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Franco Barragán, Sergio Maćıas and Jesús F. Tenorio
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de México, México

Abstract. We continue the work initiated by the first named au-
thor in Induced maps on n-fold symmetric product suspensions, Topology
Appl. 158 (2011), 1192-1205. We consider classes of maps not included in
the mentioned paper, namely: almost monotone, atriodic, freely decompos-
able, joining, monotonically refinable, refinable, semi-confluent, semi-open,
simple and strongly freely decomposable maps.

1. Introduction

We continue the work initiated by the first named author in [2]. We con-
sider classes of maps not included in the mentioned paper, namely: Almost
monotone, atriodic, freely decomposable, joining, monotonically refinable, re-
finable, semi-confluent, semi-open, simple and strongly freely decomposable
maps.

Let M be one of the classes of maps between continua mentioned in
the previous paragraph. We study the relationships between the following
statements:

(1) f ∈ M,
(2) Fn(f) ∈ M,
(3) SFn(f) ∈ M.

The paper contains eleven sections. After the first two sections, each section
deals with one of the classes of maps mentioned above, except: Section 6,
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in which we work with both freely decomposable and strongly freely decom-
posable maps; and Section 8, in which we work with both, refinable and
monotonically refinable maps.

2. Definitions and notations

If Z is a metric space, then given a subset A of Z, the interior of A is
denoted by IntZ(A). If ε > 0, then Vε(A) denotes the set of points of X
whose distance to A is less than ε. Also, diam(A) denotes the diameter of A.

Given a function f : X → Y between metric spaces, if A is a subset of X ,
then f |A denotes the restriction of f to A.

A continuum is a nonempty compact, connected and metric space. A map

is a continuous function.
Let f : X→→Y be a surjective map between continua. The function f is:

• almost monotone provided that for each subcontinuum with nonempty
interior Q of Y , f−1(Q) is connected.

• atriodic if for every subcontinuum Q of Y , there exist two components
C andD of f−1(Q) such that f(C)∪f(D) = Q and for each component
E of f−1(Q), we have that either f(E) = Q, or f(E) ⊂ f(C) or
f(E) ⊂ f(D).

• an ε-map provided that ε > 0 and diam(f−1(y)) < ε for each y ∈ Y .
• freely decomposable if whenever A and B are proper subcontinua of Y
such that Y = A∪B, then there exist two proper subcontinua A′ and
B′ of X , such that X = A′ ∪B′, f(A′) ⊂ A and f(B′) ⊂ B.

• joining provided that for each subcontinuum Q of Y and for each two
components C and D of f−1(Q), we have that f(C) ∩ f(D) 6= ∅.

• monotone provided that f−1(Q) is connected, for each subcontinuum
Q of Y .

• monotonically refinable provided that for each ε > 0, there exists a
monotone ε-map g : X→→Y such that d(f(x), g(x)) < ε for all x ∈ X .

• refinable if for every ε > 0, there exists an ε-map g : X→→Y such that
d(f(x), g(x)) < ε for all x ∈ X .

• semi-confluent provided that for each subcontinuum Q of Y and for
each two components C and D of f−1(Q), either f(C) ⊂ f(D) or
f(D) ⊂ f(C).

• semi-open if for each open subset U of X , IntY (f(U)) 6= ∅.
• simple provided that f−1(y) has at most two points for all y ∈ Y .
• strongly freely decomposable if whenever A and B are proper subcon-
tinua of Y such that Y = A ∪ B, we obtain that f−1(A) and f−1(B)
are connected1.

1Strongly freely decomposable maps are also known in the literature as feebly monotone

maps.
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Given a continuum X , we define its hyperspaces as the following sets:

2X = {A ⊂ X | A is closed and nonempty};

Cn(X) = {A ∈ 2X | A has at most n components}, n ∈ IN;

Fn(X) = {A ∈ 2X | A has at most n points}, n ∈ IN.

We topologize these sets with the Hausdorff metric, H ([15, (0.1)]). Cn(X) is
the n-fold hyperspace of X and Fn(X) is the n-fold symmetric product of X .

Let A1, . . . , Am be nonempty subsets of X . We define the set

〈A1, . . . , Am〉 = {D ∈ 2X | D ⊂ ∪m
i=1Ai and D ∩ Ai 6= ∅ for each i}.

Note that this set is nonempty (for each j ∈ {1, . . . ,m}, let aj ∈ Aj , then
we have that {a1, . . . , am} ∈ 〈A1, . . . , Am〉). It is known that the family
{〈U1, . . . , Ul〉 | U1, . . . , Ul are open subsets of X} forms a base for a topology
on 2X called the Vietoris topology ([15, (0.11)]). It is well known that the
Vietoris topology and the topology induced by the Hausdorff metric coincide
([15, (0.13)]).

Notation 2.1. Let X be a continuum, let U1, . . . , Um be a finite family of

open subsets of X and let n be a positive integer. Then 〈U1, . . . , Um〉n denotes

the set 〈U1, . . . , Um〉 ∩ Fn(X).

Let n be an integer greater than or equal to 2. Then the n-fold symmetric

product suspension ([1]) of a continuum X , denoted by SFn(X), is the quo-
tient space Fn(X)/F1(X), with the quotient topology. The quotient map is
denoted by qnX : Fn(X)→→SFn(X) and we denote qnX(F1(X)) by Fn

X .
Let n be an integer greater than or equal to 2, and let X and Y be

continua. If f : X → Y is a map, then we define the function Fn(f) : Fn(X) →
Fn(Y ) by Fn(f)(A) = f(A) for all A ∈ Fn(X), and it is called the induced

map of f on the n-fold symmetric products of X and Y . Note that Fn(f)
is continuous ([13, 1.8.23]). We also define the function SFn(f) : SFn(X) →
SFn(Y ) ([2]) by

SFn(f)(χ) =

{

qnY (Fn(f)((q
n
X)−1(χ))), if χ 6= Fn

X ;

Fn
Y , if χ = Fn

X .

Note that, by [6, 4.3, p. 126], SFn(f) is continuous. In addition, the following
diagram:

Fn(X)
Fn(f)
−→ Fn(Y )





y

qn
X





y

qn
Y (∗)

SFn(X) −→
SFn(f)

SFn(Y )

is commutative.
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3. Preliminary results

In this section we present the results needed for the rest of the paper.
In particular, we prove a couple of theorems that relate the classes of maps
defined above and quotient spaces (Theorems 3.2 and 3.3).

Let X be a continuum and let K be a subcontinuum of X . We denote by
X/K the quotient space obtained by shrinking K to a point. Then X/K is a
continuum ([13, 1.7.3]). Let X and Y be continua, let K be a subcontinuum
of X , and let f : X→→Y be a surjective map. Consider the quotient spaces
X/K and Y/f(K). Let qX : X→→X/K and qY : Y→→Y/f(K) be the quotient
maps. We denote qX(K) and qY (f(K)) by KX and KY , respectively. Note
that f induces a function f⋆ : X/K→→Y/f(K) ([6, 7.7, p. 17]) given by

f⋆(χ) =

{

qY (f((qX)−1(χ))), if χ 6= KX ;

KY , if χ = KX .

The continuity of f⋆ follows from [6, 4.3, p. 126]. Observe that the following
diagram:

X
f

−→ Y




y

qX





y

qY (∗∗)

X/K −→
f⋆

Y/f(K)

is commutative.

Proposition 3.1. Let X and Y be continua and let K be a subcontinuum

of X. If f : X→→Y is a surjective map, the following hold:

(a) the maps qX and qY are monotone;

(b) the maps qX |X\K : X \K→→X/K \ {KX} and qY |Y \f(K) : Y \ f(K)→→
Y/f(K) \ {KY } are homeomorphisms;

(c) if K and f(K) are nowhere dense in X and Y , respectively, then qX
and qY are semi-open maps;

(d) for each subcontinuum Γ of Y/f(K), f⋆
−1(Γ) = qX(f−1(q−1

Y (Γ)));
(e) if ∆ and Γ are proper subcontinua of X/K such that X/K = ∆ ∪ Γ,

then q−1
X (∆) and q−1

X (Γ) are proper subcontinua of X such that X =

q−1
X (∆) ∪ q−1

X (Γ);

(f) if Γ is a subcontinuum of X/K such that IntX/K(Γ) 6= ∅, then q−1
X (Γ)

is a subcontinuum of X such that IntX(q−1
X (Γ)) 6= ∅;

(g) if G is a subcontinuum of Y such that G ∩ f(K) = ∅ and D is a

component of f−1(G), then qX(D) is a component of f⋆
−1(qY (G));

(h) if G is a subcontinuum of Y such that G ∩ f(K) = ∅ and ∆ is a

component of f⋆
−1(qY (G)), then q−1

X (∆) is a component of f−1(G);

(i) if Γ is a subcontinuum of Y/f(K) and D is a component of f−1(q−1
Y (Γ)),

then qX(D) is a component of f⋆
−1(Γ);
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(j) if Γ is a subcontinuum of Y/f(K) and ∆ is a component of f⋆
−1(Γ),

then there exists a component D of f−1(q−1
Y (Γ)) such that qX(D) = ∆.

