).

Since for each positive integer ℓ, µ
(

ξ
(

(skℓ

1 , . . . , skℓ

n−1), θ((s
kℓ

1 , . . . , skℓ

n−1))
))

=

t, we obtain that µ(ξ((s1, . . . , sn−1, s))) = t and θ((s1, . . . , sn−1)) = s. Hence,
θ is continuous.

Let χ :
∏n−1

j=1

[

1
2 − δ, 1

2

]

j
→ µ−1(t) be given by

χ((s1, . . . , sn−1)) = ξ((s1, . . . , sn−1), θ((s1, . . . , sn−1))).

Then χ is an embedding of the (n− 1)-cell
∏n−1

j=1

[

1
2 − δ, 12

]

j
into µ−1(t).

Corollary 3.3. Let X be a continuum, let n ≥ 2, let µ : Cn(X) →→ [0, 1]
be a strong size map and let t ∈ (0, 1). Then µ−1(t) contains an (n− 1)-cell.

Proof. Since Cn−1(X) has empty interior in Cn(X) ([16, 6.1.7]), we have
that µ−1(t) ∩ (Cn(X) \ Cn−1(X)) 6= ∅. Now, the corollary follows from Theo-
rem 3.2.

Corollary 3.4. The property of being a hereditarily indecomposable con-
tinuum is not a strong size property.
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4. Constructions of strong size maps

It is shown in [11] the existence of the strong size maps, but the author
does not give a construction of them. In this section, we present the construc-
tion of two strong size map for every positive integer n. Example 4.2 is used
in the proof of Theorem 6.14. Also, we give two algebraic properties of the
strong size maps.

The next example is taken from [22, pp. 275-276].

Example 4.1. Let X be a continuum with a bounded metric d bounded
by 1, let n be a positive integer and let A ∈ Cn(X). For each integer
m ≥ 2 and K ∈ Fm(A), where K = {k1, . . . , km}, it is possible that
kj = kl for j 6= l. Define ωm(K) = min{d(kj , kl) | j 6= l}. Define
µm(A) = sup{ωm(K) | K ∈ Fm(A)}. Then the function µ : Cn(X) →→ [0, 1]
given by µ(A) = Σ∞

j=n+1
1
2j µj(A) is a strong size map. To see this, note that

µ is continuous. Observe that if A ∈ Fn(X), then, clearly, µm(A) = 0 for all
m > n. This implies that µ(A) = 0. Now, if A ∈ Cn(X) \ Fn(X), then A has
more than n+1 elements. Hence, µn+1(A) > 0, and µ(A) > 0. Now, suppose
A and B are two elements of Cn(X) such that A ( B and B ∈ Cn(X)\Fn(X).
The proof of the fact that µ(A) < µ(B) is similar to the argument given in
[22, pp. 275-276].

The next example is taken from [12].

Example 4.2. Let X be a continuum and let n be a positive integer. For
each A ∈ Cn(X), let

µm(A) = inf







ε > 0
∣

∣

∣
there exist p1, . . . , pm ∈ X such that A ⊂

m
⋃

j=1

Vε(pj)







.

Then µ : Cn(X) →→ [0, 1] given by µ(A) =
∑∞

m=n
1
2m µm(A) is a strong size

map. To show this, note µ is continuous. Observe that if A ∈ Fn(X),
then, clearly, µm(A) = 0 for all m > n. This implies that µ(A) = 0. If
A ∈ Cn(X) \ Fn(X), then A has more than n elements. Thus, µn(A) > 0,
and µ(A) > 0. Now, suppose A and B are two elements of Cn(X) such that
A ( B and B ∈ Cn(X) \ Fn(X). Without loss of generality, we assume that
A ∈ Cn(X)\Fn(X) also. Let b ∈ B\A and let ε > 0 be such that d(b, A) > 2ε
and we assume ε is small enough that we need more than n points of X to
cover A with open balls of radius ε. Let

ℓ = min







m ≥ n
∣

∣

∣
there exist x1, . . . , xm ∈ X such that A ⊂

m
⋃

j=1

Vε(xj)







.

Since A is compact, there exists δ > 0 such that δ < ε and A ⊂
⋃m

j=1 Vδ(xj).

This implies that µℓ(A) < ε. We claim that µℓ(B) ≥ ε. Suppose this is not
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true and assume that µℓ(B) < ε. Then there exist b1, . . . , bℓ ∈ X such that

B ⊂
⋃ℓ

j=1 Vε(bj). Note that b ∈
⋃ℓ

j=1 Vε(bj). Without loss of generality,

we assume that b ∈ Vε(bℓ). Then A ⊂
⋃ℓ−1

j=1 Vε(bj), a contradiction to the

election of ℓ. Thus, µℓ(B) ≥ ε. Therefore, µℓ(A) < µℓ(B).

Lemma 4.3. Let X be a continuum, let n be a positive integer, and let
µ : Cn(X) →→ [0, 1] be a strong size map. If ω : Cn(X) →→ [0, 1] is a size map
such that ω(A) > 0 for all A ∈ Cn(X) \ Fn(X), then µ · ω : Cn(X) →→ [0, 1] is
a strong size map.

Proof. Clearly, µ · ω is well defined and is continuous. To see that is a
strong size map, let A ∈ Fn(X). Then (µ ·ω)(A) = µ(A) ·ω(A) = 0 ·ω(A) = 0.
Now, suppose A and B are two elements of Cn(X) such that A ( B and
B ∈ Cn(X) \ Fn(X). Then (µ · ω)(A) = µ(A) · ω(A) ≤ µ(A) · ω(B) <
µ(B)·ω(B) = (µ·ω)(B) (the first inequality holds since ω(B) > 0). Therefore,
µ · ω is a strong size map.

5. Reversible strong size properties

A topological property P is an n-reversible property provided that when-
ever X is a continuum such that µ−1(t) has property P for some positive
integer n fixed, for all strong size maps µ : Cn(X) →→ [0, 1] and all 0 ≤ t < 1,
then X has property P .

Remark 5.1. Note that a topological property P is 1-reversible if and
only if P is a Whitney-reversible property (see [19, (14.45)] for the definition).

Remark 5.2. Since for each continuum X and every n ≥ 3, the strong
size levels of each strong size map are acyclic [17, Theorem 4.16], we have that
being acyclic is not an n-reversible property for any n ≥ 3.

Question 5.1. Is the property of being an acyclic continuum a 2-
reversible property?

Question 5.2. Let n and m be positive integers such that m < n. Does
there exist an n-reversible property that is not an m-reversible property?

