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Introduction

Environmental considerations will probably 
change automobile fuels from gasoline and gas-oil 
to hydrogen (as fuel cell) in the future. Problems of 
fossil fuels include producing gaseous pollutants, 
such as NOx, CO, and even SO2 (from incom-
plete-hydrotreated fuels), which need catalytic con-
verters and greenhouse gas emission (such as CO2, 
CH4, N2O) from the exhaust with a drastic effect on 
global warming1. Hydrogen usage in fuel cells gen-
erates only harmless water vapor2. Another future 
promising application of hydrogen fuel cells may be 
in small power plants without pollutants or green-
house gas emission. Nowadays, power plants of in-
dustrial countries are coal-based with high SO2, 
NOx, CO2, mercury, and fly-ash emissions. Flue gas 
desulfurization of such power plants with CaO (dry 
method) or Ca(OH)2 (wet method) is a costly pro-
cess3. In addition, SO2 reaction with lime shows 
pore mouth closure and incomplete conversion 
problems due to high molar volume ratio of CaSO4 
to CaO4.

The environmental preference of natural gas in 
terms of producing hydrogen over coal is a very in-
teresting issue. Natural gas sweetening is very sim-
ple, whereas coal desulfurization is almost impossi-

ble. Moreover, the amount of greenhouse gas (CO2) 
emissions from natural gas-based combustion is 
about 45 % of coal-based power plants5,6.

Industrial hydrogen production plants are usu-
ally based on catalytic steam reforming (SR) of nat-
ural gas to synthesis gas (CO+3H2), water-gas shift 
reaction for converting CO into CO2, CO2 absorp-
tion, and methanation of trace-remaining carbon ox-
ides7. Conventional steam reforming is a highly en-
dothermic reaction and needs a big top-fired or 
side-fired furnace for external heating of Ni-packed 
tubes8. Steam reforming by methane as the feed 
stock has been extensively studied in the litera-
ture9–12.

Another method for producing hydrogen or 
synthesizing gas from natural gas is partial oxida-
tion method. This method includes a highly exo-
thermic reaction with hot spot, sintering of active 
catalyst sites, and even run-away problems13–15.

An interesting alternative for steam reforming 
is the autothermal reforming method with internal 
heat generation by oxygen or air injection to the 
steam reforming system and elimination of its cost-
ly furnace16,17. ATR (autothermal reforming) com-
bines thermal effects of partial oxidation and steam 
reforming reactions by feeding natural gas, water 
vapor, and air (or oxygen) into the reactor. Steam 
reforming and oxidation of methane occur simulta-
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neously in the presence of nickel catalyst. The heat 
generated from partial oxidation is absorbed by 
steam reforming; hence, the overall temperature 
which is decreased with respect to partial oxidation 
is acceptable. In recent years, considerable attention 
has been paid to autothermal reforming which has 
an interesting potential in industrial applications18–22; 
but, there have been only few works on reactor sim-
ulation and optimization. Behroozsarand et al.23 per-
formed multi-objective optimization of an industrial 
autothermal reformer, which consisted of a noncat-
alytic partial oxidation chamber and a two-section 
catalytic steam reformer in order to produce syngas 
with H2/CO molar ratio of close to 1 for application 
in oxo-processes. Akbari et al.24 presented a numer-
ical investigation of catalytic autothermal reforming 
of methane in a surface microreactor for mobile ap-
plications of hydrogen fuel cells. In Mohanty’s25 
study, real parameter non-dominated sorting genetic 
algorithm was used to obtain a Pareto optimal set of 
process parameters for producing synthesis gas 
from combined carbon dioxide reforming and par-
tial oxidation of natural gas over a Pt/Al2O3 cata-
lyst.