Proof. Note that (a) and (b) follow from the definitions. Also, the proofs
of (c), (d), (e) and (f) are simple.

To see (g), let G be a subcontinuum of Y such that G ∩ f(K) = ∅,
and let D be a component of f−1(G). Since D ⊂ f−1(G), qY (f(D)) ⊂
qY (G). Then, since (∗∗) is commutative, we have that f⋆(qX(D)) ⊂ qY (G).

Let ∆ be the component of f⋆
−1(qY (G)) containing qX(D). Hence, D ⊂

q−1
X (∆) ⊂ q−1

X (f⋆
−1(qY (G))). Thus, since (∗∗) is commutative,D ⊂ q−1

X (∆) ⊂
f−1(q−1

Y (qY (G))). Since G ∩ f(K) = ∅ and qY |Y \f(K) is a homeomorphism

(part (b)), we have that D ⊂ q−1
X (∆) ⊂ f−1(G). Since qX is monotone (part

(a)) and D is a component of f−1(G), we obtain that D = q−1
X (∆). Hence,

qX(D) = ∆. Therefore, qX(D) is a component of f⋆
−1(qY (G)).

To show (h), let G be a subcontinuum of Y such that G ∩ f(K) = ∅
and let ∆ be a component of f⋆

−1(qY (G)). Since ∆ ⊂ f⋆
−1(qY (G)),

q−1
X (∆) ⊂ q−1

X (f⋆
−1(qY (G))). Then, since (∗∗) is commutative, q−1

X (∆) ⊂
f−1(q−1

Y (qY (G))). Since G ∩ f(K) = ∅ and qY |Y \f(K) is a homeomorphism

(part (b)), q−1
X (∆) ⊂ f−1(G). Since qX is monotone (part (a)), q−1

X (∆) is

connected. Let D be the component of f−1(G) containing q−1
X (∆). Thus,

∆ ⊂ qX(D) ⊂ qX(f−1(G)). This implies that f⋆(qX(D)) ⊂ qY (G). Hence,

qX(D) ⊂ f⋆
−1(qY (G)). Since ∆ ⊂ qX(D), we obtain that ∆ = qX(D). As

a consequence of all this, we have that D ⊂ q−1
X (∆) ⊂ D, and D = q−1

X (∆).

Therefore, q−1
X (∆) is a component of f−1(G).

To prove (i), let Γ be a subcontinuum of Y/f(K) and let D be a
component of f−1(q−1

Y (Γ)). Since D ⊂ f−1(q−1
Y (Γ)) and (∗∗) commutes,

D ⊂ q−1
X (f⋆

−1(Γ)). Thus, qX(D) ⊂ f⋆
−1(Γ). Let ∆ be the component of

f⋆
−1(Γ) containing qX(D). Then, since (∗∗) is commutative, we obtain that

D ⊂ q−1
X (∆) ⊂ f−1(q−1

Y (Γ)). Hence, since q−1
X (∆) is connected (qX is mono-

tone (part (a))), we have that D = q−1
X (∆). This implies that qX(D) = ∆.

Therefore, qX(D) is a component of f⋆
−1(Γ).

To see (j), let Γ be a subcontinuum of Y/f(K) and let ∆ be a component

of f⋆
−1(Γ). Since ∆ ⊂ f⋆

−1(Γ) and (∗∗) is commutative, we obtain that
q−1
X (∆) ⊂ f−1(q−1

Y (Γ)). Note that q−1
X (∆) is connected (qX is monotone (part

(a))). Let D be the component of f−1(q−1
Y (Γ)) containing q−1

X (∆). Hence, by

part (d), ∆ ⊂ qX(D) ⊂ qX(f−1(q−1
Y (Γ))) = f⋆

−1(Γ). Since ∆ is a component

of f⋆
−1(Γ), we obtain that ∆ = qX(D).

Theorem 3.2. Let X and Y be continua, let K be a subcontinuum of X
and let f : X→→Y be a surjective map. Let M be one of the following classes of

maps: almost monotone, atriodic, freely decomposable, joining, semi-confluent

and strongly freely decomposable. If f ∈ M, then f⋆ ∈ M.
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Proof. It is proved in [5, Proposition 7.5] that if f is either almost
monotone or strongly freely decomposable, then f⋆ is almost monotone or
strongly freely decomposable, respectively.

Suppose f is atriodic. Let Γ be a subcontinuum of Y/f(K). Since qY is
monotone (part (a) of Proposition 3.1), q−1

Y (Γ) is a subcontinuum of Y . Since

f is atriodic, there exist two components D and L of f−1(q−1
Y (Γ)) such that

f(D)∪f(L) = q−1
Y (Γ) and for each component S of f−1(q−1

Y (Γ)), we have that

either f(S) = q−1
Y (Γ) or f(S) ⊂ f(D) or f(S) ⊂ f(L). By part (i) of Proposi-

tion 3.1, ∆ = qX(D) and Λ = qX(L) are components of f⋆
−1(Γ). Since f(D)∪

f(L) = q−1
Y (Γ), we obtain that qY (f(D)) ∪ qY (f(L)) = qY (q

−1
Y (Γ)). Hence,

since (∗∗) is commutative and qY is surjective, f⋆(qX(D)) ∪ f⋆(qX(L)) = Γ.

This implies that f⋆(∆)∪ f⋆(Λ) = Γ. Now, let Σ be a component of f⋆
−1(Γ).

By part (j) of Proposition 3.1, there exists a component S of f−1(q−1
Y (Γ)) such

that qX(S) = Σ. Since f is atriodic, either f(S) = q−1
Y (Γ) or f(S) ⊂ f(D) or

f(S) ⊂ f(L). Then either qY (f(S)) = qY (q
−1
Y (Γ)) or qY (f(S)) ⊂ qY (f(D))

or qY (f(S)) ⊂ qY (f(L)). Thus, since (∗∗) is commutative and qY is sur-
jective, we have that either f⋆(qX(S)) = Γ or f⋆(qX(S)) ⊂ f⋆(qX(D)) or
f⋆(qX(S)) ⊂ f⋆(qX(L)). This implies that either f⋆(Σ) = Γ or f⋆(Σ) ⊂ f⋆(∆)
or f⋆(Σ) ⊂ f⋆(Λ). Therefore, f⋆ is atriodic.

Assume f is freely decomposable. Let ∆ and Γ be proper subcontinua of
Y/f(K) such that Y/f(K) = ∆ ∪ Γ. By part (e) of Proposition 3.1, q−1

Y (∆)

and q−1
Y (Γ) are proper subcontinua of Y such that Y = q−1

Y (∆) ∪ q−1
Y (Γ).

Since f is freely decomposable, there exist two proper subcontinua D and G
of X such that X = D ∪ G and f(D) ⊂ q−1

Y (∆) and f(G) ⊂ q−1
Y (Γ). Let

∆′ = qX(D) and let Γ′ = qX(G). Then ∆′ and Γ′ are proper subcontinua of
X/K such that X/K = ∆′ ∪ Γ′. Since (∗∗) is commutative, we obtain that
f⋆(∆

′) ⊂ ∆ and f⋆(Γ
′) ⊂ Γ. Therefore, f⋆ is freely decomposable.

Suppose f is joining. Let Γ be a subcontinuum of Y/f(K) and let ∆

and Λ be two components of f⋆
−1(Γ). By part (j) of Proposition 3.1, there

exist two components D and L of f−1(q−1
Y (Γ)) such that ∆ = qX(D) and

Λ = qX(L). Since f is joining, f(D) ∩ f(L) 6= ∅. Since qY (f(D) ∩ f(L)) ⊂
qY (f(D)) ∩ qY (f(L)), we have that qY (f(D)) ∩ qY (f(L)) 6= ∅. Then, since
(∗∗) is commutative, f⋆(qX(D)) ∩ f⋆(qX(L)) 6= ∅; i.e. f⋆(∆) ∩ f⋆(Γ) 6= ∅.
Therefore, f⋆ is joining.

Assume f is semi-confluent. Let Γ be a subcontinuum of Y/f(K) and let
∆ and Λ be two components of f⋆

−1(Γ). By part (j) of Proposition 3.1, there
exist two components D and L of f−1(q−1

Y (Γ)) such that ∆ = qX(D) and
Λ = qX(L). Since f is semi-confluent, either f(D) ⊂ f(L) or f(L) ⊂ f(D).
Then either qY (f(D)) ⊂ qY (f(L)) or qY (f(L)) ⊂ qY (f(D)). Hence, since (∗∗)
is commutative, either f⋆(qX(D)) ⊂ f⋆(qX(L)) or f⋆(qX(L)) ⊂ f⋆(qX(D)); i.e.
either f⋆(∆) ⊂ f⋆(Λ) or f⋆(Λ) ⊂ f⋆(∆). Therefore, f⋆ is semi-confluent.
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Theorem 3.3. Let X and Y be continua and let f : X→→Y be a surjective

map. Suppose K is a subcontinuum of X such that K and f(K) are nowhere

dense in X and Y , respectively. Then f is semi-open if and only if f⋆ is

semi-open.