A topological property P is a powerful strong size-reversible property pro-
vided that if X is a continuum such that there exist a positive integer n and
a strong size map µ : Cn(X) →→ [0, 1] such that µ−1(t) has property P for all
0 ≤ t < 1, then X has property P .

Lemma 5.3. Let X be a continuum, let n be a positive integer and let
µ : Cn(X) →→ [0, 1] be a strong size map. Then for each ε > 0, there exists
t > 0 such that mesh(A) < ε for all A ∈ µ−1(t).

Proof. Suppose the lemma is not true. Then there exists ε > 0 such that
for each positive integerm, there exists Am ∈ µ−1

(

1
m

)

such that mesh(Am) >
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ε. For every positive integer m, let A′
m be a component of Am such that

diam(A′
m) > ε. Since C(X) is compact ([16, 1.8.5]), without loss of generality,

we assume that the sequence {A′
m}∞m=1 converges to an element A′ ∈ C(X).

Since diam(A′
m) > ε for all m, diam(A′) ≥ ε. Since A′

m ⊂ Am and µ(Am) <
1
m

for each m, we have that µ(A′) = 0. Thus, A′ ∈ F1(X) and diam(A′) = 0,
a contradiction. Therefore, the lemma is true.

Lemma 5.4. Let X be a continuum, let n be a positive integer, and let
ε > 0. If A ∈ Cn(X) is such that mesh(A) < ε, and A is a subcontinuum of
Cn(X) such that A ∈ A and diam(A) < ε, then mesh (

⋃

A) ≤ 3nε.

Proof. Let A ∈ Cn(X) and let A be a subcontinuum of Cn(X) such that
A ∈ A and diam(A) < ε. Since A ∈ A and diam(A) < ε, H2({A},A) < ε,
where H2 is the Hausdorff metric on C (Cn(X)), we have that H (A,

⋃

A) < ε
([19, (1.48)]). Let A1, . . . , Am be the components of A. Since H (A,

⋃

A) < ε,
we have that

⋃

A ⊂
⋃m

j=1 Vε(Aj). Hence, if D is a component of
⋃

A, then

diam(D) ≤
∑m

j=1 diam(Vε(Aj)) ≤ m(3ε) ≤ 3nε.

The following lemma is a direct consequence of [10, Lemma 3.1].

Lemma 5.5. Let X be a continuum and let n be a positive integer. If
A and B are two subcontinua of Cn(X) such that A ∩ B 6= ∅. Then each
component of

⋃

A intersects
⋃

B and each component of
⋃

B intersects
⋃

A.

Theorem 5.6. The property of being a continuum chainable continuum
is a powerful strong size-reversible property.

Proof. Let X be a continuum, let n be a positive integer and let
µ : Cn(X) →→ [0, 1] be a strong size map such that µ−1(r) is a continuum
chainable continuum for all r ∈ [0, 1). Let ε > 0. By Lemma 5.3, there
exist t > 0 such that mesh(A) < ε

3n for each A ∈ µ−1(t). Let p and q be

two elements of X and P and Q be two elements of C(X) ∩ µ−1(t) such that
p ∈ P and q ∈ Q. Since µ−1(t) is a continuum chainable continuum, there
exist an ε

3n -chain {A1, . . . ,Am} of subcontinua of µ−1(t) such that P ∈ A1

and Q ∈ Am. By Lemma 5.4, mesh (
⋃

Aj) < ε for all j ∈ {1, . . . ,m}. Since
P ∈ A1 ∩ C(X), by [19, (1.49)], we have that

⋃

A1 is a subcontinuum of
X . Hence, by Lemma 5.5, we obtain that (

⋃

A1) ∪ (
⋃

A2) is also a subcon-
tinuum of X . Continuing with this process we have that

⋃m
j=1 (

⋃

Aj) is a

subcontinuum of X . Now, by Lemma 5.5, there exist a chain {B1, . . . , Bm}
of subcontinua of X such that P ⊂ B1, Q ⊂ Bm, where B1 =

⋃

A1, Bj is a
component of

⋃

Aj for each j ∈ {2, . . . ,m−1} and Bm =
⋃

Am (
⋃

Am is con-
nected by [19, (1.49)], since Q ∈ Am ∩ C(X)). Since for every j ∈ {1, . . . ,m},
mesh (

⋃

Aj) < ε, then diam(Bj) < ε for each j ∈ {1, . . . ,m}. Therefore, X
is a continuum chainable continuum.
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A topological property P is a sequential powerful strong size-reversible
property provided that whenever X is a continuum for which there exist a pos-
itive integer n, a strong size map µ : Cn(X) →→ [0, 1] and a sequence {tm}∞m=1

of elements of (0, 1) converging to 0 such that µ−1(tm) has property P for all
m. Then X has property P .

The proof of the following theorem is similar to the one given for [19,
(14.47)].

Theorem 5.7. Let X be a continuum, let n be a positive integer and let
µ : Cn(X) →→ [0, 1] be a strong size map. If there exists a sequence {tm}∞m=1

of numbers in [0, 1) converging to 0 and µ−1(tm) is locally connected for each
positive integer m, then X is locally connected. Hence, being a locally con-
nected continuum is a sequential powerful strong size-reversible property.

Proof. To show that X is locally connected, by [20, 8.4], we need to
prove that for each ε > 0, X can be written as the union of finitely many
subcontinua each of diameter less than ε.

Let ε > 0. By Lemma 5.3, there exists t ∈ [0, 1) such that mesh(A) < ε for
all A ∈ µ−1(t). Since {tm}∞m=1 converges to 0, there existsm such that tm < t.
Hence, mesh(A) < ε for all A ∈ µ−1(tm). Since µ−1(tm) is a locally connected
continuum, by [20, 8.4], there exist finitely many subcontinua Γ1, . . . ,Γk of

µ−1(tm) such that µ−1(tm) =
⋃k

j=1 Γj and diam(Γj) < ε
3n for each j ∈

{1, . . . , k}. For every j ∈ {1, . . . , k}, let Gj =
⋃

Γj. Then, by [16, 6.1.2],
Gj ∈ Cn(X) for all j ∈ {1, . . . , k}. By Lemma 5.4, mesh(Gj) < ε for every

j ∈ {1, . . . , k}. Since µ−1(tm) =
⋃k

j=1 Γj and
⋃

µ−1(tm) = X , we have

that X =
⋃k

j=1 Gj . Hence, X can be written as the union of at most n · k
subcontinua each of which has diameter less than ε. Therefore, X is locally
connected.