In this work, low-pressure autothermal fixed 
bed reactor was simulated for producing hydrogen 
for fuel cells based on a heterogeneous and one-di-
mensional mathematical model. In most previous 
studies, the Xu and Froment (XF) kinetic model for 
steam reforming reaction was used but the Numa-
guchi and kikuchi (NK) kinetic model was used in 
this study. In addition, the effects of operating pa-
rameters on reactor behavior and outlet hydrogen 
mole fraction were studied. The non-dominated 
sorting genetic algorithm-II (NSGA-II) was then 
used for optimizing this system. Finally, the best 
conditions were determined for obtaining the maxi-
mum molar flow rate of hydrogen with reasonable 
unreacted methane. The hydrogen molar flow rate 
was calculated from the outlet gaseous mole frac-
tions from simulation program by the equation be-
low. Multiplication of mass flow rate of feed and 
outlet hydrogen weight fraction was used in this 
equation.
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The optimization parameters were H2O/CH4 
and O2/CH4 in the feed, as well as feed stream flux 
and temperature.

Literature review

There are very few references to the use of 
Evolutionary Algorithm (EA) techniques in chemis-

try and catalysis, which includes Genetic Algorithm 
(GA), Evolutionary Strategy (ES), Genetic Pro-
gramming (GP), etc. The Evolutionary Strategy 
(ES) has been used for the selection and optimiza-
tion of heterogeneous catalytic materials26–28. Genet-
ic Programming has been employed very rarely. 
Baumes et al.29,30 showed two examples of this very 
powerful technique. Genetic Algorithms (GA) have 
been done by various groups, such as Pereira et al.31 
They reported a study of the effect of Genetic Algo-
rithm (GA) configurations on the performance of 
heterogeneous catalyst optimization. Also, Gobin et 
al.32,33 used multi-objective experimental design of 
experiments based on a genetic algorithm to opti-
mize the combinations and concentrations of solid 
catalyst systems. Moreover, the genetic algorithm 
has been merged with a knowledge-based system34, 
and boosted on a GPU hardware to solve a zeolite 
structure35, 36. In addition, GA has been used for 
crystallography and XRD measurements37,38, and as 
an Active Learning method for effective sampling39.

Although a number of papers on the simulation 
of autothermal reforming are available, very few 
have tried to optimize the process conditions in or-
der to obtain maximum benefit. Behroozsarand et 
al. performed the multi-objective optimization of an 
industrial autothermal reformer consisting of a 
non-catalytic partial oxidation (POX) chamber and 
a two-section catalytic steam reformer in order to 
produce syngas with H2/CO ratio of near 1 for ap-
plication in Oxo-processes23. The autothermal re-
former that was appropriate for methanol produc-
tion and Fischer-Tropsch reactions was optimized 
using NSGA-II method in Azarhoosh et al. study40. 
The optimization parameters were determined for 
the hydrogen production of 2 and maximum meth-
ane conversion.

Problem statement and objectives 
of the present study

In this study, the fixed-bed autothermal reactor 
was simulated. It only had a catalyst bed, in which 
combustion and steam reforming reactions occurred 
simultaneously. First, the appropriate steady-state 
one-dimensional model was selected and presented 
for the autothermal reforming. Then, the differential 
equations of the related model were solved by suit-
able numerical methods for the simulation of the 
fixed-bed reactor and low-pressure autothermal re-
former was simulated. The simulation framework 
was then used for predicting the effects of major 
operating variables, such as feed temperature, O2/CH4 
molar ratio, and steam-to-methane (H2O/CH4) mo-
lar ratio on the behavior of the autothermal reactor. 
Finally, optimization of the autothermal reforming 
reactor was considered using non-dominated sorting 
genetic algorithm II (NSGA-II). The main objec-
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tives of autothermal reforming were maximum 
methane conversion and hydrogen production in the 
exit synthesis gas.

Specific objectives of this study were:
–– Simulating a low-pressure auto-thermal re-

former
–– Predicting effects of main operating vari-

ables such as temperature, etc.
–– Optimizing the ATR reformer to produce 

maximum hydrogen.

Model description and solution procedure

In this study, the fixed bed autothermal reactor, 
illustrated in Fig. 1, was simulated. It only had a 
catalyst bed on which combustion and steam re-
forming reactions occurred simultaneously.

The mathematical modeling for autothermal re-
forming with internal heating by oxidation reaction 
was done by a steady-state one-dimensional hetero-
geneous model2,41. The following assumptions were 
made for modeling the autothermal reforming reac-
tor:

–– The feed gas has an ideal gas behavior.
–– The catalyst pellets are isothermal: The main 

transport resistance inside the catalyst pellet is due 
to mass transfer, even in the case of highly exother-
mic reactions2,41.