Proof. Suppose f is semi-open. Let U be a nonempty open subset of
X/K. Since qX is continuous, q−1

X (U) is a nonempty open subset of X . Since

f is semi-open, IntY (f(q
−1
X (U))) 6= ∅. Since f(K) is nowhere dense in Y , by

part (c) of Proposition 3.1, qY is semi-open. Then

IntY/f(K)(qY (IntY (f(q
−1
X (U))))) 6= ∅.

Since (∗∗) is commutative, we have that IntY/f(K)(qY (IntY (f(q
−1
X (U))))) ⊂

IntY/f(K)(f⋆(U)). Therefore, f⋆ is semi-open.
Assume that f⋆ is semi-open. Let U be a nonempty open subset of

X . Since K is nowhere dense in X , there exists a nonempty open sub-
set V of X such that V ⊂ U \ K. Hence, by part (b) of Proposi-
tion 3.1, qX(V ) is a nonempty open subset of X/K. Since f⋆ is semi-open,
IntY/f(K)(f⋆(qX(V ))) 6= ∅. Thus, there exists a nonempty open subset W
of Y/f(K) such that W ⊂ IntY/f(K)(f⋆(qX(V ))) \ {KY }. Then, by part (b)

of Proposition 3.1 and the commutativity of (∗∗), q−1
Y (W) ⊂ f(U). Hence,

IntY (f(U)) 6= ∅. Therefore, f is semi-open.

The following result is [2, Theorem 3.3].

Lemma 3.4. Let X and Y be continua and let n be an integer greater

than or equal to 2. If f : X → Y is a map, then the following are equivalent:

(1) f : X→→Y is surjective;

(2) Fn(f) : Fn(X)→→Fn(Y ) is surjective;

(3) SFn(f) : SFn(X)→→SFn(Y ) is surjective.

Remark 3.5. As a consequence of Lemma 3.4 we obtain that all the maps
we are working with are surjective.

Lemma 3.6. Let X and Y be continua, let n be an integer greater than or

equal to 2, and let f : X→→Y be a surjective map. If B1, . . . , Bn are pairwise

disjoint subcontinua of Y and Ej is a component of f−1(Bj), for each j ∈
{1, . . . , n}, then 〈E1, . . . , En〉n is a component of Fn(f)

−1(〈B1, . . . , Bn〉n).

Proof. Let B1, . . . , Bn be pairwise disjoint subcontinua of Y and let Ej

be a component of f−1(Bj), for each j ∈ {1, . . . , n}. Then 〈E1, . . . , En〉n
and 〈B1, . . . , Bn〉n are subcontinua of Fn(X) and Fn(Y ), respectively ([14,
Lemma 1]). Clearly, Fn(f)(〈E1, . . . , En〉n) ⊂ 〈B1, . . . , Bn〉n. Let E be the
component of Fn(f)

−1(〈B1, . . . , Bn〉n) containing 〈E1, . . . , En〉n. Then
⋃

E
has at most n components ([13, 6.1.2]). Since

⋃n
j=1 Ej ⊂

⋃

E and Ej∩Ek = ∅

if j 6= k, we obtain that
⋃

E has exactly n components, say E′
1, . . . , E

′
n.

Without loss of generality, we assume that Ej ⊂ E′
j , j ∈ {1, . . . , n}. Clearly,
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f (
⋃

E) ⊂
⋃n

j=1 Bj . Since Ej is a component of f−1(Bj), we have that
⋃

E =
⋃n

j=1 Ej , and E′
j = Ej for all j ∈ {1, . . . , n}.

Let A ∈ E . Then A∩Ej 6= ∅ for every j ∈ {1, . . . , n} ([8, Lemma 3.1]) and
A ⊂

⋃n
j=1 Ej . This implies that A ∈ 〈E1, . . . , En〉n. Hence, 〈E1, . . . , En〉n =

E . Therefore, 〈E1, . . . , En〉n is a component of Fn(f)
−1(〈B1, . . . , Bn〉n).

Lemma 3.7. Let X and Y be continua, let n be an integer greater than or

equal to 2, and let f : X→→Y be a surjective map. If SFn(f)
−1(Fn

Y ) = {Fn
X},

then f is a homeomorphism.

Proof. If f is not one-to-one, then there exist two distinct points x1

and x2 in X such that f(x1) = f(x2). Then qnX({x1, x2}) belongs to
SFn(f)

−1(Fn
Y ) and SFn(f)

−1(Fn
Y ) 6= {Fn

X}.

4. Almost monotone maps

Theorem 4.1. Let X and Y be continua, let n be an integer greater than

or equal to 2, and let f : X→→Y be a surjective map. Consider the following

statements:

(1) f is almost monotone;

(2) Fn(f) is almost monotone;

(3) SFn(f) is almost monotone.

Then (2) implies (1) and (3).

Proof. Suppose that Fn(f) is almost monotone, we see that f is al-
most monotone. To this end, let B be a subcontinuum of Y with nonempty
interior. Then 〈B〉n is connected ([14, Lemma 1]) and it is easy to see
that it is also closed. Hence, 〈B〉n is a subcontinuum of Fn(Y ). Since
〈IntY (B)〉n ⊂ 〈B〉n, we have that IntFn(Y )(〈B〉n) 6= ∅. Since Fn(f) is al-

most monotone, Fn(f)
−1(〈B〉n) is a connected subset of Fn(X). Hence,

Fn(f)
−1(〈B〉n) is a subcontinuum of Fn(X). Thus,

⋃

Fn(f)
−1(〈B〉n) is

a closed subset of X . Observe that
⋃

Fn(f)
−1(〈B〉n) = f−1(B), and

∅ 6= Fn(f)
−1(〈B〉n) ∩ F1(X) ⊂ Fn(f)

−1(〈B〉n) ∩ C1(X). Thus, f−1(B) is
connected ([15, (1.49)]). Therefore, f is almost monotone.

It follows from Theorem 3.2 that if Fn(f) is almost monotone, then
SFn(f) is almost monotone.

Remark 4.2. In Theorem 4.1, when the range space Y is locally con-
nected and n is greater than or equal to 3, we also have that (3) implies (1)
and (2), for this see Corollary 6.3. In fact, we have the following:

Theorem 4.3. Let X and Y be continua, where Y is locally connected.

Then a surjective map f : X→→Y is almost monotone if and only if f is mono-

tone.
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Proof. Clearly, if f is monotone, then f is almost monotone. Suppose
f is almost monotone. Let y be a point of Y . Since Y is locally connected,
there exists a sequence {Km}∞m=1 of locally connected subcontinua of Y such
that {y} =

⋂∞
m=1 Km, and for all positive integer m, y ∈ IntY (Km) and

Km+1 ⊂ Km. Since f is almost montonote, f−1(Km) is connected. Hence,
f−1(y) =

⋂∞
m=1 f

−1(Km) is connected ([13, 1.7.2]). Therefore, f is monotone
([13, 2.1.12]).

Questions 4.4. Let X and Y be continua, let n be an integer greater
than or equal to 2, and let f : X→→Y be a surjective map.

(i) If f is almost monotone, then is Fn(f) almost monotone?
(ii) If f is almost monotone, then is SFn(f) almost monotone?
(iii) If SFn(f) is almost monotone and SFn(Y ) is not locally connected,

then is f almost monotone?
(iv) If SFn(f) is almost monotone and SFn(Y ) is not locally connected,

then is Fn(f) almost monotone?

Remark 4.5. Note that by Theorem 4.3 and [2, Theorem 4.1], questions
(i) and (ii) have positive answers when Y is locally connected.

5. Atriodic maps

Theorem 5.1. Let X and Y be continua, let n be an integer greater than

or equal to 2, and let f : X→→Y be a surjective map. Consider the following

statements:

(1) f is atriodic;

(2) Fn(f) is atriodic;

(3) SFn(f) is atriodic.

Then (2) implies (1) and (3); also (3) implies (1).

Proof. Suppose Fn(f) is atriodic, we prove that f is atriodic. Let K
be a subcontinuum of Y . If K = Y , then f−1(K) has only one component,
namely X , and f(X) = K. Suppose K 6= Y and let y1, . . . , yn−1 be n − 1
distinct points in Y \K. Let

K = {{y1, . . . , yn−1} ∪ {k} | k ∈ K}.

Observe that K is a subcontinuum of Fn(Y ) and K∩F1(Y ) = ∅. Since Fn(f)
is atriodic, there exist two components C and D of Fn(f)

−1(K) such that
Fn(f)(C) ∪ Fn(f)(D) = K and for each component E of Fn(f)

−1(K) either
Fn(f)(E) = K or Fn(f)(E) ⊂ Fn(f)(C) or Fn(f)(E) ⊂ Fn(f)(D). Note that
⋃

C ⊂
(

⋃n−1
j=1 f−1(yj)

)

∪ f−1(K),
⋃

C ∩ f−1(yj) 6= ∅ (j ∈ {1, . . . , n − 1}),

and
⋃

C ∩ f−1(K) 6= ∅. Since
⋃

C has at most n components ([13, 6.1.2]),
we have that

⋃

C has exactly n components, say C1, . . . , Cn. Without loss
of generality, we assume that for each j ∈ {1, . . . , n − 1}, Cj ⊂ f−1(yj) and
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Cn ⊂ f−1(K). Let C be the component of f−1(K) containing Cn. Similarly,
⋃

D has exactly n components, say D1, . . . , Dn. Without loss of generality,
we assume that for each j ∈ {1, . . . , n− 1}, Dj ⊂ f−1(yj) and Dn ⊂ f−1(K).
Let D be the component of f−1(K) containing Dn.

