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Abstract. For every cofinite inverse system of compact Hausdorff
spaces X = (Xλ, pλλ′ ,Λ), there exists a cofinite inverse system of compact

polyhedra Z = (Zτ
λ
, rττ

′

λλ′ ,Λ × T ) and there are mappings uτ
λ
: Xλ → Zτ

λ
,

(λ, τ) ∈ Λ × T , such that uτ
λ
pλλ′ = rττ

λλ′
uτ
λ′
, for λ ≤ λ′, and rττ

′

λ
uτ

′

λ
=

uτ
λ
, for τ ≤ τ ′. Moreover, for every λ ∈ Λ, the mapping uλ : Xλ →

Zλ = (Zτ
λ
, rττ

′

λλ
, T ), given by the mappings uτ

λ
, τ ∈ T , is a limit of Zλ.

If mappings pλ : X → Xλ form a limit p : X → X , then the mappings
vτ
λ
= uτ

λ
pλ : X → Zτ

λ
form a limit v : X → Z. An analogous result

holds for cofinite inverse systems of topological spaces and ANR-resolutions
(polyhedral resolutions).

1. Introduction

By a rectangular or double inverse system we mean an inverse system
Z = (Zν , rνν′ , N), whose index set N = Λ× T is the product of two directed
sets Λ and T . By definition, Λ × T is ordered by the product ordering, i.e.,
(λ, τ) ≤ (λ′, τ ′), provided λ ≤ λ′ and τ ≤ τ ′. If ν = (λ, τ) ∈ Λ × T , we
denote Zν = Z(λ,τ) by Z

τ
λ . Similarly, if ν = (λ, τ) ≤ (λ′, τ ′) = ν′, we denote

rνν′ = r(λ,τ)(λ′,τ ′) by r
ττ ′

λλ′ . If τ = τ ′ or λ = λ′, we use shorter notation

rτ
λλ′ and rττ ′

λ , respectively. We will refer to rτ
λλ′ and rττ ′

λ as to horizontal and
vertical bonding mappings of Z, respectively. Clearly, if (λ, τ) ≤ (λ′, τ ′), then
(λ, τ) ≤ (λ′, τ) ≤ (λ′, τ ′) and (λ, τ) ≤ (λ, τ ′) ≤ (λ′, τ ′). Consequently,

(1.1) rτ
λλ′rττ ′

λ′ = rττ ′

λλ′ = rττ ′

λ rτ ′

λλ′ ,
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which shows that the horizontal and the vertical bonding mappings determine
all bonding mappings in a rectangular system. For any fixed λ ∈ Λ, Zλ =
(Zτ

λ , r
ττ ′

λ , T ) is an inverse system, called the vertical system of Z at level λ.
The mappings rτ

λλ′ : Zτ
λ′ → Zτ

λ , τ ∈ T , form a level mapping rλλ′ : Zλ′ → Zλ.
For λ ≤ λ′ ≤ λ′′, rλλ′rλ′λ′′ = rλλ′′ . Similarly, for any fixed τ ∈ T , Zτ =
(Zτ

λ , r
τ
λλ′ ,Λ) is an inverse system, called the horizontal system of Z at level τ .

The mappings rττ ′

λ : Zτ ′

λ → Zτ
λ , λ ∈ Λ, form a level mapping rττ ′

: Zτ ′ → Zτ .

For τ ≤ τ ′ ≤ τ ′′, rττ ′

rτ ′τ ′′

= rττ ′′

.
If X = (Xλ, pλλ′ ,Λ) is an inverse system of spaces and uτ

λ : Xλ → Zτ
λ are

mappings such that

(1.2) uτ
λpλλ′ = rτ

λλ′uτ
λ′ , λ ≤ λ′,

then the mappings uτ
λ, λ ∈ Λ, form a level mapping uτ : X → Zτ . If

(1.3) rττ ′

λ uτ ′

λ = uτ
λ, τ ≤ τ ′,

then the mappings uτ
λ : Xλ → Zτ

λ , τ ∈ T , form a mapping uλ : Xλ → Zλ. If

both (1.2) and (1.3) hold, then uλpλλ′ = rλλ′uλ′ and rττ ′

uτ ′

= rτ .
Assuming (1.2) and (1.3), every mapping p : X → X, which consists of

mappings pλ : X → Xλ, induces a mapping v : X → Z, which consists of
mappings vτ

λ : X → Zτ
λ , where

(1.4) vτ
λ = uτ

λpλ.

To see that the mappings vτ
λ do form a mapping of X to Z, one has to show

that, for (λ, τ) ≤ (λ′, τ ′),
(1.5) rττ ′

λλ′vτ ′

λ′ = vτ
λ.

Because of (1.1), the verification of (1.5) reduces to the verification of

rτ ′

λλ′vτ ′

λ′ = vτ ′

λ and rττ ′

λ vτ ′

λ = vτ
λ. However, by (1.4) and (1.2), rτ ′

λλ′vτ ′

λ′ =

rτ ′

λλ′uτ ′

λ′pλ′ = uτ ′

λ pλλ′pλ′ = uτ ′

λ pλ = vτ ′

λ . Similarly, by (1.4) and (1.3),

rττ ′

λ vτ ′

λ = rττ ′

λ uτ ′

λ pλ = uτ
λpλ = vτ

λ.

The purpose of the present paper is to prove the following results.

Theorem 1.1. Let X = (Xλ, pλλ′ ,Λ) be a cofinite inverse system of
compact Hausdorff spaces. Then there exists a cofinite rectangular inverse
system of compact polyhedra Z = (Zτ

λ , r
ττ ′

λλ′ ,Λ × T ) and there exist limits
uλ : Xλ → Zλ of vertical systems of Z, λ ∈ Λ, such that uλpλλ′ = rλλ′uλ′ ,
for λ ≤ λ′.

Remark 1.2. For a cofinite directed set Λ, denote by CΛ the category,
whose objects are inverse systems of compact Hausdorff spaces indexed by Λ
and whose morphisms are level mappings between such systems. Then the
horizontal systems Zτ , τ ∈ T , of a cofinite rectangular system Z of compact

Hausdorff spaces and the level mappings rττ ′

: Zτ ′ → Zτ , τ ≤ τ ′, between
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horizontal systems of Z form an inverse system Z∗ in CΛ. By Theorem 1.1,
the mappings uτ : X → Zτ , τ ∈ T , form a limit u∗ : X → Z∗ of Z∗ in CΛ.

Corollary 1.3. Let X = (Xn, pnn′ ,N) be an inverse sequence of metric
compacta. Then there exists a rectangular inverse system of compact polyhe-
dra Z = (Zm

n , r
mm′

nn′ ,N × N) and there exist limits un : Xn → Zn of vertical
sequences of Z, n ∈ N, such that unpnn′ = rnn′un′ , for n ≤ n′.