The proof of the following theorem is similar to the one given for [14, 50.4]

Theorem 5.8. The property of Kelley is a sequential powerful strong
size-reversible property.

Proof. Let X be a continuum, let n be a positive integer and let
µ : Cn(X) →→ [0, 1] be a strong size map. Suppose there exists a sequence
{tm}∞m=1 of elements of [0, 1] converging to 0 such that µ−1(tm) has the prop-
erty of Kelley for each m.

Suppose that X does not have the property of Kelley. Then there exist an
element p of X and ε > 0 such that for each positive integer k, there exist a
point qk of X and a subcontinuum Pk of X such that d(p, qk) <

1
k
, p ∈ Pk and

for each subcontinuum Q of X containing qk, we have that H(Pk, Q) ≥ ε. By
Lemma 5.3, there exists s ∈ [0, 1] such that mesh(A) < ε

3 for all A ∈ µ−1(s).
Let N be a positive integer such that tN < s. Note that mesh(A) < ε

3 for

every A ∈ µ−1(tN ).
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For each positive integer k, let Qk ∈ µ−1(tN )∩C(X) be such that qk ∈ Qk.
Since C(X) is compact ([16, 1.8.5]), without loss of generality, we assume
that the sequences {Pk}∞k=1 and {Qk}∞k=1 converge to P and Q, respectively.
Observe that P and Q are subcontinua of X , Q ∈ µ−1(tN ) and p ∈ P ∩ Q.
Hence, P ∪ Q is a subcontinuum of X . Since diam(Q) = mesh(Q) < ε

3 , we
have that H(P, P ∪Q) < ε

3 .

Since µ−1(tN ) has the property of Kelley, and Q ∈ µ−1(tN ), there exists
δ > 0 such that if A ∈ µ−1(tN ), H(Q,A) < δ and Q is a subcontinuum of
µ−1(tN ) containing Q, there exists a subcontinuum A of µ−1(tN ) such that
A ∈ A and H2(Q,A) < ε

3 , where H2 is the Hausdorff metric on C
(

µ−1(tN )
)

.

Let Q = C(P ∪ Q) ∩ µ−1(tN ). Thus, Q is a subcontinuum of µ−1(tN )
containing Q. Let k0 be a positive integer such that H(Pk0

, P ) < ε
3 and

H(Qk0
, Q) < δ. Then there exists a subcontinuum Qk0

of µ−1(tN ) such that
Qk0

∈ Qk0
and H2(Q,Qk0

) < ε
3 .

Let Q′ =
⋃

Qk0
. Then, by [19, (1.49)], Q′ is a subcontinuum of X . Note

that qk0
∈ Q′. Since P ∪ Q =

⋃

Q and H2(Q,Qk0
) < ε

3 , by [19, (1.48)], we
obtain that H(P ∪ Q,Q′) < ε

3 . Hence, H(Pk0
, Q′) ≤ H(Pk0

, P ) + H(P, P ∪
Q) +H(P ∪ Q,Q′) < ε, a contradiction to the election of qk0

. Therefore, X
has the property of Kelley.

Corollary 5.9. The property of Kelley is a powerful strong size-
reversible property.

6. Admissible strong size maps

In [9], Professors J. T. Goodykoontz and S. B. Nadler, Jr. define ad-
missible Whitney maps and prove that under the appropriate hypothesis, the
Whitney levels of admissible Whitney maps are Hilbert cubes ([9, (4.1)]). In
this section we follow [9] and consider admissible strong size maps, and prove
that under the appropriate hypothesis, the strong size levels of admissible
strong size maps are also Hilbert cubes (Theorem 6.22). We also present
other properties of admissible strong size maps.

Let X be a continuum and let n be a positive integer. A strong size map
µ : Cn(X) →→ [0, 1] is an admissible strong size map for Cn(X) provided that
there exists a homotopy H : Cn(X)× [0, 1] →→ Cn(X) satisfying the following
conditions:

(1) For all A ∈ Cn(X), H((A, 1)) = A and H((A, 0)) ∈ F1(X).
(2) If µ((H(A, t))) > 0 for some A ∈ Cn(X) and some t ∈ (0, 1], then

µ(H((A, s))) < µ(H((A, t))) for each s ∈ [0, t).
A homotopy H : Cn(X)× [0, 1] →→ Cn(X), satisfying these conditions is called
a µ-admissible deformation for Cn(X).

Proposition 6.1 ([9, (2.2)]). Let X and Y be homeomorphic continua
and let n be a positive integer. If there is an admissible strong size map µ for
Cn(X), then there is an admissible strong size map for Cn(Y ).
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Proof. Let µX be an admissible strong size map for Cn(X), and let HX

be a µX -admissible deformation for Cn(X). Let h : Y →→ X be a homeomor-
phism. Let µY : Cn(Y ) →→ [0, 1] be given by µY (B) = µX(Cn(h)(B)) for each
B ∈ Cn(Y ). Since Cn(h) is a homeomorphism ([5, Theorem 46]), µY is a
strong size map for Cn(Y ). Now, let HY : Cn(Y )× [0, 1] →→ Cn(Y ) be given by

HY ((B, t)) = Cn(h)
−1(HX((Cn(h)(B), t)))

for all (B, t) ∈ Cn(Y )× [0, 1].
Next, we show that HY is a µY -admissible deformation. To this end, let

B ∈ Cn(Y ). Then

HY ((B, 1)) = Cn(h)
−1(HX((Cn(h)(B), 1))) = Cn(h)

−1((Cn(h)(B))) = B.

Since HX((Cn(h)(B), 0)) ∈ F1(X) and Cn(h) is an induced homeomorphism,
we have that Cn(h)−1(HX((Cn(h)(B), 0))) ∈ F1(Y ). Thus, HY ((B, 0)) ∈
F1(Y ).

Now, let B ∈ Cn(Y ) and let t ∈ (0, 1] be such that µY (HY ((B, t))) > 0
and let s < t. Then

µY (HY ((B, s))) = µX(Cn(h)(HY ((B, s))))

= µX(Cn(h)(Cn(h)
−1(HX((Cn(h)(B), s)))))

= µX(HX((Cn(h)(B), s))) < µX(HX((Cn(h)(B), t)))

= µX(Cn(h)(Cn(h)
−1(HX((Cn(h)(B), t)))))

= µX(Cn(h)(HY ((B, t)))) = µY (HY ((B, t))).

Therefore, HY is a µY -admissible deformation.