We show that f(C) ∪ f(D) = K. Note that f(C) ∪ f(D) ⊂ K. Let
k ∈ K. Then {y1, . . . , yn−1} ∪ {k} ∈ K. Assume that {y1, . . . , yn−1} ∪ {k} ∈
Fn(f)(C). Hence, there exists an element A ∈ C such that Fn(f)(A) =
{y1, . . . , yn−1} ∪ {k}. Thus, f(A) = {y1, . . . , yn−1} ∪ {k}. This implies that
k ∈ f(A) ⊂ f(

⋃

C) =
⋃n

j=1 f(Cj). Since k 6∈ {y1, . . . , yn−1}, k ∈ f(Cn) ⊂

f(C). Similarly, if {y1, . . . , yn−1} ∪ {k} ∈ Fn(f)(D), then k ∈ f(Cn) ⊂ f(D).
Hence, K ⊂ f(C) ∪ f(D), and f(C) ∪ f(D) = K.

Let E be a component of f−1(K) and, for each j ∈ {1, . . . , n− 1}, let Ej

be a component of f−1(yj). Then E = 〈E1, . . . , En−1, E〉n is a component of
Fn(f)

−1(K), by Lemma 3.6. Since Fn(f) is atriodic, either Fn(f)(E) = K or
Fn(f)(E) ⊂ Fn(f)(C) or Fn(f)(E) ⊂ Fn(f)(D).

Suppose Fn(f)(E) = K, we prove that f(E) = K. Clearly, f(E) ⊂ K.
Let k ∈ K. Then {y1, . . . , yn−1} ∪ {k} ∈ K. Hence, there exists L ∈ E such
that Fn(f)(L) = {y1, . . . , yn−1}∪{k}; i.e. f(L) = {y1, . . . , yn−1}∪{k}. Thus,
k ∈ f(L). Since k 6∈ {y1, . . . , yn−1}, k ∈ f(E). Therefore, f(E) = K.

Assume Fn(f)(E) ⊂ Fn(f)(C), we show that f(E) ⊂ f(C). Let e ∈ E.
For each j ∈ {1, . . . , n − 1}, let ej ∈ Ej . Then {e1, . . . , en−1, e} ∈ E . Hence,
Fn(f)({e1, . . . , en−1, e}) ∈ Fn(f)(C). Then there exists C′ ∈ C such that
Fn(f)(C

′) = Fn(f)({e1, . . . , en−1, e}); i.e. f(C′) = f({e1, . . . , en−1, e}). In
particular, f(e) ∈ f(C′). Since C′ ⊂

⋃

C =
⋃n

j=1 Cj and e 6∈ {e1, . . . , en−1},
we obtain that f(e) ∈ f(Cn) ⊂ f(C). Therefore, f(E) ⊂ f(C).

Similarly, if Fn(f)(E) ⊂ Fn(f)(D), then f(E) ⊂ f(D). Therefore, f is
an atriodic map.

Suppose SFn(f) is atriodic, we see that f is atriodic. The proof is similar
to the previous one, we include the details for the convenience of the reader.
Let K be a subcontinuum of Y . If K = Y , then f−1(K) has only one
component, namely X , and f(X) = K. Suppose K 6= Y and let y1, . . . , yn−1

be n− 1 distinct points in Y \K. Let

K = {{y1, . . . , yn−1} ∪ {k} | k ∈ K}.

Observe that K is a subcontinuum of Fn(Y ) and K ∩ F1(Y ) = ∅. Then
qnY (K) is a subcontinuum of SFn(Y ) \ {Fn

Y }. Since SFn(f) is atriodic, there
exist two components C and D of SFn(f)

−1(qnY (K)) such that SFn(f)(C) ∪
SFn(f)(D) = qnY (K) and for each component E of SFn(f)

−1(qnY (K)), we have
that either SFn(f)(E) = qnY (K) or SFn(f)(E) ⊂ SFn(f)(C) or SFn(f)(E) ⊂
SFn(f)(D). By part (h) of Proposition 3.1, we obtain that (qnX)−1(C) and
(qnX)−1(D) are components of Fn(f)

−1(K). Also,

Fn(f)((q
n
X)−1(C)) ∪ Fn(f)((q

n
X)−1(D)) = K.
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Note that
⋃

(qnX)−1(C) ⊂
(

⋃n−1
j=1 f−1(yj)

)

∪f−1(K),
(

(qnX)−1(C)
)

∩f−1(yj) 6=

∅ (j ∈ {1, . . . , n − 1}), and
(

(qnX)−1(C)
)

∩ f−1(K) 6= ∅. Since (qnX)−1(C)

has at most n components [13, 6.1.2], we have that (qnX)−1(C) has exactly
n components, say C1, . . . , Cn. Without loss of generality, we assume that
for each j ∈ {1, . . . , n − 1}, Cj ⊂ f−1(yj) and Cn ⊂ f−1(K). Let C be
the component of f−1(K) containing Cn. Similarly, (qnX)−1(D) has exactly
n components, say D1, . . . , Dn. Without loss of generality, we assume that
for each j ∈ {1, . . . , n− 1}, Dj ⊂ f−1(yj) and Dn ⊂ f−1(K). Let D be the
component of f−1(K) containing Dn.

We show that f(C) ∪ f(D) = K. Note that f(C) ∪ f(D) ⊂ K. Let
k ∈ K. Then {y1, . . . , yn−1} ∪ {k} ∈ K. Assume that {y1, . . . , yn−1} ∪ {k} ∈
Fn(f)((q

n
X)−1(C)). Hence, there exists an element A ∈ (qnX)−1(C) such

that Fn(f)(A) = {y1, . . . , yn−1} ∪ {k}. Thus, f(A) = {y1, . . . , yn−1} ∪ {k}.
This implies that k ∈ f(A) ⊂

⋃

Fn(f)((q
n
X)−1(C)) =

⋃n
j=1 f(Cj). Since

k 6∈ {y1, . . . , yn−1}, k ∈ f(Cn) ⊂ f(C). Similarly, if {y1, . . . , yn−1} ∪ {k} ∈
Fn(f)((q

n
X)−1(D)), then k ∈ f(Dn) ⊂ f(D). Hence, K ⊂ f(C) ∪ f(D), and

f(C) ∪ f(D) = K.
Let E be a component of f−1(K) and, for each j ∈ {1, . . . , n− 1}, let Ej

be a component of f−1(yj). Then E = 〈E1, . . . , En−1, E〉n is a component of
Fn(f)

−1(K), by Lemma 3.6. Thus, by part (g) of Proposition 3.1, E = qnX(E)
is a component of SFn(f)

−1(qnY (K)). Since SFn(f) is atriodic, we have that
either SFn(f)(E) = qnY (K) or SFn(f)(E) ⊂ SFn(f)(C) or SFn(f)(E) ⊂
SFn(f)(D). Hence, since (∗) commutes, we obtain that either Fn(f)(E) = K
or qnY (Fn(f)(E)) ⊂ SFn(f)(C) or q

n
Y (Fn(f)(E)) ⊂ SFn(f)(D).

Suppose that Fn(f)(E) = K. We show that f(E) = K. Clearly, f(E) ⊂
K. Let k ∈ K. Then {y1, . . . , yn−1} ∪ {k} ∈ K. Hence, there exists L ∈ E
such that Fn(f)(L) = {y1, . . . , yn−1} ∪ {k}; i.e. f(L) = {y1, . . . , yn−1} ∪ {k}.
Thus, k ∈ f(L) and k ∈ f(E). Therefore, f(E) = K.

Assume that qnY (Fn(f)(E)) ⊂ SFn(f)(C). We see that f(E) ⊂ f(C). Let
e ∈ E. For each j ∈ {1, . . . , n − 1}, let ej ∈ Ej . Then {e1, . . . , en−1, e} ∈
E . Hence, qnY (Fn(f)({e1, . . . , en−1, e})) ∈ qnY (Fn(f)(E)). This implies
that qnY (Fn(f)({e1, . . . , en−1, e})) ∈ SFn(f)(C). Thus, there exists C ∈ C

such that SFn(f)(C) = qnY (Fn(f)({e1, . . . , en−1, e})). Hence, there exists
C′ ∈ Fn(X) \ F1(X) such that qnX(C′) = C. Since (∗) commutes, it fol-
lows that qnY (Fn(f)(C

′)) = qnY (Fn(f)({e1, . . . , en−1, e})). Thus, by part (b)
of Proposition 3.1, we obtain that Fn(f)(C

′) = Fn(f)({e1, . . . , en−1, e});
i.e. f(C′) = f({e1, . . . , en−1, e}). In particular, f(e) ∈ f(C′). Since
C′ ⊂

⋃

(qnX)−1(C) =
⋃n

j=1 Cj , we obtain that f(e) ∈ f(Cn) ⊂ f(C). There-

fore, f(E) ⊂ f(C).
Similarly, if qnY (Fn(f)(E)) ⊂ SFn(f)(D), we have that f(E) ⊂ f(D).