Remark 1.4. If X = (Xn, pnn′ ,N) is an inverse sequence of metric com-
pacta, Zn = (Z

m
n , r

mm′

n ,N), n ∈ N, are inverse sequences of compact polyhe-
dra and un = (u

m
n ) : Xn → Zn are limits, then it is not always possible to

define horizontal mappings rm
nn′ : Zm

n′ → Zm
n and obtain a rectangular inverse

systemZ = (Zm
n , r

mm′

nn′ ,N×N) such that unpnn′ = rnn′un′ , for n ≤ n′. A sim-
ple example is obtained as follows (see [8], pages 363-364). LetX1 = I = [0, 1],
let X2 = C be the Cantor set and let p12 : C → [0, 1] be the well-known Cantor
mapping. Let Z1 consists of copies of I with identities as bonding mappings
and let u1 : X1 → Z1 be given also by identity mappings. Let u2 : X2 → Z2

be the standard expansion of C into an inverse sequence of finite sets. Then
there is no level mapping r12 : Z2 → Z1 such that u1p12 = r12u2. Indeed,
p12 is surjective and thus, p12 = rm

12u
m
2 would imply that also rm

12 : Z
m
2 → I is

surjective, which is not the case, because rm
12(Z

m
2 ) is a finite set.

Theorem 1.5. Let X,Z and uλ, λ ∈ Λ, have all the properties stated in
Theorem 1.1. If p = (pλ) : X →X is a limit of X, then the induced mapping
v : X → Z is a limit of Z.

The following corollary is an immediate consequence of Theorems 1.1 and
1.5.

Corollary 1.6. Let X = (Xλ, pλλ′ ,Λ) be a cofinite inverse system of
compact Hausdorff spaces with limit space X. Then there exists a cofinite
rectangular inverse system of compact polyhedra Z = (Zτ

λ , r
ττ ′

λλ′ ,Λ × T ) such
that, for every λ ∈ Λ, the limit space of the vertical system Zλ is Xλ and the
limit space of Z is X.

Theorem 1.7. Let X = (Xλ, pλλ′ ,Λ) be a cofinite inverse system of
topological spaces. Then there exists a cofinite rectangular inverse system of
ANRs for metric spaces (of polyhedra) Z = (Zτ

λ , r
ττ ′

λλ′ ,Λ× T ) and there exist
resolutions uλ : Xλ → Zλ, λ ∈ Λ, such that uλpλλ′ = rλλ′uλ′ , for λ ≤ λ′.

Remark 1.8. For a cofinite directed set Λ, denote by SΛ the category,
whose objects are inverse systems of topological spaces indexed by Λ and
whose morphisms are level mappings between such systems. Then the hori-
zontal systems Zτ , τ ∈ T , of a cofinite rectangular system Z of topological

spaces and the level mappings rττ ′

: Zτ ′ → Zτ , τ ≤ τ ′, between horizontal
systems of Z form an inverse system Z∗ in SΛ. Moreover, the mappings
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uτ : X → Zτ , τ ∈ T , form a mapping u∗ : X → Z∗ in SΛ. By Theorem 1.7,
u∗ can be viewed as a resolution of X.

Theorem 1.9. Let X,Z and uλ, λ ∈ Λ, have all the properties stated in
Theorem 1.7. If p : X → X is a resolution of X, then the induced mapping
v : X → Z is also a resolution of X.

Corollary 1.6 was conjectured at the 1998 Dubrovnik topology conference
by Yu.T. Lisitsa (see [1]). The result was also quoted in Lisitsa’s recent
paper on strong shape of compact Hausdorff spaces ([2], Theorem 1). For
the proof he refers to [6]. However, in [6] (and also in [7]) only a weaker
assertion was proved, because the systems Z constructed in those papers
were not rectangular. More precisely, the index set of Z was the disjoint
union

∐
λ∈Λ Tλ of a family of (possibly different) cofinite sets Tλ. A weaker

version of Corollary 1.6 appears in [3] as Theorem 4. In that version strict
commutativity of some of the diagrams is replaced by commutativity up to
homotopy. Theorems 1.7 and 1.9 generalize Theorems 1.1 and 1.5 to arbitrary
topological spaces. It is well known that in non-compact situations inverse
limits must be replaced by resolutions (see [5] and [4]).

The author wishes to thank the referee for suggesting that methods de-
veloped in this paper and a result of N. Uglešić [7] could be used to obtain
the polyhedral version of Theorem 1.7.

2. Some facts on limits and resolutions

In this section we recall some facts concerning inverse systems of topo-
logical spaces. We consider systems X = (Xλ, pλλ′ ,Λ), indexed by directed
ordered sets Λ. If the index set Λ is cofinite, i.e., every element has only
finitely many predecessors, we speak of a cofinite inverse system. A mapping
f = (f, fµ) : X → Y between inverse systems X and Y = (Yµ, qµµ′ ,M) con-
sists of a function f : M → Λ and of mappings fµ : Xf(µ) → Yµ, µ ∈M , such
that, for µ ≤ µ′, there exists a λ ≥ f(µ), f(µ′) such that

(2.1) fµpf(µ)λ = qµµ′fµ′pf(µ′)λ.

A mapping f = (f, fµ) is called special if f is increasing and

(2.2) fµpf(µ)f(µ′) = qµµ′fµ′ .

A special mappig, where f is the identity function, is called a level mapping
and is denoted by f = (fλ). Composition h = gf of mappings f and g =
(g, gµ) : Y → Z = (Zν , rνν′ , N) consists of the function h = fg : M → Λ and
of the mappings hν = gνfg(ν) : Xh(ν) → Zν . The identity mapping 1Y : Y →
Y consists of the identity function 1M : M →M and of the identity mappings
1µ : Yµ → Yµ.

A mapping f = (fµ) : X → Y of a space X to a system Y consists of
mappings fµ : X → Yµ, µ ∈M , such that qµµ′fµ′ = fµ, for µ ≤ µ′. A limit of
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a system Y is a mapping q = (qµ) : Y → Y , which has the following universal
property: for any mapping f : X → Y , there exists a unique mapping f : X →
Y such that qf = f . Limits always exist and are unique up to natural
isomorphism. If in a system Y all terms Yµ are compact Hausdorff spaces,
then so is the limit space Y . Every compact Hausdorff space is the limit space
of an inverse system of compact polyhedra.

Resolutions of a spaceX are mappings p = (pλ) : X →X = (Xλ, pλλ′ ,Λ),
which satisfy two additional conditions (see [5], I,6.1, or [4], II,6):

(B1) For every normal (numerable) covering U of X , there is a λ ∈ Λ and
there is a normal covering Uλ of Xλ such that the covering p

−1
λ (Uλ)

refines U .
(B2) For every λ ∈ Λ and every normal covering Uλ of Xλ, there is a λ

′ ≥ λ
such that

(2.3) pλλ′(Xλ′ ) ⊆ St(pλ(X),Uλ).

If all Xλ are normal spaces, condition (B2) can be replaced by the equivalent
condition:

(B2)′ For every λ ∈ Λ and every open neighborhood U of the closure pλ(X)
in Xλ, there is a λ

′ ≥ λ such that
(2.4) pλλ′(Xλ′ ) ⊆ U.

It is well known that, for Xλ Tychonoff and X topologically complete
(e.g., for X paracompact), every resolution p : X → X is an inverse limit.
Furthermore, if X and Xλ are compact Hausdorff spaces, also the converse
holds, i.e., if p : X → X is an inverse limit, then p is a resolution. It is also
known that every topological spaceX admits an ANR-resolution (a polyhedral
resolution) p : X →X, i.e., a resolution such that allXλ are ANR’s for metric
spaces (are polyhedra with the CW-topology). For the proofs of these results
see, e.g., [5] or [4].

The following cofinality lemma will prove useful in the next section.

Lemma 2.1. Let X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) be inverse
systems of topological spaces and let f = (f, fµ) : X → Y be a special mapping
of systems such that the function f : M → Λ is cofinal and every fµ : Xf(µ) →
Yµ, µ ∈ M , is a homeomorphism. If p : X → X is a resolution, then the
composition q = fp : X → Y is also a resolution.