–– The reactor is at plug flow regime: Axial dis-
persion of heat and mass can be neglected.

–– The packed bed reactor is assumed to be adi-
abatic.

–– Effective binary diffusivities are used in the 
catalyst pellet.

–– The catalyst pellet is semi-spherical and of 
uniform size.

–– Total pressure of the reformer is constant: It 
is negligible in the investigated conditions41.

–– The bed porosity is constant.

Reaction kinetics model

In a reforming process of natural gas, many re-
actions are likely to occur. If methane is considered 
to be the major dominating species in natural gas, 
the following set of reactions shown in Table 1 will 
be involved2.

To reduce the complexity in the development 
and solution of the mathematical model, only the 
reactions with significant rates will be considered. 
The first three reactions prove to have significant 
rates41, 42. Therefore, other reactions were ignored in 
this modeling study.

As the reactor simulations concern the auto-
thermal reforming of methane to synthesis gas on 
supported Ni catalysts, the rate equations for total 
combustion, steam reforming, and water–gas shift 
reactions have to be combined in the calculations. 
Kinetics of methane combustion (reaction 3 in Ta-
ble 1) was taken from Trimm and Lam43. Since this 
kinetic model was derived for supported Pt cata-
lysts, the corresponding adsorption parameters were 
adjusted for Ni (see Equation 4 in Table 2). For re-
actions 1 and 2 in Table 1, two of the most import-
ant models were the reforming model proposed by 
Xu and Froment, and the kinetic model taken from 
Numaguchi and Kikuchi9,42. These models will be 
referred to hereinafter as XF and NK models, re-
spectively. The XF reforming model was obtained 
using relatively low temperatures (773 848< <Ts �K ). 
During the indirect partial oxidation of methane to 
synthesis gas, however, high catalyst temperatures 

Ta b l e  1 	–	Autothermal reactions2

Reaction DHj
0 

(kJ mol–1)

R1: Steam reforming 	CH H O CO H4 2 23 
  206.2

R2: Water gas shift CO H O CO H 2 2 2
  –41.1

R3: Total combustion 	CH O CO H4 2 2 22 2 
–802.7

R4: Steam reforming 	
CH H O CO H4 2 2 22 4 

  164.9

R5: Partial oxidation
	
CH O CO H4 2 2

1
2

2    –360

R6: Partial combustion	CH O CO H4 2 2 22 
  –710

R7: Dry reforming 	CH CO CO H4 2 22 2 
  2470

R8: Boudouard reaction 2 2CO C CO  –1720

R9: Decomposition CH C H4 22      750

F i g .  1  – Scheme of a typical autothermal reformer
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could occur due to the exothermal total combustion 
reaction9,41. Hence, in this study, the kinetic model 
proposed by Numaguchi and Kikuchi, derived at 
higher catalyst temperatures (up to 1000 K), was 
used to simulate adiabatic fixed- bed autothermal 
reactors41,42. Langmuir–Hinshelwood rate equations 
for steam reforming towards CO and for the water–
gas shift reaction were proposed by the authors 
based on a rate-determining surface reaction step 
(see Equations 2 and 3 in Table 2)42. Table 2 shows 
the reaction kinetic equations for nickel catalyst.

Rate coefficients k1, k2, k3a, and k3b depended on 
temperature according to an Arrhenius type equation:

	 k A
E
RTi i
act

s
= ′

−







exp 	 (5)

Values of pre-exponential factors and activa-
tion energies are presented in Table 3.