Therefore, f is an atriodic map.
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It follows from Theorem 3.2 that if Fn(f) is atriodic, then SFn(f) is
atriodic.

Questions 5.2. Let X and Y be continua, let n be an integer greater
than or equal to 2, and let f : X→→Y be a surjective map.

(i) If f is atriodic, then is Fn(f) atriodic?
(ii) If f is atriodic, then is SFn(f) atriodic?
(iii) If SFn(f) is atriodic, then is Fn(f) atriodic?

6. Freely decomposable and Strongly freely decomposable maps

Theorem 6.1. Let X be a continuum and let Y be locally connected con-

tinuum. Let n be an integer greater than or equal to 2, and let f : X→→Y be a

surjective map. Then the following are equivalent:

(1) Fn(f) is freely decomposable;

(2) Fn(f) is monotone;

(3) SFn(f) is freely decomposable;

(4) SFn(f) is monotone;

(5) f is monotone.

Proof. Suppose Fn(f) is freely decomposable. Since Y is locally con-
nected, Fn(Y ) is locally connected ([11, Lemma 2]). Also, by [11, Corollary
5], for each B ∈ Fn(Y ), Fn(Y ) \ {B} is connected. Hence, by [7, Theorem
7], we have that Fn(f) is monotone. It is clear that if Fn(f) is monotone,
then Fn(f) is freely decomposable. By [2, Theorem 4.1], we have that f is
monotone if and only if Fn(f) is monotone.

Assume SFn(f) is freely decomposable. Since Y is locally connected,
SFn(Y ) is locally connected ([1, Theorem 5.2]). Also, by [3, Theorem 3.5],
for each χ ∈ SFn(Y ), SFn(Y ) \ {χ} is connected. Thus, by [7, Theorem 7],
we have that SFn(f) is monotone. It is clear that if SFn(f) is monotone,
then SFn(f) is freely decomposable. By [2, Theorem 4.1], we have that f is
monotone if and only if SFn(f) is monotone.

Theorem 6.2. Let X and Y be continua, let n be an integer greater than

or equal to 3, and let f : X→→Y be a surjective map. Then

(1) Fn(f) is almost monotone if and only if Fn(f) is strongly freely de-

composable;

(2) SFn(f) is almost monotone if and only if SFn(f) is strongly freely

decomposable.

Proof. Clearly, every almost monotone map is strongly freely decompos-
able. Suppose Fn(f) (SFn(f)) is strongly freely decomposable. By [10, The-
orem 8] ([1, Theorem 4.1]) Fn(X) (SFn(X)) is unicoherent. Therefore, by
[4, Theorem 4.2], Fn(f) (SFn(f)) is almost monotone.

As a consequence of Theorems 4.1, 6.1 and 6.2, we obtain:
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Corollary 6.3. Let X be a continuum and let Y be locally connected

continuum. Let n be an integer greater than or equal to 3, and let f : X→→Y
be a surjective map. Then the following are equivalent:

(1) Fn(f) is freely decomposable;

(2) Fn(f) is strongly freely decomposable;

(3) Fn(f) is almost monotone;

(4) Fn(f) is monotone;

(5) SFn(f) is freely decomposable;

(6) SFn(f) is strongly freely decomposable;

(7) SFn(f) is almost monotone;

(8) SFn(f) is monotone;

(9) f is monotone.

The following example shows a strongly freely decomposable map f de-
fined between locally connected continua such that neither Fn(f) nor SFn(f)
is freely decomposable for any integer n greater than or equal to 3.

Example 6.4. Let S1 = {(x, y) ∈ IR2 | x2 + y2 = 1} and let
f : S1→→[−1, 1] be given by f((x, y)) = x. Then f is strongly freely decompos-
able but it is neither monotone nor almost monotone. Hence, by Corollary 6.3,
for an integer n greater than or equal to 3, Fn(f) and SFn(f) are not freely
decomposable.

Theorem 6.5. Let X and Y be continua, let n be an integer greater than

or equal to 2, and let f : X→→Y be a surjective map. Consider the following

statements:

(1) f is freely decomposable;

(2) Fn(f) is freely decomposable;

(3) SFn(f) is freely decomposable.

Then (2) implies (3). Also, if Y is locally connected and n is greater than or

equal to 3, then (2) implies (1), (3) implies (2) and (3) implies (1). Moreover,

if n is greater than or equal to 3, (1) does not imply (2) and (1) does not imply

(3).

Proof. It follows from Theorem 3.2 that (2) implies (3). If Y is locally
connected and n is greater than or equal to 3, by Corollary 6.3, we have that
(2) implies (1), (3) implies (2) and (3) implies (1). From Example 6.4, we
obtain that if n is greater than or equal to 3, (1) does not imply (2) and (1)
does not imply (3).

Theorem 6.6. Let X and Y be continua, let n be an integer greater than

or equal to 2, and let f : X→→Y be a surjective map. Consider the following

statements:
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(1) f is strongly freely decomposable;

(2) Fn(f) is strongly freely decomposable;

(3) SFn(f) is strongly freely decomposable.

Then (2) implies (3). Also, if n is greater than or equal to 3, (2) implies (1),
(1) does not imply (2) and (1) does not imply (3). Moreover, if Y is locally

connected and n is greater than or equal to 3, then (3) implies (1) and (3)
implies (2).

Proof. It follows from Theorem 3.2 that (2) implies (3). If Fn(f) is
strongly freely decomposable and n is greater than or equal to 3, then, by
Theorem 6.2, Fn(f) is almost monotone. Hence, by Theorem 4.1, f is almost
monotone. Thus, f is strongly freely decomposable.

By Example 6.4, we have that, when n is greater than or equal to 3,
neither (1) implies (2) nor (1) implies (3).

It follows from Corollary 6.3 that if Y is locally connected and n is greater
than or equal to 3, then (3) implies (1) and (3) implies (2).

Questions 6.7. Let X and Y be continua, let n be an integer greater
than or equal to 2, and let f : X→→Y be a surjective map.

(i) If f is freely decomposable, then is F2(f) freely decomposable?
(ii) If f is freely decomposable, then is SF2(f) freely decomposable?
(iii) If Fn(f) is freely decomposable, then is f freely decomposable?
(iv) If SFn(f) is freely decomposable, then is f freely decomposable?
(v) If SFn(f) is freely decomposable, then is Fn(f) freely decomposable?
(vi) If f is strongly freely decomposable, then is F2(f) strongly freely de-

composable?
(vii) If f is strongly freely decomposable, then is SF2(f) strongly freely

decomposable?
(viii) If F2(f) is strongly freely decomposable, then is f strongly freely de-

composable?
(ix) If SFn(f) is strongly freely decomposable and Y is not locally con-

nected, then is f strongly freely decomposable?
(x) If SFn(f) is strongly freely decomposable and Y is not locally con-

nected, then is Fn(f) strongly freely decomposable?

7. Joining maps

We begin with an example that shows that there exists a joining map
f between continua such that the induced maps F2(f) and SF2(f) are not
joining.
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Example 7.1. Let X = Y = [0, 1] and let f : X→→Y be the map given
by:

f(x) =







2x+ 1
2 , if x ∈ [0, 1

4 ];
−2x+ 3

2 , if x ∈ [ 14 ,
3
4 ];

2x− 3
2 , if x ∈ [ 34 , 1].

Then f is a joining map. We see that F2(f) and SF2(f) are not joining. To
this end, let

B =

{{

3

4
, x

}

∣

∣

∣
x ∈

[

1

4
,
5

8

]}

∪

{{

1

4
, x

}

∣

∣

∣
x ∈

[

3

8
,
3

4

]}

.

Since {{ 3
4 , x} | x ∈ [ 14 ,

5
8 ]} and {{ 1

4 , x} | x ∈ [ 38 ,
3
4 ]} are subcontinua of F2(Y )

having the point { 1
4 ,

3
4} in common, it follows that B is a subcontinuum of

F2(Y ). Observe that

F2(f)
−1(B) =

{{

1

8
, x

}

∣

∣ x ∈

[

0,
1

16

]}

∪

{{

1

8
, x

}

∣

∣

∣
x ∈

[

7

16
,
5

8

]}

∪

{{

1

8
, x

}

∣

∣

∣
x ∈

[

7

8
, 1

]}

∪

{{

3

8
, x

}

∣

∣

∣
x ∈

[

0,
1

16

]}

∪

{{

3

8
, x

}

∣

∣

∣
x ∈

[

7

16
,
5

8

]}

∪

{{

3

8
, x

}

∣

∣

∣
x ∈

[

7

8
, 1

]}

∪

{{

5

8
, x

}

∣

∣

∣
x ∈

[

0,
1

8

]}

∪

{{

5

8
, x

}

∣

∣

∣
x ∈

[

3

8
,
9

16

]}

∪

{{

3

8
, x

}

∣

∣

∣
x ∈

[

15

16
, 1

]}

∪

{{

7

8
, x

}

∣

∣

∣
x ∈

[

0,
1

8

]}

∪

{{

7

8
, x

}

∣

∣

∣
x ∈

[

3

8
,
9

16

]}

∪

{{

7

8
, x

}

∣

∣

∣
x ∈

[

15

16
, 1

]}

.