Proof. If p consists of mappings pλ : X → Xλ, λ ∈ Λ, q consists of
mappings qµ = fµpf(µ) : X → Yµ, µ ∈ M . Let U be a normal covering of
X . Since p is a resolution, there exist a λ ∈ Λ and a normal covering Uλ of
Xλ such that (pλ)

−1(Uλ) refines U . Since f is cofinal, there exists a µ ∈ M
such that λ ≤ f(µ). Since fµ : Xf(µ) → Yµ is a homeomorphism, there exists

a normal covering Vµ of Yµ such that f
−1
µ (Vµ) = p−1

λf(µ)(Uλ). Consequently,



160 S. MARDEŠIĆ

q−1
µ (Vµ) = p−1

f(µ)f
−1
µ (Vµ) = p−1

f(µ)p
−1
λf(µ)(Uλ) = p−1

λ (Uλ) refines U , which is
property (B1) for q.

To verify property (B2), consider µ ∈M and a normal covering Vµ of Yµ.
Then consider the normal covering f−1

µ (Vµ) of Xf(µ). By property (B2) for p,

there exists an index λ ≥ f(µ) such that pf(µ)λ(Xλ) ⊆ St(pf(µ)(X), f
−1
µ (Vµ)).

Since f is inceasing and cofinal, there exists a µ′ ≥ µ such that f(µ′) ≥ λ.
Moreover, qµµ′fµ′ = fµpf(µ)f(µ′), because f is a special mapping. Since fµ′

is a homeomorphism, Yµ′ = fµ′(Xf(µ′)). Therefore, taking into account the
fact that qµ = fµpf(µ), one concludes that

(2.5)
qµµ′(Yµ′ ) = qµµ′fµ′(Xf(µ′)) = fµpf(µ)f(µ′)(Xf(µ′))
= fµpf(µ)λpλf(µ′)(Xf(µ′)) ⊆ fµpf(µ)λ(Xλ)
⊆ fµ(St(pf(µ)(X), f

−1
µ (Vµ))) = St(qµ(X),Vµ),

which establishes property (B2) for q.

3. Proof of Theorem 1.7 in the ANR case

The proof consists of the proof of Theorem 2 in [6], enriched by additional
arguments. We give here the entire proof divided in eight steps, referring only
for some details in some of the steps to the corresponding parts of [6].

Step 1. Consider the family (Xλ, λ ∈ Λ) of all terms of X. For every

λ ∈ Λ, choose an ANR-resolution eλ = (e
δ
λ) : Xλ → Y λ = (Y

δ
λ , e

δδ′

λ ,∆λ). Let
M =

∏
λ∈Λ∆λ be the product of the ordered sets ∆λ, i.e., elements of M

are functions µ with domain Λ and values µ(λ) ∈ ∆λ, for all λ ∈ Λ. Put
µ ≤ µ′ whenever µ(λ) ≤ µ′(λ), for all λ ∈ Λ. Note that M is a directed

ordered set. Now put Xµ
λ = Y

µ(λ)
λ , pµµ′

λ = e
µ(λ)µ′(λ)
λ and pµ

λ = e
µ(λ)
λ . Then

Xλ = (Xµ
λ , p

µµ′

λ ,M) is an inverse system and the mappings pµ
λ : Xλ → Xµ

λ

form a mapping pλ : Xλ → Xλ. Let f : Y λ → Xλ be the special mapping
give by the increasing function f : M → ∆λ, where f(µ) = µ(λ), and by the

identity mappings fµ : Y
f(µ)
λ = Y

µ(λ)
λ → Y

µ(λ)
λ = Xµ

λ . Note that f is cofinal,
because, for any δ ∈ ∆λ, any function µ such that µ(λ) = δ and µ(λ′) ∈
∆λ′ , for λ′ ∈ Λ, belongs to M and has the property that f(µ) = δ. Since
eλ : Xλ → Y λ is a resolution, Lemma 2.1 implies that also feλ : Yλ →Xλ is

a resolution. However, feλ consists of mappings f
µe

f(µ)
λ = e

µ(λ)
λ = pµ

λ, which
shows that feλ = pλ and thus, pλ is a resolution. Note that all systems Xλ,
λ ∈ Λ, are indexed by the same set M .

Step 2. For (λ, µ) ∈ Λ × M , consider the product Y µ
λ =

∏
ζ≤λ X

µ
ζ .

Since Λ is cofinite, every set {ζ ∈ Λ|ζ ≤ λ} is finite and therefore, Y µ
λ is

an ANR. Also consider the mappings qµµ′

λ =
∏

ζ≤λ p
µµ′

ζ : Y µ′

λ → Y µ
λ , defined

for µ ≤ µ′. Then Y λ = (Y µ
λ , q

µµ′

λ ,M) is an inverse system. Moreover, the
mappings pµ

ζ pζλ : Xλ → Xµ
λ , ζ ≤ λ, into factors of Y µ

λ , determine mappings

qµ
λ : Xλ → Y µ

λ , which form a mapping qλ : Xλ → Y λ. We claim that qλ
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has property (B1) (see Lemma 5 in [6]). Indeed, If U is a normal covering
of Xλ, by property (B1) for pλ, there exists an index µ ∈ M and an open
covering V of Xµ

λ such that (p
µ
λ)

−1(V) refines U . Consider the open covering
W of Y µ

λ , consisting of the sets W = (
∏

ζ<λX
µ
ζ )× V , where V ∈ V . Clearly,

(qµ
λ)

−1(W) = (pµ
λ)

−1(V) and thus, it refines U .
Step 3. Order Λ ×M by putting ν = (λ, µ) ≤ (λ′, µ′) = ν′, whenever

λ ≤ λ′ and µ ≤ µ′. Define a rectangular inverse system of ANR’s Y =

(Yν , qνν′ ,Λ×M) as follows. Put Yν = Y µ
λ and for ν ≤ ν′, let qνν′ : Y µ′

λ′ → Y µ
λ

be the composition of two mappings. The first one is the natural projection

Y µ′

λ′ =
∏

ζ≤λ′ X
µ′

ζ → ∏
ζ≤λX

µ′

ζ = Y µ′

λ and the second one is the mapping

qµµ′

λ : Y µ′

λ → Y µ
λ . Note that

(3.1) qνν′qµ′

λ′ = qµ
λpλλ′ .

This is so because, for ζ ≤ λ, the ζ-coordinate mapping of the left side of (3.1)
equals pµµ′

ζ pµ′

ζ pζλ′ = pµ
ζ pζλ′ , while the ζ-coordinate mapping of the right side

of (3.1) equals pµ
ζ pζλpλλ′ = pµ

ζ pζλ′ . Also note that, for λ = λ′, qνν′ = qµµ′

λ .