Ta b l e  3 	–	Arrhenius parameters for combustion, reforming, 
and water gas shift reactions

Rate coefficient Ai' Eact (kJ mol–1)

k1     2.62· 105 86

k2     2.45· 102 86

k3a 4.5416· 105   106.9

k3b 3.8192· 105     54.5

*Units: (k1): mol atm–0.404 kg–1 s–1, (k2): mol atm–1 kg–1 s–1, 
(k3a, k3b): mol atm–2 kg–1 s–1

The first term of the oxidation rate equation 
(see Equation 4 in Table 2) accounts for the reaction 
between molecularly adsorbed methane and oxy-
gen. The second term describes Eley–Rideal reac-
tion between molecularly adsorbed methane and 
gaseous oxygen. The adsorption constant is written as:

	 K A
H

RTi
ox

i
i

s
=

−







exp

∆
	 (6)

Standard CH4 and O2 adsorption enthalpies in 
the case of Pt and Ni were taken from Shustorovich 
(see Table 4)44.

Ta b l e  4 	–	Von’t Hoff parameters for species adsorption

Adsorption coefficient Ai (atm–1) DHi (kJ mol–1)

KCH
ox

4
1.26· 10–1 –27.3

KO
ox
2

7.78· 10–7 –92.8

In Equations 2 and 3 (in Table 2), K1 and K2 are 
equilibrium constants of reactions 1 and 2. The 
equilibrium constants calculated at each tempera-
ture by Von’t Hoff method and their parameters are 
presented in Table 545:
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Ta b l e  5 	–	Standard enthalpies and Gibbs free energies of 
components

Component DHi
0 (kJ mol–1) DGi

0 (kJ mol–1)

CH4   –74.5   –50.5

CO –110.5 –137.2

CO2 –393.5 –394.4

H2O –241.8 –228.6

H2 0 0

O2 0 0

Rates of consumption or formation of species i 
(ri) is determined by summing up the reaction rates 
of that species in all the reactions (rj). Effectiveness 
factors ηj are used to account for the intra-particle 
transport limitation2,13,46. Therefore, the reaction rate 
of each species becomes:

	
4CH 1 1 3 3r r rh h 	 (9)

	 CO 1 1 2 2r r rh h 	 (10)

	
2CO 2 2 3 3r r rh h 	 (11)

	
2O 3 32r r h 	 (12)

	
2H 1 1 2 23r r r h h 	 (13)

	
2H O 1 1 2 2 3 32r r r rh h  h 	 (14)

Ta b l e  2 	–	Reaction kinetic equations for nickel catalyst

Reaction rate equation

R
k P

P P
K P
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Effectiveness factors are computed along the 
reactor length using the following equation by inte-
grating internal reaction rates47:

	
2

0

3

4 d
4
3

pr
j

j
s

p j

r r r

r r


h 




	 (15)

It is a measure of the relative importance of dif-
fusion to reaction limitations and defined as the ac-
tual overall reaction rate to rate if the entire surface 
is exposed to Ci s

s
, .

Mass and energy balances

The gas-phase and solid-phase mass and ener-
gy balance equations are presented in Table 6 along 
with the corresponding boundary conditions.

Ta b l e  6 	–	Mass and energy balance equations with boundary 
conditions

Gas phase

Mass balance:
 

 ,
d

0
d

si
g v i i s

f

C
G k a C C

z

 
    r 

(16)

Energy balance:
 

 d
0

dp f v s
T

GC h a T T
z
   (17)

Solid phase

, ,2
2 2

1 d d
0

d d
e i i s

f i s
fp

D C
r

r

  
  r x  r   x x rx   

(18)

     1 0f v s B f i f i j
i

h a T T H r  e D r h  (19)

Gas phase boundary 
condition z = 0

 
,i i gC C T T  

Solid phase boundary 
conditions

x = 0
 

,d
0

d
i s

f

C 
  x r 

x = 1
 

 , ,
,

d
d

e i i s
f g i i s

p f

D C
k C C

r

 
 r   x r 

Governing gas properties 
and transport coefficients

Mass transfer coefficient

Mass transfer coefficient (kg) is calculated us-
ing Chilton–Colburn j-factors (JD)48–50:

	

2
3

,

D
g

f f e i

J G
k

D

 m   r r 
	 (20)

where:

	
0.510.01 Re 50 0.84 ReDJ     	  

	 0.4150 Re 1000 0.57 ReDJ     	
(21)

	 Re p fd Gr


m
2,50	 (22)

	
 6 1

p
v

d
a
e

 50	 (23)

Density of the gas mixtures is calculated by 
modifying the perfect gas law as follows49:

	 tot av
f

P M
RT

r  	 (24)

Viscosity of the components is accurately cor-
rected as a function of temperature49:

	
21

BAT
C D
T T

m
 

	 (25)

in which A, B, C, and D constants are available 
in49,51. In order to predict the viscosity of gaseous 
mixtures, the Bromley and Wilke method was 
used49.