Let C = {{ 1
8 , x} | x ∈ [0, 1

16 ]} and D = {{ 7
8 , x} | x ∈ [ 1516 , 1]}. Note that C

and D are components of F2(f)
−1(B). Also, F2(f)(C) = {{ 3

4 , x} | x ∈ [ 12 ,
5
8 ]}

and F2(f)(D) = {{ 1
4 , x} | x ∈ [ 38 ,

1
2 ]}. Hence, F2(f)(C) ∩ F2(f)(D) = ∅.

Thus, F2(f) is not joining. To show that SF2(f) is not joining, note that
q2Y (B) is a subcontinuum of SF2(Y ). Since B ∩ F1(Y ) = ∅, by part (g)
of Proposition 3.1, q2X(C) and q2X(D) are components of SF2(f)

−1(q2Y (B)).
Suppose SF2(f)(q

2
X(C)) ∩ SF2(f)(q

2
X(D)) 6= ∅. Then, since (∗) commutes,

q2Y (F2(f)(C)) ∩ q2Y (F2(f)(D)) 6= ∅. Since B ∩ F1(Y ) = ∅, by part (b)
of Proposition 3.1, F2(f)(C) ∩ F2(f)(D) 6= ∅, a contradiction. Hence,
SF2(f)(q

2
X(C)) ∩ SF2(f)(q

2
X(D)) = ∅. Thus, SF2(f) is not joining.
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Theorem 7.2. Let X and Y be continua, let n be an integer greater than

or equal to 2, and let f : X→→Y be a surjective map. Consider the following

statements:

(1) f is joining;

(2) Fn(f) is joining;

(3) SFn(f) is joining.

Then (2) implies (1) and (3), (3) implies (1), and (1) does not imply either

(2) or (3) for n = 2.

Proof. It follows from Theorem 3.2 that (2) implies (3). Suppose
SFn(f) is joining, we prove that f is joining. To this end, let B be a sub-
continuum of Y . If B = Y , then f−1(B) only has one component, namely
X , and f(X) = B. Suppose B 6= Y and let C and D be two components of
f−1(B). Since B 6= Y , there exist n− 1 distinct points y1, . . . , yn−1 in Y \B.
Let

K = {{y1, . . . , yn−1} ∪ {b} | b ∈ B}.

Then K is a subcontinuum of Fn(Y ) and K ∩ F1(Y ) = ∅. Hence, qnY (K) is a
subcontinuum of SFn(Y )\{Fn

Y }. For each j ∈ {1, . . . , n−1}, let Cj be a com-
ponent of f−1(yj). Let C = 〈C1, . . . , Cn−1, C〉n and D = 〈C1, . . . , Cn−1, D〉n.
Then by Lemma 3.6, C and D are components of Fn(f)

−1(K). By part (g) of
Proposition 3.1, qnX(C) and qnX(D) are components of SFn(f)

−1(qnY (K)). Since
SFn(f) is joining, we have that SFn(f)(q

n
X(C))∩SFn(f)(q

n
X(D)) 6= ∅. Hence,

since (∗) is commutative, qnX(Fn(f)(C))∩qnX(Fn(f)(D)) 6= ∅. Thus, by part (b)
of Proposition 3.1, Fn(f)(C) ∩Fn(f)(D) 6= ∅. Let E ∈ Fn(f)(C)∩Fn(f)(D).
Then there exist A ∈ C and A′ ∈ D such that Fn(f)(A) = Fn(f)(A

′) = E.
Without loss of generality, we may assume that A = {c1, . . . , cn−1, c} and
A′ = {c′1, . . . , c

′
n−1, d}, where, for each j ∈ {1, . . . , n − 1}, cj and c′j belong

to Cj , c ∈ C and d ∈ D. Since Fn(f)(A) = Fn(f)(A
′), we obtain that

{f(c1), . . . , f(cn−1), f(c)} = {f(c′1), . . . , f(c
′
n−1), f(d)}. This implies that

f(c) = f(d) and f(C) ∩ f(D) 6= ∅. Therefore, f is joining.
Since (2) implies (3) and (3) implies (1), we have that (2) implies (1).

The fact that (1) does not imply either (2) or (3), when n = 2, follows from
Example 7.1.

Questions 7.3. Let X and Y be continua, let n be an integer greater
than or equal to 2, and let f : X→→Y be a surjective map.

(i) If f is joining, then is SFn(f) joining?
(ii) If SFn(f) is joining, then is Fn(f) joining?

Remark 7.4. Note that, by Example 7.1, the answer to Question 7.3 (i)
is negative when n = 2.
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8. Refinable and monotonically refinable maps

Let X be a continuum and let n be an integer greater than or equal to
2. We follow Sam B. Nadler, Jr. ([16], compare with [12, p. 149]) to define a
metric on SFn(X). Let

ℑn(X) = {F1(X) ∪ {A} | A ∈ Fn(X)}.

Note that ℑn(X) ⊂ C2(Fn(X)). Let Gn : SFn(X)→→ℑn(X) be given by

Gn(χ) = F1(X) ∪ (qnX)−1(χ).

Then Gn is a homeomorphism. Next, define

ρnX : SFn(X)× SFn(X) → [0,∞)

by

ρnX(χ1, χ2) = H2
X(Gn(χ1), Gn(χ2)),

where H2
X is the Hausdorff metric on C2(Fn(X)) induced by the Hausdorff

metric HX on Fn(X). Then ρnX is a metric. As a consequence of [16, (2.3)],
with our terminology, we obtain:

Lemma 8.1. Let X and Y be continua, let n be an integer greater than

or equal to 2, and let ε > 0. If f : X→→Y is a surjective map such that Fn(f)
is an ε-map, then SFn(f) is an ε-map.

Lemma 8.2. Let X and Y be continua, let n be an integer greater than or

equal to 2, and let ε > 0. If f : X→→Y is a surjective map, then the following

are equivalent:

(1) f is an ε-map;

(2) Fn(f) is an ε-map;

(3) SFn(f) is an ε-map.

Proof. Suppose f is an ε-map, we show that Fn(f) is an ε-map. Since
f is surjective, by Lemma 3.4, Fn(f) is surjective. Let B ∈ Fn(Y ) and let
A1 and A2 be two elements of Fn(f)

−1(B). Since Fn(f)(A1) = Fn(f)(A2),
for each a1 ∈ A1 there exists a2 ∈ A2 such that f(a1) = f(a2). Since f is an
ε-map, d(a1, a2) < ε. Hence, A1 ⊂ Vε(A2). Similarly, A2 ⊂ Vε(A1). Thus,
HX(A1, A2) < ε. Therefore, Fn(f) is an ε-map.

Assume that Fn(f) is an ε-map, we prove that f is an ε-map. By
Lemma 3.4, f is surjective. Let y ∈ Y and let x1 and x2 be two points
in f−1(y). Then Fn(f)({x1}) = Fn(f)({x2}). Since Fn(f) is an ε-map,
HX({x1}, {x2}) < ε. Thus, d(x1, x2) < ε. Therefore, f is an ε-map.

It follows from Lemma 8.1 that if Fn(f) is an ε-map, then SFn(f) is an
ε-map.

Suppose SFn(f) is an ε-map, we show that Fn(f) is an ε-map. By
Lemma 3.4, Fn(f) is surjective. Let B ∈ Fn(Y ) and let A1 and A2 be two
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elements of Fn(f)
−1(B). Since Fn(f)(A1) = Fn(f)(A2) and (∗) is commuta-

tive, we have that SFn(f)(q
n
X(A1)) = SFn(f)(q

n
X(A2)). Since SFn(f) is an ε-

map, ρnX(qnX(A1), q
n
X(A2)) < ε. Hence, H2

X(F1(X)∪{A1},F1(X)∪{A2}) < ε.
Thus, HX(A1, A2) < ε. Therefore, Fn(f) is an ε-map.

Lemma 8.3. Let X and Y be continua, let n be an integer greater than

or equal to 2, and let ε > 0. Let f, g : X→→Y be surjective maps. Consider the

following statements:

(1) For each x ∈ X, d(f(x), g(x)) < ε;
(2) For each A ∈ Fn(X), HY (Fn(f)(A),Fn(g)(A)) < ε;
(3) For each χ ∈ SFn(X), ρnY (SFn(f)(χ),SFn(g)(χ)) < ε;
(4) For each A ∈ Fn(X), HY (Fn(f)(A),Fn(g)(A)) ≤ ε.

Then (1) and (2) are equivalent, (2) implies (3) and (3) implies (4).