Step 4. For λ ∈ Λ, let Γλ be the set of all pairs γ = (µ,G), where

µ ∈ M and G is an open neighborhood of the closure qµ
λ(Xλ) in Y

µ
λ . Since

Y µ
λ is an ANR, so is G. Order Γλ by putting γ ≤ γ′ = (µ′, G′), whenever

µ ≤ µ′ and qµµ′

λ (G′) ⊆ G. Put Sγ
λ = G and define sγγ′

λ : Sγ′

λ → Sγ
λ , γ ≤ γ′,

as the restriction qµµ′

λ |G′ : G′ → G of qµµ′

λ . Then Sλ = (Sγ
λ , s

γγ′

λ ,Γλ) is an
inverse system of ANRs. The restrictions of the mappings qµ

λ : Xλ → Y µ
λ

to the codomains G are mappings sγ
λ : Xλ → Sγ

λ , which form a mapping
sλ : Xλ → Sλ. Moreover, sλ is a resolution (see Lemma 2 in [6] or Lemma
6.24 of [4]). Indeed, if U is a normal covering of Xλ, then (B1) for qλ yields a
µ ∈M and a normal covering V of Y µ

λ such that (q
µ
λ)

−1(V) refines U . However,
the pair γ = (µ, Y µ

λ ) belongs to Γλ, S
γ
λ = Y µ

λ and sγ
λ = qµ

λ . Therefore, V is
an open covering of Sγ

λ and (s
γ
λ)

−1(V) refines U , which proves (B1) for sλ.
Now assume that γ = (µ,G) ∈ Γλ and U is an open neighborhood of the
closure of sγ

λ(Xλ) in S
γ
λ = G. Clearly, this closure coincides with the closure

of qµ
λ(Xλ) in Y µ

λ . Therefore, γ
′ = (µ,U) also belongs to Γλ and γ ≤ γ′,

because qµµ
λ (U) = U ⊆ G. However, Y γ′

λ = U and sγγ′

λ (Y γ′

λ ) = qµµ
λ (U) = U ,

which shows that sλ also has property (B2)
′.

Step 5. Consider the disjoint union Γ =
∐

λ∈Λ Γλ and order it by putting
γ = (µ,G) ≤ (µ′, G′) = γ′, for γ ∈ Γλ, γ

′ ∈ Γλ′ , whenever ν = (λ, µ) ≤
(λ′, µ′) = ν′ in Λ ×M and qνν′(G′) ⊆ G. Note that the restriction of this
ordering to Γλ coincides with the previously defined ordering on Γλ. Also
note that for every γ ∈ Γλ and every λ

′ ≥ λ, there exists a γ ′ ∈ Γλ′ such
that γ ≤ γ′ in Γ. Indeed, if γ = (µ,G), then G is an open neighborhood of

qµ
λ(Xλ) in Y

µ
λ and ν′ = (λ′, µ) ≥ ν = (λ, µ). Since, by (3.1), qµ

λpλλ′ = qνν′qµ
λ′ ,
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we see that qνν′(qµ
λ′(Xλ′)) ⊆ qνν′(qµ

λ′(Xλ′)) = qµ
λ(pλλ′(Xλ′)) ⊆ qµ

λ(Xλ) ⊆ G.

Consequently, there exists an open neighborhood G′ of qµ
λ′(Xλ′) in Y µ′

λ′ such
that qνν′(G′) ⊆ G. This means that γ ′ = (µ,G′) ∈ Γλ′ has the property
that γ ≤ γ′ in Γ. It is now easy to see that Γ is directed. Indeed, if γi =
(µi, Gi) ∈ Γλi , for i = 1, 2, and we choose λ′ ≥ λ1, λ2, then there exist
elements γ′1, γ

′
2 ∈ Γλ′ such that γi ≤ γ′i, i = 1, 2. Since Γλ′ is directed, there

exists an element γ′ ∈ Γλ′ such that γ′i ≤ γ′, i = 1, 2, and thus, γi ≤ γ′,
i = 1, 2.

We now define an inverse system S = (Sγ , sγγ′ ,Γ), consisting of ANRs,
as follows. If γ = (µ,G) ∈ Γλ, we put Sγ = Sγ

λ = G and if γ′ = (µ′, G′) ∈ Γλ′ ,
γ ≤ γ′, we define sγγ′ : Sγ′ → Sγ as the restriction qνν′ |G′ : G′ → G of

qνν′ : Y µ′

λ′ → Y µ
λ . Note that, for λ = λ′, sγγ′ = sγγ′

λ , because sγγ′ is the

restriction of qνν′ to the domain G′ and the codomain G, while sγγ′

λ is the

corresponding restriction of qµµ′

λ . However, for λ = λ′, qνν′ = qµµ′

λ . Also note
that (3.1) implies

(3.2) sγγ′sγ′

λ′ = sγ
λpλλ′ .

In the special case when λ = λ′, (3.2) becomes sγγ′sγ′

λ = sγ
λ.

Step 6. Let T̃ be the set of all functions τ : Λ→ Γ such that τ(λ) ∈ Γλ,

for λ ∈ Λ. Order T̃ by putting τ ≤ τ ′, whenever τ(λ) ≤ τ ′(λ), for all λ ∈ Λ.
The subset T ⊆ T̃ , consisting of all increasing functions τ , is cofinal in T̃ , i.e.,
for an arbitrary τ0 ∈ T̃ , there exists an increasing function τ : Λ → Γ such
that τ(λ) ∈ Γλ and τ0(λ) ≤ τ(λ), for all λ ∈ Λ. Indeed, we can construct such
a function τ , defining τ(λ), by induction on the number of predecessors of λ.
This number is finite, because Λ is cofinite. If the number of predecessors of
λ is 1, we put τ(λ) = τ0(λ). Now assume that λ1, . . . , λn are all predecessors
of λ and that we have already defined τ(λi) ∈ Γλi so that τ0(λi) ≤ τ(λi),
for i ∈ {1, . . . , n}. Since λi ≤ λ, by Step 5, there are elements γi ∈ Γλ such
that τ(λi) ≤ γi in Γ. Now put τ(λ) = γ, where γ ∈ Γλ and γ ≥ γi, for
i ∈ {1, . . . , n}, and γ ≥ τ0(λ). Such a γ exists because Γλ is directed. It is

now easy to conclude that the set T is directed. Indeed, T̃ is directed, because
the sets Γλ are directed. Therefore, if τ1, τ2 ∈ T ⊆ T̃ , there exists a function
τ0 ∈ T̃ such that τ1, τ2 ≤ τ0. By cofinality of T in T̃ , there is a function τ ∈ T
such that τ0 ≤ τ and thus, τ1, τ2 ≤ τ .

We now define an inverse system Z = (Zτ
λ , r

ττ ′

λλ′ ,Λ × T ), whose index
set Λ × T is the product of directed sets Λ and T . For (λ, τ) ∈ Λ × T ,

put Zτ
λ = Sτ(λ) and for (λ, τ) ≤ (λ′, τ ′), put rττ ′

λλ′ = sτ(λ)τ ′(λ′). Note that
τ(λ) ≤ τ ′(λ), because τ ≤ τ ′, and τ ′(λ) ≤ τ ′(λ′), because τ ′ is an increasing
function. Consequently, τ(λ) ≤ τ ′(λ′) and the mapping sτ(λ)τ ′(λ′) is well
defined. It readily follows that (1.1) is fulfilled and thus, Z is a rectangular
inverse system of ANRs.
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Step 7. For a fixed λ ∈ Λ, consider the system Sλ = (S
γ
λ , s

γγ′

λ ,Γλ) and
the resolution sλ : Xλ → Sλ. Also consider the function f : T → Γλ, defined
by f(τ) = τ(λ). This function is increasing and cofinal. Indeed, τ ≤ τ ′ implies
τ(λ) ≤ τ ′(λ) and for an arbitrary element γ ∈ Γλ, there exists a function