Theorem 6.2 ([9, (2.3)]). Let X be a continuum and let n be a positive
integer. If there is an admissible strong size map µ for Cn(X), then Fn(X)
and X are arcwise connected.

Proof. Let H be a µ-admissible deformation for Cn(X). Since Cn(X)
is arcwise connected ([16, 1.8.12]), H (Cn(X)× {0}) is an arcwise connected
subset of Fn(X) by condition (1) of the definition of an admissible strong
size map. Let A ∈ Fn(X) and let A = {H((A, t)) | t ∈ [0, 1]}. Note that, by
condition (1) of the definition of an admissible strong size map, H((A, 1)) = A.
Hence, µ(H((A, 1))) = 0. Thus, by condition (2) of the definition of an
admissible strong size map, A ⊂ Fn(X). As a consequence of this, since A is
arcwise connected and H((A, 0)), A ∈ A, there exists an arc in Fn(X) joining
H((A, 0)) ∈ A ∩ H (Cn(X)× {0}) and H((A, 1)) = A. Therefore, Fn(X) is
arcwise connected. Now, by [6, Proposition 2.7], X is arcwise connected.

Theorem 6.3 ([9, (2.4)]). Let X be a continuum and let n be a positive
integer, and let µ be an admissible strong size map for Cn(X). If Cn(X) is
contractible, then Fn(X) is contractible.
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Proof. Suppose that Cn(X) is contractible. Then there exists a map
G′ : Cn(X) × [0, 1] →→ Cn(X) such that G′((A, 0)) = A and G′((A, 1)) = X .
Let G : Cn(X)× [0, 1] →→ Cn(X) be the segment homotopy associated with G′

defined by

G((A, t)) =
⋃

{G′((A, s)) | s ∈ [0, t)}.

Then G is continuous ([19, (16.3)]). Note that for each A ∈ Cn(X),
G((A, 0)) = A, G((A, 1)) = X and G((A, ·)) : [0, 1] → Cn(X) is an order
arc. Observe that, by [6, Proposition 2.6], G is well defined.

Let H be a µ-admissible deformation for Cn(X). Let L : Fn(X)× [0, 1]→→
Fn(X) be given by:

L((A, t)) =

{

H((A, 1− 2t)), if t ∈
[

0, 12
]

;

H((G(A, 2t− 1)), 0)), if t ∈
[

1
2 , 1

]

.

To see that the image of L is contained in Fn(X), let A ∈ Fn(X) and let
s ∈

[

0, 12
)

. Then µ(H((A, 1 − 2s)) = 0, otherwise 0 < µ(H((A, 1 − 2s)) <

µ(H((A, 1 − 2 1
2 )) = µ(H((A, 1 − 1)) = µ(H((A, 0))) = 0, a contradiction.

Therefore, H((A, 1−2s)) ∈ Fn(X). If A ∈ Fn(X) and s ∈
[

1
2 , 1

]

, by the prop-
erties of H , H((A, 1−2s)) ∈ Fn(X). Since for each A ∈ Fn(A), L((A, 0)) = A
and L((A, 1)) = H((X, 0)), we have that Fn(X) is contractible.

Since the n-fold hyperspaces of continua with the property of Kelley are
contractible ([16, 6.1.16]), as a consequence of Theorem 6.3, we obtain:

Corollary 6.4. Let X be a continuum with the property of Kelley and
let n be a positive integer. If there exists an admissible strong size map µ for
Cn(X), then Fn(X) are contractible.

Since locally connected continua have the property of Kelley [19, (16.11)],
by Corollary 6.4, we have:

Corollary 6.5. Let X be a locally connected continuum and let n be a
positive integer. If there exists an admissible strong size map µ for Cn(X),
then X and Fn(X) are contractible.

Corollary 6.6 ([9, (2.6)]). Let X be a continuum that is an absolute
neighborhood retract and let n be a positive integer. If there exists an admis-
sible strong size map µ for Cn(X), then Fn(X) is an absolute retract.

Proof. Since X is an absolute neighborhood retract, by [15, Theorem
5.1], Fn(X) is an absolute neighborhood retract. It follows from [2, (1.1),
p. 100] that X is locally connected. Thus, since there exists an admissible
strong size map for Cn(X), by Corollary 6.5, Fn(X) is contractible. Hence,
by [2, 9.1, p. 96], Fn(X) is an absolute retract.
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A metric ρ for a continuum X is said to be convex provided that given to
points x1 and x2 of X , there exists a third point x3 in X such that ρ(x1, x3) =
ρ(x2, x3) =

1
2ρ(x1, x2).

A proof of the following result may be found in [1] and [18].

Theorem 6.7. Every locally connected continuum admits a convex met-
ric.

Remark 6.8. If X is a locally connected continuum with a convex metric
ρ, let Kρ : [0,∞)× 2X → 2X be given by

Kρ((t, A)) = {x ∈ X | ρ(x, a) ≤ t for some a ∈ A}.

Note that, by [19, (0.65.3(f))], is continuous. Also observe that, by [16, 6.7.12],
we have that Kρ((t, A)) ∈ Cn(X) for every A ∈ Cn(X) and each t ∈ [0,∞).
In fact, if A ∈ 2X , then Kρ((·, A)) : [0,∞) → 2X is an order arc. Hence,
Kρ|[0,∞)×Cn(X) : [0,∞) × Cn(X) →→ Cn(X) is well defined. Kρ is continuous
by [19, (0.65.3)(f)].

Theorem 6.9. Let X be locally connected continuum with a convex metric
ρ, let n be a positive integer, let µ : Cn(X) →→ [0, 1] be a strong size map, and
let t ∈ [0, 1]. Then µ−1(t) is a strong deformation retract of µ−1[0, t].

Proof. Let A ∈ µ−1[0, t]. Then, since Kρ((·, A)) : [0,∞) → Cn(X) is
an order arc (Remark 6.8), there exists a unique element rA in [0,∞) such
that Kρ((rA, A)) ∈ µ−1(t). Let M : µ−1[0, t] → IR be given by M(A) =
rA. To see that M is continuous, let {Ak}∞k=1 be a sequence of elements of
µ−1([0, t]) that converges to a point A of µ−1([0, t]). We need to show that
the sequence {rAk

}∞k=1 converges to rA. Suppose that {rAk
}∞k=1 converges to

ℓ. Then, since Kρ is continuous ([19, (0.65.3)(f)]), we have that the sequence
{Kρ((rAk

, Ak))}
∞

k=1 converges to Kρ((ℓ, A)). Since for each positive integer
k, Kρ((rAk

, Ak)) belongs to µ−1(t), we obtain that Kρ((ℓ, A)) also belongs to
µ−1(t). Thus, ℓ = rA. Therefore, M is continuous. Note that if A ∈ µ−1(t),
then M(A) = 0.