Proof. Suppose (1) holds, we prove (2) holds. Let A ∈ Fn(X). Then
for each a ∈ A, d(f(a), g(a)) < ε. Hence, Fn(f)(A) ⊂ Vε(Fn(g)(A)) and
Fn(g)(A) ⊂ Vε(Fn(f)(A)). Therefore, HY (Fn(f)(A),Fn(g)(A)) < ε.

Assume (2) holds, we show that (1) holds. Let x ∈ X . Then
HY (Fn(f)({x}),Fn(g)({x})) < ε. Since HY (Fn(f)({x}),Fn(g)({x})) =
d(f(x), g(x)), we obtain that d(f(x), g(x)) < ε.

Suppose (2) holds, we prove (3) holds. Let χ ∈ SFn(X). If χ = Fn
X ,

then SFn(f)(χ) = Fn
Y = SFn(g)(χ) and ρnY (SFn(f)(χ),SFn(g)(χ)) = 0 < ε.

Assume χ ∈ SFn(X) \ {Fn
X}. Then, since (∗) is commutative, we obtain

ρnY (SFn(f)(χ),SFn(g)(χ)) =

H2
Y (F1(Y ) ∪ (qnY )

−1(SFn(f)(χ)),F1(Y ) ∪ (qnY )
−1(SFn(g)(χ))) =

H2
Y (F1(Y ) ∪ {Fn(f)((q

n
X)−1(χ))},F1(Y ) ∪ {Fn(g)((q

n
X)−1(χ))}) < ε.

Suppose (3) holds, we show that (4) holds. Let A ∈ Fn(X). Assume
first that A ∈ Fn(X) \ F1(X). Then qnX(A) ∈ SFn(X) \ {Fn

X}. Hence,
ρnY (SFn(f)(q

n
X(A)),SFn(g)(q

n
X(A))) < ε; i.e.

H2
Y (F1(Y ) ∪ (qnY )

−1(SFn(f)(q
n
X(A))),F1(Y ) ∪ (qnY )

−1(SFn(g)(q
n
X(A)))) =

H2
Y (F1(Y ) ∪ {Fn(f)((q

n
X)−1(qnX(A)))},F1(Y ) ∪ {Fn(g)((q

n
X)−1(qnX(A)))}) =

H2
Y (F1(Y ) ∪ {Fn(f)(A)},F1(Y ) ∪ {Fn(g)(A)}) =

HY (Fn(f)(A),Fn(g)(A)) < ε.

Now suppose A ∈ F1(X). Then A = {a}. Let {am}∞m=1 be a se-
quence of points of X converging to a such that am 6= a for any positive
integer m. Then {a, am} ∈ Fn(X) \ F1(X). By the previous argument,
HY (Fn(f)({a, am}),Fn(g)({a, am})) < ε. Hence, since {{a, am}}∞m=1 con-
verges to {a}, by the continuity of Fn(f), Fn(g) and HY , we have that
HY (Fn(f)({a}),Fn(g)({a})) ≤ ε.
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Theorem 8.4. Let X and Y be continua, let n be an integer greater than

or equal to 2, and let f : X→→Y be a surjective map. Consider the following

statements:

(1) f is refinable;

(2) Fn(f) is refinable;

(3) SFn(f) is refinable.

Then (1) implies (2) and (3).

Proof. The fact that (1) implies (2) follows from [9, Theorem 3.49].
Suppose f is refinable, we show that SFn(f) is refinable. Let ε > 0. Since
f is refinable, there exists an ε-map g : X→→Y such that for every x ∈ X ,
d(f(x), g(x)) < ε. Then, by Lemma 8.2, SFn(g) is an ε-map and, by
Lemma 8.3, for each χ ∈ SFn(X), ρnY (SFn(f)(χ),SFn(g)(χ)) < ε. There-
fore, SFn(f) is refinable.

Theorem 8.5. Let X and Y be continua, let n be an integer greater than

or equal to 2, and let f : X→→Y be a surjective map. Consider the following

statements:

(1) f is monotonically refinable;

(2) Fn(f) is monotonically refinable;

(3) SFn(f) is monotonically refinable.

Then (1) implies (2) and (3).

Proof. Suppose f is monotonically refinable, we show that Fn(f) and
SFn(f) are monotonically refinable. Let ε > 0. Since f is monotonically
refinable, there exists a monotone ε-map g : X→→Y such that for every x ∈ X ,
d(f(x), g(x)) < ε. By Lemma 8.2, Fn(g) and SFn(g) are ε-maps. By [2,
Theorem 4.1], Fn(g) and SFn(g) are monotone maps. Now, by Lemma 8.3,
we have that for each A ∈ Fn(X), HY (Fn(f)(A),Fn(g)(A)) < ε; and for each
χ ∈ SFn(X), ρnY (SFn(f)(χ),SFn(g)(χ)) < ε. Therefore, Fn(f) and SFn(f)
are monotonically refinable maps.

Questions 8.6. Let X and Y be continua, let n be an integer greater
than or equal to 2, and let f : X→→Y be a surjective map.

(i) If Fn(f) is (monotonically) refinable, then is f (monotonically) refin-
able?

(ii) If Fn(f) is (monotonically) refinable, then is SFn(f) (monotonically)
refinable?

(iii) If SFn(f) is (monotonically) refinable, then is f (monotonically) re-
finable?

(iv) If SFn(f) is (monotonically) refinable, then is Fn(f) (monotonically)
refinable?
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9. Semi-confluent maps

Theorem 9.1. Let X and Y be continua, let n be an integer greater than

or equal to 2, and let f : X→→Y be a surjective map. Consider the following

statements:

(1) f is semi-confluent;

(2) Fn(f) is semi-confluent;

(3) SFn(f) is semi-confluent.

Then (2) implies (1) and (3), (3) implies (1); and (1) does not imply either

(2) or (3) for n = 2.

Proof. Suppose SFn(f) is semi-confluent, we show that f is semi-
confluent. Let B be a subcontinuum of Y . If B = Y , then f−1(B) has
only one component, namely X and f(X) = B. Suppose B 6= Y and let
C and D be two components of f−1(B). Let y1, . . . , yn−1 be n − 1 distinct
elements of Y \B. Let

K = {{y1, . . . , yn−1} ∪ {b} | b ∈ B}.

Note that K is a subcontinuum of Fn(Y ) \ F1(Y ). Hence, qnY (K) is a sub-
continuum of SFn(Y ) \ {Fn

Y }. For each j ∈ {1, . . . , n − 1}, let Cj be a com-
ponent of f−1(yj). Let C = 〈C1, . . . , Cn−1, C〉n and D = 〈C1, . . . , Cn−1, D〉n.
Then by Lemma 3.6, C and D are components of Fn(f)

−1(K). By part (g)
of Proposition 3.1, qnX(C) and qnX(D) are components of SFn(f)

−1(qnY (K)).
Since SFn(f) is semi-confluent, we have that either SFn(f)(q

n
X(C)) ⊂

SFn(f)(q
n
X(D)) or SFn(f)(q

n
X(D)) ⊂ SFn(f)(q

n
X(C)). Hence, since (∗)

is commutative, we have that either qnY (Fn(f)(C)) ⊂ qnY (Fn(f)(D)) or
qnY (Fn(f)(D)) ⊂ qnY (Fn(f)(C)). Thus, by part (b) of Proposition 3.1, ei-
ther Fn(f)(C) ⊂ Fn(f)(D) or Fn(f)(D) ⊂ Fn(f)(C). Assume Fn(f)(C) ⊂
Fn(f)(D), we see that f(C) ⊂ f(D). Let c ∈ C and, for each j ∈ {1, . . . , n−
1}, let cj ∈ Cj . Then {c1, . . . , cn−1, c} ∈ C. Since Fn(f)({c1, . . . , cn−1, c}) ∈
Fn(f)(D), there exist d ∈ D and c′j ∈ Cj , where j ∈ {1, . . . , n− 1}, such that

Fn(f)({c1, . . . , cn−1, c}) = Fn(f)({c
′
1, . . . , c

′
n−1, d}).

Hence, f({c1, . . . , cn−1, c}) = f({c′1, . . . , c
′
n−1, d}). Thus, f(c) = f(d) and

f(C) ⊂ f(D). Similarly, if Fn(f)(D) ⊂ Fn(f)(C), then f(D) ⊂ f(C). There-
fore, f is semi-confluent.

It follows from Theorem 3.2 that (2) implies (3). Since (2) implies (3)
and (3) implies (1), we have that (2) implies (1). The fact that (1) does not
imply (2), when n = 2 follows from [9, Example 3.18]. By [2, Example 10.7],
we have that (1) does not imply (3) when n = 2.

Question 9.1. Let X and Y be continua, let n be an integer greater
than or equal to 2, and let f : X→→Y be a surjective map. If SFn(f) is
semi-confluent, then is Fn(f) semi-confluent?
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10. Semi-open maps

Theorem 10.1. Let X and Y be continua and let n be an integer greater

than or equal to 2. If f : X→→Y is a surjective map, then the following are

equivalent:

(1) f is semi-open;

(2) Fn(f) is semi-open;

(3) SFn(f) is semi-open.