τ0 ∈ T̃ such that τ0(λ) = γ. Consequently, by Step 5, there also exists a τ ∈ T
such that τ ≥ τ0 and thus, f(τ) = τ(λ) ≥ τ0(λ) = γ. Now consider the special

mapping f = (f, f τ ) : Sλ → Zλ to the vertical system Zλ = (Z
τ
λ , r

ττ ′

λ , T ) of

Z at level λ, where f τ : S
f(τ)
λ = S

τ(λ)
λ → S

τ(λ)
λ = Sτ(λ) = Zτ

λ is the identity

mapping. That f is indeed a special mapping follows from f τs
f(τ)f(τ ′)
λ =

s
τ(λ)τ ′(λ)
λ = sτ(λ)τ ′(λ) = rττ ′

λ = rττ ′

λ fτ ′

, for τ ≤ τ ′. The composition uλ =

fsλ : Xλ → Zλ consists of mappings u
τ
λ = fτs

f(τ)
λ = s

τ(λ)
λ : Xλ → S

τ(λ)
λ =

Zτ
λ . An application of Lemma 2.1 shows that uλ : Xλ → Zλ is a resolution.
The mappings uτ

λ satisfy condition (1.3), because uλ : Xλ → Zλ is a mapping.

They also satisfy condition (1.2), because it assumes the form s
τ(λ)
λ pλλ′ =

sτ(λ)τ(λ′)s
τ(λ′)
λ′ , which is a special case of (3.2).

We have thus, constructed all objects and proved all properties required
by Theorem 1.7 with one exception, Λ×T need not be cofinite. We will obtain
this last property by applying to the already obtained construction a known
procedure which converts arbitrary systems to cofinite systems (see Lemma
6.31 of [4]).

Step 8. Let Z? = (Z?α
λ , r?αα′

λλ′ ,Λ × T ?) be a new rectangular system
defined as follows. T ? is the set of all finite subsets α of T (endowed with
the ordering inherited from T ) such that α has a terminal element α ∈ T .
Because of anti-symmetry, α is uniquely determined by α. The ordering ≤
of T ? is given by the inclusion ⊆. Clearly, T ? is cofinite. Note that α1 ≤ α2

implies α1 ≤ α2. Put Z
?α
λ = Zα

λ and r?αα′

λλ′ = rαα′

λλ′ . Also define mappings
u?α

λ : Xλ → Z?α
λ = Zα

λ by putting u?α
λ = uα

λ . Note that the analogues of
(1.2) and (1.3) hold. Indeed, (1.2) assumes the form u?α

λ pλλ′ = r?α
λλ′u?α

λ′ ,
which is equivalent to uα

λpλλ′ = rα
λλ′uα

λ′ . Similarly, (1.3) assumes the form

r?αα′

λ u?α′

λ = u?α
λ , which is equivalent to r

αα′

λ rα′

λ = uα
λ .

It remains to prove that the mapping u?
λ : Xλ → Z?

λ = (Z
?α
λ , r?αα′

λ , T ?),
formed by the mappings u?α

λ , is a resolution. Consider the special map-
ping f = (f, fα) : Zλ → Z?

λ, where f : T
? → T is given by f(α) = α and

fα : Z
f(α)
λ = Zα

λ → Zα
λ = Z?α

λ is the identity mapping. That f : Zλ → Z?
λ

is a special mapping follows from the fact that f increases and fαrαα′

λλ′ =

rαα′

λλ′ = r?αα′

λλ′ fα′

. Moreover, f is cofinal, because, for every τ ∈ T , the ele-
ment α = {τ} ∈ T ? has the property that f(α) = {τ} = τ . Note that the
composition fuλ : Xλ → Z?

λ consists of mappings f
αuα = uα

λ = u?α
λ and

thus, coincides with u?
λ. Since uλ : Xλ → Zλ is a resolution, an application

of Lemma 2.1 yields the desired conclusion that also u?
λ is a resolution.
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4. Proof of Theorem 1.7 in the polyhedral case

The proof of Theorem 1.7 in the ANR case does not apply to the polyhe-
dral case, because the Cartesian product of two (infinite) polyhedra need not
be a polyhedron (CW-topology). Therefore, we give a different proof. It con-
sists of a result of N. Uglešić (see[7], Theorem 2), here stated as Proposition
4.1, and of additional arguments, which we will describe in details and which
are similar to some arguments used in the ANR case.

Proposition 4.1. Let X = (Xλ, pλλ′ ,Λ) be a cofinite inverse system of
topological spaces. Then there exist cofinite polyhedral resolutions qλ : Xλ →
Y λ, λ ∈ Λ, and there exist mappings vλλ′ : Y λ′ → Y λ, λ ≤ λ′, such that
qλpλλ′ = vλλ′qλ′ . Moreover, vλλ′vλ′λ′′ = vλλ′′ , for λ ≤ λ′ ≤ λ′′, and
vλλ = id.

The assertion that the polyhedral resolutions qλ : Xλ → Y λ are cofinite
is not included in the statement of Theorem 2 of [7]. However, this follows
from the proof of that theorem (see e.g., Remark 2 and a remark in the

proof of Lemma 2 of [7]). Let Y λ = (Y µ
λ , q

µµ′

λ ,Mλ) and let qλ be given
by mappings qµ

λ : Xλ → Y µ
λ , µ ∈ Mλ. Let the mappings vλλ′ be given by

functions vλλ′ : Mλ → Mλ′ and by mappings vµ
λλ′ : Y

vλλ′ (µ)
λ′ → Y µ

λ such that,
for µ, µ′ ∈ Mλ, µ ≤ µ′, there exists an index ν ∈ Mλ′ , ν ≥ vλλ′(µ), vλλ′ (µ′),
for which

(4.1) vµ
λλ′q

vλλ′ (µ)ν
λ′ = qµµ′

λ vµ′

λλ′q
vλλ′ (µ′)ν
λ′ .

Note that whenever (4.1) holds for some ν, then it also holds for every ν ′ ≥ ν.
To see this it suffices to compose (4.1) on the right with qνν′

λ′ .
Following the proof of Theorem 3 in [7], we now consider the coproduct

M =
∐

λ∈ΛMλ on which we define an ordering ≤ as follows. If µ ∈ Mλ,
µ′ ∈Mλ′ , we put µ ≤ µ′ provided λ ≤ λ′ and for every µ∗ ∈Mλ, µ

∗ ≤ µ, one
has vλλ′ (µ∗) ≤ µ′ (in particular, vλλ′(µ) ≤ µ′) and

(4.2) vµ∗

λλ′q
vλλ′ (µ∗)µ′

λ′ = qµ∗µ
λ vµ

λλ′q
vλλ′ (µ)µ′

λ′ .