Let H : µ−1[0, t] × [0, 1] →→ µ−1[0, t] be given by H((A, s)) = Kρ((s ·
M(A), A)). Then H is continuous. Let A ∈ µ−1[0, t]. Then H((A, 0)) =
Kρ((0 · M(A), A)) = Kρ((0, A)) = A, H((A, 1)) = Kρ((1 · M(A), A)) =
Kρ((M(A), A)) ∈ µ−1(t). Furthermore, if A ∈ µ−1(t) and s ∈ [0, 1], then
H((A, s)) = Kρ((s ·M(A), A)) = Kρ((s · 0, A)) = Kρ((0, A)) = A. Therefore,
µ−1(t) is a strong deformation retract of µ−1[0, t].

Corollary 6.10. Let X be a locally connected continuum with a convex
metric ρ, let n be a positive integer, and let µ : Cn(X) →→ [0, 1] be a strong
size map. Then µ−1([t, 1]) is an absolute retract for every t ∈ [0, 1].

Proof. Let t ∈ [0, 1]. If t = 1, then µ−1(1) = {X}. Hence, µ−1(1)
is an absolute retract. If t = 0, then µ−1([0, 1]) = Cn(X). Since Cn(X) is
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an absolute retract ([23, Théorème IIm]), we are done. Suppose t ∈ (0, 1)
by Theorem 6.9, µ−1(t) is a strong deformation retract of µ−1[0, t]. Since
µ−1([0, t])∩µ−1([t, 1]) = µ−1(t), we have that µ−1([t, 1]) is a strong deforma-
tion retract of Cn(X). Thus, since Cn(X) is an absolute retract, we have that
µ−1([t, 1]) is an absolute retract ([2, (2.2), p. 86]).

Theorem 6.11 ([9, (2.7)]). Let X be a continuum and let n be a positive
integer. If µ is an admissible strong size map for Cn(X), then for each t0 ∈
(0, 1), µ−1(t0) is a retract of µ−1([t0, 1]).

Proof. Let H : Cn(X) × [0, 1] →→ Cn(X) be a µ-admissible deformation
for Cn(X). Let t0 ∈ (0, 1), and let A ∈ µ−1([t0, 1]). Since H((A, 1)) = A,
µ(H((A, 1))) ≥ t0. Also, since H((A, 0)) ∈ F1(X), µ(H((A, 0))) = 0. Hence,
there exists an element sA of [0, 1] such that µ(H((A, sA))) = t0. Note that,
by the properties of H , sA is unique. Let N : µ−1([t0, 1]) → [0,∞) be given
by N(A) = sA. To see that N is continuous, let {Ak}∞k=1 be a sequence of
elements of µ−1([t0, 1]) converging to a point A of µ−1([t0, 1]). We need to
prove that the sequence {sAk

}k=1 converges to sA. Suppose that {sAk
}k=1

converges to ℓ. Since H is continuous, the sequence {H((A, sAk
))}∞k=1 con-

verges to H((A, ℓ)). Since for each positive integer k, H((A, sAk
)) belongs

to µ−1(t0), we have that H((A, ℓ)) belongs to µ−1(t0) too. Thus, ℓ = sA.
Therefore, N is continuous. Observe that if A ∈ µ−1(t0), then N(A) = 0.

Let r : µ−1([t0, 1]) →→ µ−1(t0) be given by r(A) = H((A, 1−N(A))). Then
r is continuous. If A ∈ µ−1(t0), then N(A) = 0. Thus, r(A) = H((A, 1 −
N(A)) = H((A, 1)) = A. Therefore, r is a retraction from µ−1([t0, 1]) onto
µ−1(t0).

Theorem 6.12 ([9, (2.8)]). Let X be a continuum, let n be a positive
integer, and let µ be an admissible strong size map for Cn(X). If Cn(X) is
contractible, then µ−1(t0) is contractible for each t0 ∈ [0, 1].

Proof. Let t0 ∈ [0, 1]. If t = 0, then µ−1(t0) = Fn(X) and, by Theo-
rem 6.3, µ−1(t0) is contractible. Since µ−1(1) = {X}, we have that µ−1(1) is
contractible too. Assume that t0 ∈ (0, 1).

Since Cn(X) is contractible, there exists a mapG′ : Cn(X)×[0, 1]→→Cn(X)
such that G′((A, 0)) = A and G′((A, 1)) = X . Let G : Cn(X)× [0, 1]→→ Cn(X)
be the segment homotopy associated with G′ defined by

G((A, t)) =
⋃

{G′((A, s)) | s ∈ [0, t)}.

Then G is continuous ([19, (16.3)]). Note that for each A ∈ Cn(X),
G((A, 0)) = A, G((A, 1)) = X and G((A, ·)) : [0, 1] → Cn(X) is an order
arc. Observe that, by [6, Proposition 2.6], G is well defined. Note that
G(µ−1([t0, 1])×[0, 1]) = µ−1([t0, 1]). Hence, µ

−1([t0, 1]) is contractible. Since,
by Theorem 6.11, µ−1(t0) is a retract of µ−1([t0, 1]), we have that µ−1(t0) is
contractible ([2, (13.2), p. 26]).
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Theorem 6.13 ([9, (2.9)]). Let X be a locally connected continuum with
a convex metric ρ, let n be a positive integer, and let µ : Cn(X) →→ [0, 1] be a
strong size map. Then µ−1(t0) is an absolute retract for each t0 ∈ (0, 1).

Proof. Let t0 ∈ (0, 1). By Corollary 6.10, µ−1([t0, 1]) is an absolute
retract. Also, by Theorem 6.11, µ−1(t0) is a retract of µ−1([t0, 1]). Hence, by
[2, (2.2), p. 86], µ−1(t0) is an absolute retract.

Theorem 6.14 ([9, (2.13)]). Let X be a continuum with metric d and let n
be a positive integer. Suppose that there exists a homotopy ϕ : X× [0, 1] →→ X
satisfying the following conditions:

(1) ϕ((x, 1)) = x and, for some fixed point p ∈ X, ϕ((x, 0)) = p for every
x ∈ X;

(2) If d(ϕ((x1, t)), ϕ((x2, t))) > 0 for x1, x2 ∈ X and t ∈ [0, 1], then
d(ϕ((x1, s)), ϕ((x2, s))) < d(ϕ((x1, t)), ϕ((x2, t))) for all s ∈ [0, t).
Then there exists an admissible strong size map ω for every Cn(X).