Heat transfer coefficient

Heat transfer coefficient is calculated using 
Chilton–Colburn j-factors48–50:

	
2
3P

H P
C

h J C G
K

 m
  

 
	 (26)

where:

	 0.510.01 Re 50 0.84 ReHJ      

	
0.4150 Re 1000 0.57 ReHJ     	

(27)

Heat capacity of the components is accurately 
corrected as a function of temperature45:

	 , 2 2P iC
A BT CT DT

R
    	 (28)

	 ,P i P i
i

C y C 	 (29)

in which A, B, C, and D constants are available in 
reference45.

Effective diffusion coefficients

The corresponding effective diffusion coeffi-
cients were calculated from the molecular and 
Knudsen diffusion coefficients corrected for the 
pellet porosity and tortuosity (0.53 and 4.0, respec-
tively)41:
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, , ,

1 4 1 1
( )

0.53e i i m k iD D D
  	 (30)

Di,m is molecular diffusion coefficient of spe-
cies i in multi-component mixtures. For calculating 
Di,m, the molecular binary diffusion coefficients 
were calculated according to Wilke equation50,52.

From the kinetic theory of gases, the so-called 
Knudsen diffusivity can be formulated in Eq. 3150:

	 ,
4 2
3k i

i

RT
D r

M
 

  
 

	 (31)

where Mi is molecular weight of the diffusing spe-
cies, and r  is the average pore radius.

Numerical solution procedure

Step 1: Axial coordinate of reactor length is di-
vided into the uniform grid with 1000 intervals.

Step 2: In each grid of the reactor length, the 
solid-phase (catalyst) is divided into the uniform 
grid with 40 intervals in radial coordinate. The sol-
id-phase continuity equation (see Equation 18 in 
Table 6) is then solved in the first grid of the axial 
direction by means of the central finite deference 
method in MATLAB software. Thus, in first radial 
grid, concentration and partial pressure of each 
component in all the grids of the catalyst pellet are 
calculated by solving Equation 18.

Step 3: Using the calculated partial pressures, 
the effectiveness factor of each reaction is specified 
by numerical integration (see Equation 15).

Step 4: Ordinary equations for gas phase (Equa-
tions 16 and 17 in Table 6) are solved using Run-
ge-Kutta method. Also, mole fraction and tempera-
ture of components are specified in the bulk gas for 
the second grid of the axial direction.

Step 5: The catalyst temperature for the second 
grid of the axial direction is calculated using Equa-
tion 19 (in Table 6).

This cycle is performed until the end of the re-
actor length. Therefore, using this method in all 
grids of the reactor, the dependent variables are cal-
culated at all nodal points. The concentration pro-
files versus reactor length as well as pellet radius 
coordinates can be determined by this procedure.

Non-dominated Sorting Genetic 
Algorithm-II (NSGA-II)

The principles, on which the NSGA-II relies, 
are the same as those of the single-objective optimi-
zation. The strongest individuals (or chromosomes) 

are combined to create the offspring by crossover 
and mutation, and this scheme is repeated over 
many generations. However, the multi-objective op-
timization algorithm must consider the fact that 
there are many “best solutions”, which modify the 
selection process. NSGA-II sorts individuals based 
on the non-domination rank and the crowding dis-
tance to ensure a high level of performance as well 
as good dispersion of results41,56–59. Fig. 2 shows the 
flowchart of non-dominated sorting genetic algo-
rithm-II41,53,56,60.