If λ = λ′, vλλ′ is the identity mapping and thus, condition vλλ′(µ∗) ≤ µ′

becomes µ∗ ≤ µ′ (in particular, µ ≤ µ′), while (4.1) assumes the form qµ∗µ′

λ =

qµ∗µ
λ qµµ′

λ , which always holds. Consequently, the new ordering, restricted to
Mλ, coincides with the original ordering on Mλ. This implies antisymmetry
of ≤ on M . Indeed, if µ ∈ Mλ, µ

′ ∈ Mλ′ , µ ≤ µ′ and µ′ ≤ µ, then λ ≤ λ′

and λ′ ≤ λ and thus, λ = λ′. Since ≤ on Mλ is antisymmetric, it follows
that µ = µ′. To prove transitivity of ≤, assume that µ ≤ µ′, µ′ ≤ µ′′ and
µ∗ ≤ µ. Then the first inequality implies vλλ′ (µ∗) ≤ µ′ and (4.2). Since also
vλλ′ (µ) ≤ µ′, the second inequality shows that vλ′λ′′ (vλλ′ (µ∗)) ≤ µ′′,

(4.3) v
vλλ′ (µ∗)
λ′λ′′ q

vλ′λ′′ (vλλ′ (µ∗))µ′′

λ′′ = q
vλλ′ (µ∗)µ′

λ′ vµ′

λ′λ′′q
vλ′λ′′ (µ′)µ′′

λ′′ ,
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(4.4) v
vλλ′ (µ)
λ′λ′′ q

vλ′λ′′ (vλλ′ (µ))µ′′

λ′′ = q
vλλ′ (µ)µ′

λ′ vµ′

λ′λ′′q
vλ′λ′′ (µ′)µ′′

λ′′ .

Note that vλλ′vλ′λ′′ = vλλ′′ implies vλ′λ′′vλλ′ = vλλ′′ , vµ∗

λλ′v
vλλ′ (µ∗)
λ′λ′′ = vµ∗

λλ′′

and vµ
λλ′v

vλλ′ (µ)
λ′λ′′ = vµ

λλ′′ . Therefore, vλλ′′ (µ∗) ≤ µ′′ and, by (4.3), (4.2) and
(4.4),

(4.5) vµ∗

λλ′′q
vλλ′′ (µ∗)µ′′

λ′′ = qµ∗µ
λ vµ

λλ′′q
vλλ′′ (µ)µ′′

λ′′

and thus, µ ≤ µ′′.
In the sequel we will need the following property of M : If µ ∈ Mλ and

λ ≤ λ′, then there exists a µ′ ∈ Mλ′ such that µ ≤ µ′. Indeed, since Mλ is
cofinite, the set of all predecessors of µ in Mλ is a finite set {µ∗

1, . . . µ
∗
k}. By

property (4.1) of vλλ′ , for every 1 ≤ i ≤ k, there is a νi ∈Mλ′ such that, for
1 ≤ i ≤ k, γλλ′(µ∗

i ), γλλ′(µ) ≤ νi and

(4.6) v
µ∗

i

λλ′q
γλλ′ (µ∗

i )νi

λ′ = q
µ∗

i µ
λ vµ

λλ′q
γλλ′ (µ)νi

λ′ .

Choosing for µ′ an element of Mλ′ such that ν1, . . . , νk ≤ µ′, one concludes
that, for all predecessors µ∗

i of µ, vλλ′(µ∗
i ) ≤ µ′ and also

(4.7) v
µ∗

i

λλ′q
vλλ′ (µ∗

i )µ′

λ′ = q
µ∗

i µ
λ vµ

λλ′q
vλλ′ (µ)µ′

λ′ .

By definition, this means that µ ≤ µ′.
We now define a new ordered set T as follows. Let T̃ be the set of all

functions τ̃ : Λ → M such that τ̃(λ) ∈ Mλ. Order T̃ by putting τ̃ ≤ τ̃ ′

provided τ̃(λ) ≤ τ̃ ′(λ), for all λ ∈ Λ. Clearly, T̃ is directed. Let T be the
subset of T̃ consisting of all increasing functions τ : Λ→M .

For any function τ̃ ∈ T̃ , there exists a function τ ∈ T such that τ̃ ≤ τ .
We define the values τ(λ), using induction by the number of predecessors of
λ. If this number is 1, we put τ(λ) = τ̃ (λ). If we have already defined values
τ(λi) ∈ Mλi , τ(λi) ≤ τ̃(λi), for all predecessors λ1, λ2, . . . , λk of λ, different
from λ, we choose (using the above stated property of M) elements µi ∈Mλ

such that τ(λi) ≤ µi. Then we take for τ(λ) any element µ ∈ Mλ such that
µ ≥ µ1, . . . , µk, τ̃ (λ). By the transitivity of ≤, τ(λi) ≤ τ(λ) and τ̃ (λ) ≤ τ(λ).
The first property implies that τ is an increasing functions from T̃ , i.e., τ ∈ T ,
and the second property implies that τ̃ ≤ τ . It is now easy to see that T is a
directed set. Indeed, let τ1, τ2 ∈ T ⊆ T̃ . Clearly, there exists a function τ̃ ∈ T̃
such that τ1, τ2 ≤ τ̃ . If we choose τ ∈ T such that τ̃ ≤ τ , then τ1, τ2 ≤ τ .

We will now define a rectangular system of polyhedra Z = (Zτ
λ , r

ττ ′

λλ′ ,Λ×
T ). For λ ∈ Λ, τ ∈ T , put Zτ

λ = Y
τ(λ)
λ . For λ ≤ λ′, τ ∈ T , we define

rτ
λλ′ : Zτ

λ′ → Zτ
λ by putting

(4.8) rτ
λλ′ = v

τ(λ)
λλ′ q

vλλ′ (τ(λ))τ(λ′)
λ′ ,

i.e., by taking for rτ
λλ′ the composition of the mappings q

vλλ′ (τ(λ))τ(λ′)
λ′ : Zτ

λ′ =

Y
τ(λ′)
λ′ → Y

vλλ′ (τ(λ))
λ′ and v

τ(λ)
λλ′ : Y

γλλ′ (τ(λ))
λ′ → Y

τ(λ)
λ = Zτ

λ . Note that r
τ
λλ′
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is well defined because τ is an increasing function and thus, λ ≤ λ′ implies
τ(λ) ≤ τ(λ′), τ(λ) ∈ Mλ and τ(λ

′) ∈ Mλ′ . However, by the definition of the
ordering ≤ in M , the latter inequality implies vλλ′ (τ(λ)) ≤ τ(λ′). For λ ∈ Λ
and τ ≤ τ ′ we define rττ ′

λ : Zτ ′

λ → Zτ
λ , by putting

(4.9) rττ ′

λ = q
τ(λ)τ ′(λ)
λ .

Let us show that, for λ ≤ λ′ ≤ λ′′, τ ∈ T , one has
(4.10) rτ

λλ′rτ
λ′λ′′ = rτ

λλ′′ .

Indeed, by (4.8),

(4.11) rτ
λλ′rτ

λ′λ′′ = v
τ(λ)
λλ′ q

vλλ′ (τ(λ))τ(λ′)
λ′ v

τ(λ′)
λ′λ′′ q

vλ′λ′′ (τ(λ′))τ(λ′′)
λ′′ .

Moreover, since vλλ′ (τ(λ)) ≤ τ(λ′) and τ(λ′) ≤ τ(λ′′), (4.2) yields

(4.12) q
vλλ′ (τ(λ))τ(λ′)
λ′ v

τ(λ′)
λ′λ′′ q

vλ′λ′′ (τ(λ′))τ(λ′′)
λ′′ = v

vλλ′ (τ(λ))
λ′λ′′ q

vλλ′′ (τ(λ))τ(λ′′)
λ′′ .

Consequently,
(4.13)

rτ
λλ′rτ

λ′λ′′ = v
τ(λ)
λλ′ v

vλλ′ (τ(λ))
λ′λ′′ q

vλλ′′ (τ(λ))τ(λ′′)
λ′′ = v

τ(λ)
λλ′′ q

vλλ′′ (τ(λ))τ(λ′′)
λ′′ = rτ

λλ′′ .