Proof. Without loss of generality, we assume that diam(X) = 1. De-
fine ω : Cn(X) →→ [0, 1], as ω(A) = diam(A) · µ(A), where µ is the strong
size map defined in Example 4.2. By Lemma 4.3, ω is a strong size map.
Define, H : Cn(X) × [0, 1] → Cn(X), by H((A, t)) = ϕ(A × {t}). Since
ϕ is uniformly continuous map, H is continuous. We show that H is an
ω-admissible deformation for Cn(X). To this end, let A ∈ Cn(X). Then
H((A, 1)) = ϕ(A × {1}) = A and H((A, 0)) = ϕ(A× {0}) = {p} ∈ F1(X).

Let A ∈ Cn(X) and let t ∈ [0, 1] be such that ω(H((A, t))) > 0. Let
s ∈ [0, t). If s = 0, then ω(H((A, s))) = 0 < ω(H((A, t))). Assume that s > 0.
Observe that for every m ≥ n, we have that µm(H((A, t))) ≥ µm(H((A, s))),
since, if H((A, t)) ⊂ Vε({p1, . . . , pm}), then, by definition of ϕ, we obtain
that:

H((A, s)) ⊂ Vε({ϕ((p1, s)), . . . , ϕ((pm, s))}).

Thus, µ(H((A, t))) ≥ µ(H((A, s))). Now, by the definition of H , we have
that diam(H((A, t))) > diam(H((A, s))). Hence, we have that ω(H((A, t))) >
ω(H((A, s))).

A subcontinuum S of a Banach space E is starshaped if there exists an
element p in S such that for every x ∈ S, the convex arc in E from p to x is
contained in S.

Corollary 6.15 ([9, (2.14)]). Let X be a starshaped subcontinuum of a
Banach space E and let n be a positive integer. Then there exists an admissible
strong size map µ for Cn(X).

The proof of the following corollary is the same as the one given in [9,
(2.15)] since the authors embed X as starshaped subcontinuum of a Banach
space.
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Corollary 6.16 ([9, (2.15)]). Let X be the topological cone over a
nonempty compact metric space Y and let n be a positive integer. Then there
exists an admissible strong size map µ for Cn(X).

The proof of the following theorem is the same as the one given in [9,
(2.16)], the authors construct a map satisfying the requirements of Theo-
rem 6.14.

Theorem 6.17 ([9, (2.16)]). If X is a dendrite and n is a positive integer,
then there exists an admissible strong size map µ for Cn(X).

Proposition 6.18 ([9, (3.1)]). Let X be a continuum and let n be a
positive integer. Let µ be a strong size map for Cn(X), let E ⊂ Cn(X) and let
σ : E → C(Cn(X)) be a map such that for every B ∈ E, σ(B) is an order arc in
Cn(X). Let t0 ∈ [0, 1], and assume that for each B ∈ E, µ−1(t0) ∩ σ(B) 6= ∅.
Then for each B ∈ E, σ(B)∩µ−1(t0) consists of exactly one point of µ−1(t0),
denoted by σt0(B), and the function σt0 : E → µ−1(t0) is continuous.

Proof. Let B ∈ E . Since σ(B) is an order arc, if µ−1(t0) ∩ σ(B) 6= ∅,
then µ−1(t0) ∩ σ(B) consists of exactly one point of µ−1(t0). To show that
σt0 is continuous, let {Bm}∞m=1 be a sequence of elements of E converging
to an element B of E . Since µ−1(t0) is compact, without loss of generality,
we assume that {σt0(Bm)}∞m=1 converges to a point A of µ−1(t0). Since σ
is continuous, A ∈ σ(B). Thus, A ∈ µ−1(t0) ∩ σ(B). Hence, A = σt0(B).
Therefore, σt0 is continuous.

Lemma 6.19 ([7, 5.4]). Let X be a nondegenerate locally connected con-
tinuum, let A be a closed subset of X without free arcs in X such that A has
nonempty interior in X, let n be a positive integer and let ε > 0. Then there
exists a map R : Cn(X) → Cn(X) \ Cn(A,X) such that ρ0(R, 1Cn(X)) < ε,
where ρ0 is the “ sup” metric, and R(B) \A = B \A for every B ∈ Cn(X).

Proof. Since X is a locally connected continuum, there exists a finite
collection P of locally connected subcontinua of X such that the diameter of
each element of P is smaller that 1

2ε, and each element of P is the closure
of an open connected subset of X ([20, 8.9]). Without loss of generality, we
assume that there exists an element P of P such that:

St(P ) =
⋃

{P ′ ∈ P | P ′ ∩ P 6= ∅}

is contained in A. Since P is a locally connected continuum, there exists a
tree T contained in P such that

M = T ∪
⋃

{P ′ ∈ P | P ′ ∩ P 6= ∅ and P ′ 6= P}

is connected. Hence, M is locally connected. This implies that Cn(M) is an
absolute retract ([23, Théorème IIm]). Thus, there exists a map r0 : St(P ) →
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Cn(M) such that r0(x) = {x} for all x ∈ M . We extend r0 to a map r : X →
Cn(X) by setting r(x) = {x} for every x ∈ X \ St(P ).

Since A does not contain free arcs, we have that Int(P ) is not contained
in M . Define R : Cn(X) → Cn(X) \ Cn(A,X) by

R(B) =
⋃

{r(b) | b ∈ B}.

Note that, by construction, R is well defined, R(B) \ A = B \ A for all
B ∈ Cn(X) and ρ0(R, 1Cn(X)) < ε.

Lemma 6.20 ([9, (3.2)]). Let X be a locally connected continuum and let
A be closed subset of X such that A has nonempty interior. Assume that A
does not contain any free arc in X. If µ is an admissible strong size map for
Cn(X), then for each t0 ∈ (0, 1), the set {B ∈ µ−1(t0) | A ⊂ B} is a Z-set in
µ−1(t0).