Results and discussion

Reactor dimensions and operating conditions

The autothermal reactor and catalyst specifica-
tions were the same as reported by de Smet et al.41. 
The catalyst specifications are presented in Table 7. 
The reactor dimensions as well as operating condi-
tions for hydrogen-for-fuel-cell production are 
demonstrated in Table 841. In the case of fuel-cell 
application, the fixed-bed catalytic autothermal re-
actor operated at atmospheric pressure. Beside 
methane and air, water vapor was added as a reac-
tant in the reactor inlet to increase hydrogen forma-
tion and suppress coke deposition. In the applied 
mass-flux and catalyst pellet diameter, the pressure 
drop was assumed negligible.

Ta b l e  7 	–	Catalyst specifications

Numaguchi and Kikuchi

Ni/Al2O3Catalyst

1970Density (kg m–3)

3.6Metal surface area (m2 g–1)

F i g .  2 	–	 Flowchart of non-dominated sorting genetic algo-
rithm-II program
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Ta b l e  8 	–	Reactor and catalyst dimensions, operating condi-
tions, and feed composition41

Reactor and catalyst

0.1dr (mr)

0.5lr (mr)

0.43εb (m
3
g mr

–3)

2.5· 10–3rp (mp )

Operating conditions

1Ptot (atm)

773T (K)

0.15G (kg m–2 s–1)

Feed composition

0.5O2/CH4

1.5H2O/CH4

AirOxygen source

Simulation results

A fixed-bed reactor suitable for the operation 
of a fuel-cell was investigated. The calculated cata-
lyst and bulk gas temperature profiles along the re-
actor co-ordinate are shown in Fig. 3 for NK re-
forming kinetics. In this figure, catalyst temperature 
increased first due to the large amount of heat pro-
duced in the methane oxidation reaction. Then, the 
catalyst temperature reached 1001 K and decreased 
consecutively as a result of the prevailing endother-
mic reforming reaction. The final temperature in-
crease was due to the heat produced from the wa-
ter–gas shift reaction. Relatively low value of the 
maximum catalyst temperature indicated that cata-
lyst deactivation would not be very serious in this 
case. The catalyst temperature in the reactor inlet 
was approximately 40 K higher than the inlet gas 
phase temperature.

The calculated axial mole fraction profiles, ob-
tained in case of the NK reforming kinetics, are 

shown in Fig. 4. This figure indicates that both 
methane and oxygen mole fractions decreased rap-
idly. As a result, significant amounts of H2 and CO 
were observed in the first part of the reactor. The 
simulated results of this work were in good agree-
ment with those of De Smet et al.41 final tempera-
ture and mole fraction values, as demonstrated in 
Figs. 2 and 3.

Typical intra-particle mole-fraction profiles are 
shown in Fig. 5 in the case of simulations with NK 
reforming kinetics for CH4 and H2, respectively. 
The calculated mole fractions were plotted as a 
function of axial reactor coordinate as well as di-
mensionless pellet axis.

In these simulations, the calculated effective-
ness factors varied considerably along the axial re-
actor coordinate, which indicated that it was neces-
sary to consider intra-particle concentration 

F i g .  3 	–	 Bulk gas and catalyst temperatures versus length of 
the reactor

F i g .  4 	–	 Components mole fraction profiles versus length of 
the reactor

F i g .  5 	–	 Intra-particle mole-fraction profiles of (a) methane 
and (b) hydrogen versus axial reactor coordinate 
and the dimensionless pellet coordinate
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gradients, and these gradients varied considerably 
along the reactor indeed. These effects were ac-
counted for by solving the solid-phase continuity 
equations in each position in the fixed-bed reactor.

Analysis of effective parameters

The effects of variation on operating conditions 
versus base case on the system performance were 
studied. Performance of the reactor can be evaluat-
ed based on outlet hydrogen molar flow rate and 
final conversion of methane. Fig. 6 shows the effect 
of feed mass flux on final methane conversion 
(XCH4

) and hydrogen molar flow. By increasing inlet 
gas mass flux with respect to the base case, final 
methane conversion was decreased due to less gas 
flow residence time and also reduced gas tempera-
ture along the reactor. In addition, as shown in this 
figure, from the base case (0.15 kg m–2 s–1 feed mass 
flux) to about 2.6 kg m–2 s–1, the outlet hydrogen 
production increased and then decreased by further 
increase in the feed mass flux.