The verification that λ ∈ Λ and τ ≤ τ ′ ≤ τ ′′ yields
(4.14) rττ ′

λ rτ ′τ ′′

λ = rττ ′′

λ

is straightforward. In order to complete the proof that Z is a rectangular
inverse system, it remains to show that

(4.15) rτ
λλ′rττ ′

λ′ = rττ ′

λ rτ ′

λλ′ , λ ≤ λ′, τ ≤ τ ′,
First note that τ ≤ τ ′ implies τ(λ) ≤ τ ′(λ). Therefore, by τ ′(λ) ≤ τ ′(λ′)

and by the definition of the ordering ≤,
(4.16) v

τ(λ)
λλ′ q

vλλ′ (τ(λ))τ ′(λ′)
λ′ = q

τ(λ)τ ′(λ)
λ v

τ ′(λ)
λλ′ q

vλλ′ (τ ′(λ))τ ′(λ′)
λ′ .

(4.16) yields (4.15) if one takes into account that rτ
λλ′ = v

τ(λ)
λλ′ q

vλλ′ (τ(λ))τ(λ′)
λ′ ,

rτ ′

λλ′ = v
τ ′(λ)
λλ′ q

vλλ′ (τ ′(λ))τ ′(λ′)
λ′ and q

vλλ′ (τ(λ))τ ′(λ′)
λ′ = q

vλλ′ (τ(λ))τ(λ′)
λ′ q

τ(λ′)τ ′(λ′)
λ′ .

For a fixed λ ∈ Λ, consider the resolution qλ : Xλ → Y λ. Also consider
the function f : T →Mλ, defined by f(τ) = τ(λ). This function is increasing,
because τ ≤ τ ′ implies τ(λ) ≤ τ ′(λ). Moreover, f is cofinal. Indeed, for

an arbitrary element µ ∈ Mλ, we first define a function τ̃ ∈ T̃ , by putting
τ̃ (λ) = µ and by taking for τ̃ (λ′), λ′ 6= λ, any value in Mλ′ . Then we choose
for τ a function from T such that τ̃ ≤ τ . Clearly, f(τ) = τ(λ) ≥ τ̃(λ) = µ.

Now consider the special mapping f = (f, f τ ) : Y λ → Zλ = (Z
τ
λ , r

ττ ′

λ , T ),

where fτ : Y
f(τ)
λ = Y

τ(λ)
λ → Y

τ(λ)
λ = Zτ

λ is the identity mapping. That f is

indeed a special mapping follows from the equality rττ ′

λ fτ ′

= q
τ(λ)τ ′(λ)
λ =

fτq
τ(λ)τ ′(λ)
λ . The composition uλ = fqλ : Xλ → Zλ consists of mappings
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uτ
λ = fτq

f(τ)
λ = q

τ(λ)
λ : Xλ → Y

τ(λ)
λ = Zτ

λ . An application of Lemma 2.1
shows that uλ : Xλ → Zλ is a resolution.

Now let us prove that uλpλλ′ = rλλ′uλ′ , i.e., uτ
λpλλ′ = rτ

λλ′uτ
λ′ . Indeed,

qλpλλ′ = vλλ′qλ′ implies q
τ(λ)
λ pλλ′ = v

τ(λ)
λλ′ q

vλλ′ (τ(λ))
λ′ . Since

(4.17) q
vλλ′ (τ(λ))
λ′ = q

vλλ′ (τ(λ))τ(λ′)
λ′ q

τ(λ′)
λ′

and rτ
λλ′ is given by (4.8), we see that uτ

λpλλ′ = q
τ(λ)
λ pλλ′ = v

τ(λ)
λλ′ q

vλλ′ (τ(λ))
λ′ =

v
τ(λ)
λλ′ q

vλλ′ (τ(λ))τ(λ′)
λ′ q

τ(λ′)
λ′ = rτ

λλ′uτ
λ′ .

In this way we have proved all the assertions of Theorem 1.7 in the poly-
hedral case, except for the cofiniteness of T . To obtain also this property, it
suffices to repeat Step 8 from the proof of Theorem 1.7 in the ANR case.

5. Proofs of other results

Proof of Theorem 1.9. We need to prove that v is a resolution of X ,
i.e., it has properties (B1) and (B2). To establish (B1), assume that U is a
normal covering of X . Then, by property (B1) for p, there exists a λ ∈ Λ
and a normal covering Uλ of Xλ such that p

−1
λ (Uλ) refines U . Using (B1) for

uλ, we conclude that there exist a τ ∈ T and a normal covering U τ
λ of Z

τ
λ

such that (uτ
λ)

−1(Uτ
λ ) refines Uλ. Since v

τ
λ = uτ

λpλ, it follows that (v
τ
λ)

−1(Uτ
λ )

refines U .
To establish (B2) for v, assume that Uτ

λ is a normal covering of Z
τ
λ and

let Vτ
λ be a normal star-refinement of Uτ

λ . Consider the normal covering
Vλ = (u

τ
λ)

−1(Vτ
λ) of Xλ. By (B2) for p, there exists a λ′ ≥ λ such that

(5.1) pλλ′(Xλ′) ⊆ St (pλ(X),Vλ).

We claim that

(5.2) uτ
λpλλ′ (Xλ′) ⊆ St (vτ

λ(X),Vτ
λ).

Indeed, by (5.1), for every x ∈ Xλ′ , there exists a member Vλ of Vλ and

a point y ∈ Vλ ∩ pλ(X) such that pλλ′(x) ∈ Vλ. Moreover, there exists a
member V ∈ Vτ

λ such that (u
τ
λ)

−1(V ) = Vλ. Consequently, u
τ
λpλλ′ (x) ∈ V ,

uτ
λ(y) ∈ V and uτ

λ(y) ∈ uτ
λ(pλ(X)) ⊆ uτ

λpλ(X) = vτ
λ(X). The last two

relations show that V ⊆ St (vτ
λ(X),Vτ

λ) and thus, u
τ
λpλλ′(x) ∈ St (vτ

λ(X),Vτ
λ),

which establishes (5.2). By (1.2), uτ
λpλλ′ = rτ

λλ′uτ
λ′ and thus, (5.2) becomes

(5.3) rτ
λλ′uτ

λ′(Xλ′) ⊆ St (vτ
λ(X),Vτ

λ).

Now consider the normal covering Vτ
λ′ = (rτ

λλ′ )−1(Vτ
λ ). We claim that

(5.4) rτ
λλ′(St (uτ

λ′(Xλ′),Vτ
λ′) ⊆ St (vτ

λ(X),Uτ
λ ).

Indeed, if y ∈ St (uτ
λ′(Xλ′),Vτ

λ′), then there exists a member V ′ of Vτ
λ′ such

that y ∈ V ′ and V ′ ∩ uτ
λ′(Xλ′) 6= ∅. Since V ′ is open, it follows that also

V ′ ∩ uτ
λ′(Xλ′ ) 6= ∅ and thus, rτ

λλ′ (V ′) ∩ rτ
λλ′uτ

λ′(Xλ′) 6= ∅. By the definition
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of Vτ
λ′ , there exists a member W of Vτ

λ such that V ′ = (rτ
λλ′ )−1(W ) and

thus, W ∩ rτ
λλ′uτ

λ′(Xλ′) 6= ∅. Now (5.3) implies that W ∩ St (vτ
λ(X),Vτ

λ ) 6=
∅. Consequently, there is a member W ′ of Vτ

λ such that W ∩W ′ 6= ∅ and
W ′ ∩ vτ

λ(X) 6= ∅. Since Vτ
λ is a star-refinement of Uτ

λ , there exists a member

U of Uτ
λ such that W ∪W ′ ⊆ U . Clearly, U ∩ vτ

λ(X) 6= ∅ and thus, rτ
λλ′ (y) ∈

rτ
λλ′ (V ′) ⊆W ⊆ U ⊆ St (vτ

λ(X),Uτ
λ ), which establishes (5.4).