Proof. Suppose f is semi-open, we show that Fn(f) is semi-open.
Let U be an open subset of Fn(X) and let A0 ∈ U . Then there ex-
ist open subsets U1, . . . , Uk of X such that A0 ∈ 〈U1, . . . , Uk〉n ⊂ U .
Since f is semi-open, for each j ∈ {1, . . . , k}, IntY (f(Uj)) 6= ∅. Thus,
〈IntY (f(U1)), . . . , IntY (f(Uk))〉n is an open subset of Fn(Y ). We claim
that 〈IntY (f(U1)), . . . , IntY (f(Uk))〉n ⊂ Fn(f)(U). To see this, let B ∈
〈IntY (f(U1)), . . . , IntY (f(Uk))〉n. For every j ∈ {1, . . . , k}, let Bj = B ∩
IntY (f(Uj)). Then there exists Aj ⊂ Uj such that Aj and Bj both have the

same cardinality and f(Aj) = Bj . Let A =
⋃k

j=1 Aj . Then A ∈ 〈U1, . . . , Uk〉n
and Fn(f)(A) = B. Hence, B ∈ Fn(f)(〈U1, . . . , Uk〉n) ⊂ Fn(f)(U). Thus,
IntFn(Y )(Fn(f)(U)) 6= ∅. Therefore, Fn(f) is a semi-open map.

Assume Fn(f) is semi-open, we prove that f is semi-open. Let U be an
open subset of X . Since Fn(f) is semi-open, IntFn(Y )(Fn(f)(〈U〉n)) 6= ∅. We
consider two cases.

First, suppose that IntFn(Y )(Fn(f)(〈U〉n)) ∩ F1(Y ) 6= ∅. Let {y0} ∈
IntFn(Y )(Fn(f)(〈U〉n)) ∩ F1(Y ). Then there exist open subsets V1, . . . , Vm

of Y such that {y0} ∈ 〈V1, . . . , Vm〉n ⊂ IntFn(Y )(Fn(f)(〈U〉n)). Note that

y0 ∈
⋂m

j=1 Vj . We claim that
⋂m

j=1 Vj ⊂ f(U). Let y ∈
⋂m

j=1 Vj . Then {y} ∈

〈V1, . . . , Vm〉n, and there exists Ay ∈ 〈U〉n such that Fn(f)(Ay) = {y}. This
means that Ay ⊂ U and f(Ay) = {y}. Thus, y ∈ f(U) and

⋂m
j=1 Vj ⊂ f(U).

Now, assume that IntFn(Y )(Fn(f)(〈U〉n)) ∩F1(Y ) = ∅. Let ℓ = min{j ∈
{2, . . . , n} | IntFn(Y )(Fn(f)(〈U〉n)) ∩ Fj(Y ) 6= ∅}. Let

{y1, . . . , yℓ} ∈ IntFn(Y )(Fn(f)(〈U〉n)) ∩ Fℓ(Y ).

Then there exist open subsets W1, . . . ,Wr of Y such that {y1, . . . , yℓ} ∈
〈W1, . . . ,Wr〉n ⊂ IntFn(Y )(Fn(f)(〈U〉n)). For each j ∈ {1, . . . , ℓ}, let
Zj =

⋂

{Wk ∈ {W1, . . . ,Wr} | yj ∈ Wk}. Note that each Zj is an
open subset of Y , and {y1, . . . , yℓ} ∈ 〈Z1, . . . , Zℓ〉n ⊂ 〈W1, . . . ,Wr〉n. Let

Z =
⋃ℓ

j=1 Zj . We claim that Z ⊂ f(U). Let z ∈ Z. Without loss of gen-

erality, we assume that z ∈ Z1. For every j ∈ {2, . . . , ℓ}, let zj ∈ Zj . Then
{z, z2, . . . , zℓ} ∈ 〈Z1, . . . , Zℓ〉n ⊂ IntFn(Y )(Fn(f)(〈U〉n)). Hence, there exists
Az ∈ 〈U〉n such that Fn(f)(Az) = {z, z2, . . . , zℓ}. This implies that Az ⊂ U
and f(Az) = {z, z2, . . . , zℓ}. Thus, there exists a ∈ Az such that f(a) = z.
Hence, z ∈ f(U) and Z ⊂ f(U). Therefore, f is a semi-open map.
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The fact that (2) and (3) are equivalent follows from Theorem 3.3.

11. Simple maps

Theorem 11.1. Let X and Y be continua, let n be an integer greater

than or equal to 2, and let f : X→→Y be a surjective map. If Fn(f) is a simple

map, then f is a homeomorphism.

Proof. If f is not one-to-one, then there exist two distinct points x1

and x2 in X such that f(x1) = f(x2). Let f(x1) = y. Then {x1}, {x2}
and {x1, x2} are 3 distinct points in Fn(f)

−1({y}). Therefore, Fn(f) is not
simple.

The following example shows that there exists a simple map f between
locally connected continua such that neither Fn(f) nor SFn(f) is a simple
map.

Example 11.2. Let f : S1→→S1 be given by f(z) = z2. Then f is a simple
map. Let z and z′ be two distinct elements of S1 and let z1, z2, z

′
1 and z′2

be the elements of S1 such that f(z1) = f(z2) = z and f(z′1) = f(z′2) = z′.
Then {z1}, {z2} and {z1, z2} belong to Fn(f)

−1({z}). Thus, Fn(f) is not a
simple map. Also, qnS1({z1, z

′
1}), q

n
S1({z1, z

′
2}), q

n
S1({z2, z

′
1}) and qnS1({z2, z

′
2})

all belong to SFn(f)
−1(qnS1({z, z′})). Hence, SFn(f) is not a simple map.

Theorem 11.3. Let X and Y be continua, let n be an integer greater

than or equal to 2, and let f : X→→Y be a surjective map. If SFn(f) is a

simple map, then either f is a homeomorphism or f identifies two points. In

particular, f is a simple map.

Proof. Assume SFn(f) is a simple map. If SFn(f)
−1(Fn

Y ) = {Fn
X},

then f is a homeomorphism by Lemma 3.7. Suppose there exists χ ∈
SFn(f)

−1(Fn
Y ) \ {Fn

X}. Then (qnX)−1(χ) ∈ F2(X) \ F1(X). Otherwise, we
could find k points x1, . . . , xk inX (k ≥ 3) such that qnX({x1, . . . , xk}) = χ and
we would have that qnX({x1, x2}), qnX({x1, x3}) and qnX({x2, x3}) would all be-
long to SFn(f)

−1(Fn
Y ), a contradiction. Assume that (qnX)−1(χ) = {x1, x2}.

Observe that the previous argument implies that f |X\{x1,x2} is one-to-one.
Therefore, f identifies x1 and x2.

The following example shows that there exists a simple map f between
continua such that Fn(f) is not a simple map and SFn(f) is a simple map.

Example 11.4. Let f : [0, 1]→→S1 be given by f(t) = (sin(2πt), cos(2πt)).
Note that f identifies two points. Then by Theorem 11.1, we have that Fn(f)
is not simple. It is easy to see that SFn(f) is simple.

Theorem 11.5. Let X and Y be continua, let n be an integer greater

than or equal to 2, and let f : X→→Y be a surjective map. If there exist two
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elements y1 and y2 of Y such that both Fn(f)
−1({y1}) and Fn(f)

−1({y2})
have two elements, then SFn(f) is not simple.

Proof. Let y1 and y2 be two elements of Y , let A1 and B1 be two distinct
elements in Fn(f)

−1({y1}), and let A2 and B2 be two distinct elements in
Fn(f)

−1({y2}). Without loss of generality, we assume that A1 6⊂ B1 and
A2 6⊂ B2. Let a1 ∈ A1 \ B1, b1 ∈ B1, a2 ∈ A2 \ B2 and b2 ∈ B2. Then Fn

X ,
qnX({a1, b1}) and qnX({a2, b2}) belong to SFn(f)

−1(Fn
Y ). Therefore, SFn(f)

is not simple.

Theorem 11.6. Let X and Y be continua, let n be an integer greater than

or equal to 2, and let f : X→→Y be a surjective map. Consider the following

statements:

(1) f is simple;

(2) Fn(f) is simple;

(3) SFn(f) is simple.

Then (2) implies (1) and (3), (3) implies (1), (3) does not imply (2); and (1)
does not imply either (2) or (3).

Proof. If Fn(f) is simple, then f is a homeomorphism by Theorem 11.1.
Thus, SFn(f) is a homeomorphism ([2, Theorem 3.3]). Hence, f and SFn(f)
are both simple maps. It follows from Theorem 11.3 that if SFn(f) is a simple
map, then f is a simple map. The fact that (3) does not imply (2), follows
from Example 11.4, and the fact that (1) does not imply either (2) or (3),
follows from Example 11.2.
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Instituto de F́ısica y Matemáticas, Universidad Tecnológica de la Mixteca
Carretera a Acatlima, Km. 2.5, Huajuapan de León, Oaxaca, C. P. 69000
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