Proof. Let H : Cn(X)× [0, 1] →→ Cn(X) be a µ-admissible deformation.
Let t0 and s be two elements of (0, 1). Define R : Cn(X) → Cn(X) as in
Lemma 6.19; i.e. R(B) =

⋃

{r(b) : b ∈ B} for each B ∈ Cn(X). Hence, we
have the following:

(1) If B1, B2 ∈ Cn(X) and B1 ⊂ B2, then R(B1) ⊂ R(B2).
By Lemma 6.19, we assume that R is close enough to the identity map such
that:

(2) µ(R(X)) > t0.
Since H is a µ-admissible deformation for Cn(X) and, since s < 1 and t0 > 0,
µ(H((B, s))) < t0 for each B ∈ µ−1(t0). Hence, since µ

−1(t0) is compact and
µ and H are continuous functions:

inf{t0 − µ(H((B, s))) | B ∈ µ−1(t0)} > 0.

Therefore, by Lemma 6.19, we may assume that R is near enough to the
identity map such that:

(3) µ(R(H((B, s)))) < t0 for every B ∈ µ−1(t0).
Since X is locally connected, X admits a convex metric ρ ([1] or [18]),

and consider the map Kρ : [0,∞)×Cn(X) →→ Cn(X) given in Remark 6.8. For
each B ∈ µ−1(t0) let

σ(B) = {R(Kρ((t,H((B, s))))) | t ≥ 0}.

Since Kρ and R are continuous, we have that σ(B) is a subcontinuum of
Cn(X) for all B ∈ µ−1(t0). Also, by (1), we obtain that:

R(Kρ((t1, H((B, s))))) ⊂ R(Kρ((t2, H((B, s))))) if 0 ≤ t1 ≤ t2.

Hence, by [19, (1.4)] and [6, 2.6], σ(B) is an order arc in Cn(X) for each
B ∈ µ−1(t0). Since H , Kρ and R are continuous, it follows that σ : Cn(X) →
C(Cn(X)) is continuous too. For each B ∈ µ−1(t0), by (3), we have:

µ(R(Kρ((0, H((B, s)))))) < t0,
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and letting γ = diam(X), we obtain, by (2):

µ(R(Kρ((γ,H((B, s)))))) > t0.

Hence, since for every B ∈ µ−1(t0), σ(B) is an order arc, we have that σ(B)∩
µ−1(t0) 6= ∅ for all B ∈ µ−1(t0). Let σt0 : µ

−1(t0) → µ−1(t0) be given as in
Proposition 6.18. Then σt0 is continuous and, by Lemma 6.19, A 6⊂ R(B)
for any B ∈ Cn(X). This implies that σt0 maps µ−1(t0) into µ−1(t0) \ {B ∈
µ−1(t0) | A ⊂ B}. Also: for any given ε > 0, it is not difficult to see that if s
is close enough to 1 and R is near enough of 1Cn(X), then ρ0(σt0 , 1µ−1(t0)) < ε.

Therefore, {B ∈ µ−1(t0) | A ⊂ B} is a Z-set in µ−1(t0).

The following result is a special case of [21, Theorem 1].

Theorem 6.21. Let Y be an absolute retract. If 1Y is a uniform limit of
Z-maps, then Y is a Hilbert cube.

Theorem 6.22 ([9, (4.1)]). Let X be locally connected continuum that
does not contain free arcs and let n be a positive integer. If there exist an
admissible strong size map µ for Cn(X), then µ−1(t0) is a Hilbert cube for
every t0 ∈ (0, 1).

Proof. Let H : Cn(X) × [0, 1] →→ Cn(X) be a µ-admissible deformation
for Cn(X) and let t0 ∈ (0, 1). By Theorem 6.13, we have that µ−1(t0) is an
absolute retract. Hence, by Theorem 6.21, it suffices to show that 1µ−1(t0)

is a uniform limit of Z-maps. Since X is a locally connected continuum,
there exist a convex metric ρ for X (see [1] or [18]) and consider the map
Kρ : [0,∞) × Cn(X) →→ Cn(X) given in Remark 6.8. Let s ∈ (0, 1). Define
σ : µ−1(t0) → C1(Cn(X)) by

σ(B) = {Kρ((t, (H((B, s))))) | t ≥ 0}

for each B ∈ µ−1(t0). SinceH andKρ are continuous, with a similar argument
to the one given in the proof of Lemma 6.20, we have that σ is continuous.
Note that for every B ∈ µ−1(t0), σ(B) is an order arc ([6, 2.6]). Thus,
σ(B) ∩ µ−1(t0) 6= ∅. Hence, we may define σt0 : µ

−1(t0) → µ−1(t0) as in
Proposition 6.18. We show that σt0 is a Z-map.

Since H is a µ-admissible deformation and since s < 1 and t0 > 0,
µ(H((B, s))) < t0 for each B ∈ µ−1(t0). Thus, since µ−1(t0) is compact
and H and µ are continuous, we have that

sup{µ(H((B, s))) | B ∈ µ−1(t0)} < t0.

By the definition of σt0 , we have that for each B ∈ µ−1(t0), there exists
tB such that σt0(B) = µ(Kρ((tB, H((B, s))))). Since, µ(σt0(B)) = t0 for
each B ∈ µ−1(t0), it follows that there exists γ > 0 such that tB ≥ γ
for every B ∈ µ−1(t0). Let {p1, . . . , pm} be a finite subset of X such that
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H(X, {p1, . . . , pm}) < γ
2 . For each j ∈ {1, . . . ,m}, let

Pj =
{

E ∈ µ−1(t0)
∣

∣ Kρ

((γ

2
, {pj}

))

⊂ E
}

.

Now, we show that σt0(µ
−1(t0)) ⊂

⋃m
j=1 Pj . Let B0 ∈ µ−1(t0) and let x0 ∈

H((B0, s)). Then there exists pj ∈ {p1, . . . , pm} such that ρ(x0, pj) <
γ
2 . For

every y ∈ Kρ((
γ
2 , {pj})), it follows that

ρ(y, x0) ≤ ρ(y, pj) + ρ(pj , x0) ≤ γ ≤ tB0
.

Hence, Kρ((
γ
2 , {pj})) ⊂ Kρ((tB0

, H((B0, s)))) = σt0(B0). Thus, σt0(µ
−1(t0))

⊂
⋃m

j=1 Pj. Note that, by Lemma 6.20, each Pj is a Z-set in µ−1(t0). Hence,

σt0(µ
−1(t0)) is contained in a finite union of Z-sets of µ−1(t0). Thus, by

[4, Theorem 3.1], σt0(µ
−1(t0)) is a Z-set of µ−1(t0). Therefore, σt0 is a Z-

map. It is not difficult to see that if s had been sufficiently close to 1, then σt0

would have been as near to 1σt0
as desire. Thus, we have proved that 1σt0

is

a uniform limit of Z-maps. Therefore, by Theorem 6.21, µ−1(t0) is a Hilbert
cube.