By property (B2) for the resolution uλ′ : Xλ′ → Zλ′ , there exists a τ ′ ≥
τ such that rττ ′

λ′ (Zτ ′

λ′ ) ⊆ St (uτ
λ′(Xλ′),Vτ

λ′) and thus, by (5.4), rττ ′

λλ′ (Zτ ′

λ′ ) =

rτ
λλ′rττ ′

λ′ (Zτ ′

λ′ ) ⊆ rτ
λλ′ (St (uτ

λ′(Xλ′),Vτ
λ′ )) ⊆ St (vτ

λ(X),Uτ
λ ), which shows that

v also has property (B2).

Proof of Theorems 1.1 and 1.5. A proof of Theorem 1.1 is obtained
by a small variation of the proof of Theorem 1.7 in the ANR case. All spaces
which appear in the proof are compact Hausdorff spaces. Therefore, resolu-
tions and limits coincide. Whenever in the proof of Theorem 1.7 appears an
inverse systems of ANRs, at the corresponding place in the proof of Theorem
1.1 we have a system of compact polyhedra (which are always compact ANRs).

In Step 4, instead of considering open neighborhoods G of qµ
λ(Xλ) = qµ

λ(Xλ)
in Y µ

λ , we consider neighborhoods of q
µ
λ(Xλ) in Y

µ
λ , which are compact poly-

hedra. Another proof is obtained from the proof of Theorem 1.7 in the poly-
hedral case. Indeed, in the proof of Proposition 4.1 (see [7]) all members Y µ

λ

of Y λ are either nerves of open coverings of Xλ or subcomplexes of their sub-
divisions. In the compact case, it suffices to consider finite open coverings.

Consequently, one can assume that all Y µ
λ , hence also all Z

τ
λ = Y

τ(λ)
λ , are

compact polyhedra.
Theorem 1.5 immediately follows from Theorem 1.9. Indeed, if p is a limit,

then it is also a resolution. Consequently, v is also a resolution. However,
since we are in the compact situation, this resolution is actually a limit.

The proof of Corollary 1.3 uses the following elementary lemma on di-
rected sets.

Lemma 5.1. In a directed set M every countable subset M ′ ⊆ M
is contained in a countable directed subset M1 ⊆ M . More precisely, if
M ′ = {µ1, µ2, . . .}, then there exists an increasing sequence m1 ≤ m2 ≤ . . .
of elements of M such that µi ≤ mi, for i ∈ N, and thus the set M1 =
M ′ ∪{m1,m2, . . .} is a countable directed subset of M , which contains the set
M ′ and the set {m1 ≤ m2 ≤ . . .} is cofinal in M1.

Proof. We define the sequence mi by induction, beginning with m1 =
µ1. Assume that we have already defined m1 ≤ m2 ≤ . . . ≤ mi in such a way
that µj ≤ mj , for 1 ≤ j ≤ i. We take for mi+1 an element of M such that
mi+1 ≥ mi, µi+1.
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Proof of Corollary 1.3. Let X = (Xn, pnn′ ,N) be an inverse se-
quence of metric compacta. By Theorem 1.1, there exists a rectangular in-

verse system of compact polyhedra Z = (Zµ
n , r

µµ′

nn′ ,N ×M) and there exist
limits un = (u

µ
n) : Xn → Zn of the vertical systems Zn = (Z

µ
n , r

µµ′

n ,M) such
that uµ

npnn′ = rµ
nn′u

µ
n′ , for n ≤ n′ and µ ∈M . Since Xn is a metrizable com-

pactum, there exists a countable collection of open coverings {U i
n|i ∈ N} of

Xn, which form a basis of open coverings of Xn, i.e., for every open covering
Un of Xn, there exists an i ∈ N such that U i

n refines Un. By property (B1)
of un, for every i ∈ N, there is a µi

n ∈ M and there is an open covering V i
n

of Z
µi

n
n such that (u

µi
n

n )−1(V i
n) refines U i

n. Clearly, M
′ = {µi

n|(n, i) ∈ N× N}
is a countable subset of M such that for every directed subset M ′′ ⊆ M ,
which contains M ′, and every n ∈ N, the restriction un|M ′′ : Xn → Zn|M ′′

has property (B1). By Lemma 5.1, there exists a countable directed subset
M1 ⊆M such that M ′ ⊆M1.

We will now define by induction a sequence of countable directed subsets
M1 ⊆ M2 ⊆ . . . of M such that, for every µ ∈ Mk, every n ∈ N and every
open neighborhood V µ

n of rµ
n(Xn) in Z

µ
n , there is a µ

′ ∈ Mk+1, µ
′ ≥ µ, such

that rµµ′

n (Zµ′

n ) ⊆ V µ
n . The initial termM1 has already been constructed. Now

assume that we have constructed the terms M1, . . . ,Mk, k ≥ 1. To construct
Mk+1 associate with every n ∈ N and every µ ∈ Mk a basis {V µi

n |i ∈ N}
of open neighborhoods of uµ

n(Xn) in Z
µ
n . By property (B2) of un, there are

indices µi
n ≥ µ in M such that r

µµi
n

n (Z
µi

n
n ) ⊆ V µi

n . Clearly, Mk ∪ {µi
n|(n, i) ∈

N × N} is a countable subset of M . Therefore, by Lemma 5.1, there exists
a countable directed subset Mk+1 ⊆ M , which contains Mk ∪ {µi

n|(n, i) ∈
N × N}. Now let n ∈ N, µ ∈ Mk and let V

µ
n be an open neighborhood

of uµ
n(Xn) in Zµ

n . There exists an i ∈ N such that V µi
n ⊆ V µ

n . Clearly,

µ′ = µi
n ∈ Mk+1, µ

′ ≥ µ and rµµ′

n (Xµ′

n ) ⊆ V µi
n ⊆ V µ

n . Clearly, the union
M0 =M1 ∪ M2 ∪ . . . is a countable directed subset of M such that, for every
n ∈ N, the restrictions un|M0 : Xn → Zn|M0 have property (B2). Since
M0 ⊇M ′, the restrictions un|M0 also have property (B1). Consequently, the
rectangular system of compact polyhedra Z|(N ×M0) has the property that
the mappings un|M0 : Xn → Zn|M0 are limits. Since M0 is countable, the
second statement of Lemma 5.1, applied to M ′ = M0, yields an increasing
sequencem1 ≤ m2 ≤ . . . of elements ofM0, which forms a cofinal subset N0 of
M0. Therefore, restricting Z to N×N0, we obtain a new rectangular system
where the mappings un|N0 : Xn → Zn are limits of its vertical systems. If
N0 is infinite, there is no loss of generality in assuming that N0 = N. If N0 is
finite, we can repeat its last row infinitely many times and thus, again assume
that N0 = N.
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