7. About the existence of strong size preserving maps for n ≥ 2

In [8] the notion of Whiney preserving functions is introduced. We show
that the corresponding notion for strong size maps and for an integer n greater
than or equal to two is trivial; i.e., that type of map must be a homeomorphism
(Theorem 7.4).

Let X and Y be continua and let n be an integer greater than or equal
to 2. A map f : X → Y is an n-strong size preserving map if there exist two
strong size maps

µ : Cn(X) →→ [0, 1] and ω : Cn(Y ) →→ [0, 1]

such that for each t ∈ [0, 1], there exists s ∈ [0, 1] such that

Cn(f)(µ
−1(t)) = ω−1(s).

This means that a map f is an n-strong preserving map, if there exist two
strong size maps for which the induced map Cn(f) maps strong size levels
of Cn(X) onto strong size levels of Cn(Y ). In this case, we say that f is
(µ, ω)-n-strong size preserving.

Lemma 7.1. Let X and Y be continua and let n be an integer greater
than or equal to 2. If f : X → Y is an (µ, ω)-n-strong size preserving map,
then f is surjective and Cn(f)(µ−1(0)) = ω−1(0).

Proof. Let f : X → Y be an n-strong size preserving map. Let
{x1, . . . , xm} ∈ µ−1(0). Clearly, Cn(f)({x1, . . . , xm}) = {f(x1), . . . , f(xm)} ∈
ω−1(0). Hence, Cn(f)(µ−1(0)) ⊂ ω−1(0). By definition of n-strong size
preserving map, Cn(f)(µ−1(0)) = ω−1(t) for some t ∈ [0, 1]. Since
Cn(f)(µ−1(0)) ∩ ω−1(0) 6= ∅, we obtain that Cn(f)(µ−1(0)) = ω−1(0).
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Let y ∈ Y . Then {y} ∈ ω−1(0). Hence, by the previous paragraph, there
exists A ∈ µ−1(0) such that Cn(f)(A) = {y}. Clearly, if a ∈ A, then f(a) = y.
Therefore, f is surjective.

Lemma 7.2. Let X and Y be continua such that Y is nondegenerate and
let n be an integer greater than or equal to 2. If f : X →→ Y is a (µ, ω)-n-strong
size preserving map, then f is light.

Proof. Suppose the map f is not light. Let

A = {µ(A) | A ∈ C(X) and Cn(f)(A) ∈ F1(X)}.

Since f is not light, A is nonempty, also since Y is nondegenerate, we have
that maxA > 0. Let a = maxA, let A ∈ µ−1(a), and let p ∈ X \A. Since µ
is a strong size map, µ(A ∪ {p}) > µ(A); however Cn(f)(A ∪ {p}) ∈ Fn(Y ).
This implies that ω(Cn(f)(A ∪ {p})) = 0. Let B a subcontinuum of X such
that A ( B and µ(A ∪ {p}) > µ(B). Then, since A ∈ µ−1(a), we have that
Cn(f)(B) /∈ Fn(X). Thus, ω(Cn(f)(B)) > ω(Cn(f)(A ∪ {p}), a contradiction.
Therefore, f is light.

Lemma 7.3. Let X and Y be two continua such that Y is nondegenerate
and let n be an integer greater than or equal to 2. Let f : X →→ Y be a (µ, ω)-
n-strong size preserving map. If Cn(f)(µ−1(t)) = ω−1(s) and t′ ∈ (0, t), then
Cn(f)(µ−1(t′)) = ω−1(s′), where s′ ≤ s.

Proof. Let A′ ∈ µ−1(t′) and let A ∈ µ−1(t) be such that A′ ⊂ A.
Then Cn(f)(A′) ⊂ Cn(f)(A). Hence, ω(Cn(f)(A′)) ≤ ω(Cn(f)(A)). There-
fore, s′ ≤ s. Since f is a (µ, ω)-n-strong size preserving map, we have that
Cn(f)(µ−1(t′)) = ω−1(s′).

Theorem 7.4. Let X and Y be two continua such that Y is nondegenerate
and let n be an integer greater than or equal to 2. If f : X →→ Y is a (µ, ω)-
n-strong size preserving map, then f is an homeomorphism.

Proof. Suppose that f is not a homeomorphism. Since f is (µ, ω)-
n-strong size preserving map, by Lemma 7.1, f surjective. Thus, f is not
one-to-one. Let p and q be two different points of X such that f(p) = f(q).
Let α : [0, 1] → Cn(X) be an order arc such that α(0) = {p} and α(1) = X .
Let rq = min{t ∈ [0, 1] | q ∈ α(t)}. Since rq > 0 and f is light (Lemma 7.2),
ω(Cn(f)(α(rq))) > 0. Let sq = ω(Cn(f)(α(rq))). By the continuity of ω and
Cn(f), and since Cn(f)({p, q}) ∈ Fn(Y ), we have that there exists r ∈ (0, rq)
such that

0 < ω(Cn(f)(α(r) ∪ {q})) < sq.

Since µ is a strong size map and q /∈ α(r) and α(r) 6∈ Fn(X), µ(α(r)∪{q}) >
µ(α(r)) > 0. Let A be the element of µ−1(µ(α(r)∪{q}))∩α([0, 1]) and assume
that µ(A) = rµ.
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By the continuity of α, Cn(f) and µ, there exists r′ ∈ (r, rµ) such that

µ(α(r) ∪ {q}) > µ(α(r′)) > µ(α(r)).

Since α is an order arc, Cn(f) is an induced map and ω is a strong size
map, we have that:

ω ◦ Cn(f) ◦ α : [0, 1] →→ [0, 1]

is an increasing map. Since f is light (Lemma 7.2) and ω is a strong size map,
ω(Cn(f)(α(t)))) = 0 if and only if t = 0. Thus, there exists s′ ∈ (0, r′) such
that for all s > s′, we obtain that

ω(Cn(f)(α(s
′))) < ω(Cn(f)(α(s))).

This implies that ω(Cn(f)(α(r) ∪ {q})) = ω(Cn(f)(α(r))) < ω(Cn(f)(α(r′))),
a contradiction to Lemma 7.3, since µ(α(r) ∪ {q}) > µ(α(r′)).
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Warsaw, 1967.
[3] K. Borsuk and S. Ulam, On symmetric products of topological spaces, Bull. Amer.

Math. Soc. 37 (1931), 875–882.
[4] T. A. Chapman, Lectures on Hilbert cube manifolds, American Mathematical Society,

Providence, 1976.
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