Fig. 7 demonstrates the effect of inlet gas tem-
perature on the final methane conversion and outlet 
hydrogen molar flow rate, respectively. Both of 
them were enhanced with increasing inlet gas tem-
perature, and maximum conversion occurred in the 
maximum inlet operating gas temperature.

Variations of the outlet H2 molar flow and 
conversion of methane with the feed H2O/CH4 ratio 
are presented in Fig. 8 along with other parameters 
at their baseline values (given in Table 8). At first, 

increasing the inlet water content promoted the 
steam reforming reaction; thus, both methane con-
version and hydrogen production increased by in-
creasing water content of the feed mixture24. With 
the further increase in water content of the feed, 
methane conversion and produced hydrogen molar 
flow were decreased, which was due to decreasing 
air content of the feed, and exothermic oxidation 
rate.

F i g .  6 	–	 Effect of feed mass flux on (a) final methane conver-
sion and (b) outlet hydrogen molar flow rate

F i g .  7 	–	 Effect of feed temperature on (a) hydrogen molar 
flow rate and (b) final methane conversion

F i g .  8 	–	 Effect of feed H2O/CH4 on (a) final methane conver-
sion and (b) hydrogen molar flow rate
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Fig. 9 shows the effect of O2/CH4 ratio on 
methane conversion and outlet hydrogen molar flow 
rate, respectively. By increasing oxygen in the feed, 
combustion of methane was increased. Therefore, 
methane conversion and hydrogen production 
would increase.

4.4. Optimization results using NSGA-II

Non-dominated sorting genetic algorithm-II 
(NSGA-II) was used to optimize and obtain Pare-
to-optimal solutions. Population size of 100 was 
chosen with crossover of 0.7 and mutation probabil-
ity of 0.05. Input parameters of NSGA-II are given 
in Table 9.

Ta b l e  9 	–	Input parameters of NSGA-II

Parameter name Method and value

Number of decision variables 4

Number of objectives 2

Population size 100

Crossover method Arithmetic crossover

Crossover probability 0.7

Mutation method Gauss method

Mutation probability 0.05

The optimization problem was considered for a 
fuel-cell unit. It can logically search for operating 

scenarios that will maximize methane conversion 
and produced hydrogen molar flow simultaneously. 
Performing an NSGA-II optimization method with 
both of them as objectives can identify such scenar-
ios. The optimization problem can be expressed 
mathematically as follows:

Objective 1:
     Maximizing methane conversion ( )XCH4 	 (32)

Objective 2:
     Maximizing produced hydrogen ( )nH2 	 (33)

subject to:

	 773 K  feed temperature  973 K	 (34)

	 0.1 kg m–2 s–1  superficial feed 
	 mass flux  1 kg m–2 s–1

	
(35)

	

2

4

O
0.4 ( ) 0.6

CH inlet 
	

(36)

	

2

4

H O
1 ( ) 3

CH inlet 
	

(37)

Other parameters were the same as the base 
case. Higher limit of the feed temperature constraint 
of the autothermal reformer (973 K) was selected 
based on the lifetime of Ni catalyst in the fixed-bed 
reactor. Very high inlet gas temperatures were not 
recommended because of economic aspects, pro-
ducing high catalyst temperature, and thus catalyst 
deactivation due to coke formation and even cata-
lyst destruction by sintering23. Also, at low tempera-
tures (below 773 K), the first objective function 
(CH4 conversion) was decreased; therefore, the low-
er limit (773 K) was appropriate.

At low O2/CH4 (below 0.4), methane conver-
sion decreased and catalysts were prone to coking. 
Also, at high O2/CH4, hot spot formation in the cat-
alyst increased due to the fast oxidation reaction; 
therefore, the higher limit (0.6) was appropriate. 
According to the literature and industrial autother-
mal reformer41, the lower limit of H2O/CH4 was set 
at 1 to avoid carbon formation on the catalyst, 
which occurred at low value of H2O/CH4. Also, 
very high H2O/CH4 ratio adversely affected the pro-
cess economics because of the energy requirement 
for heating up the feed.

Different operations were performed for 200 
generations to obtain non-dominated Pareto-optimal 
solutions. A Pareto-optimal set is a series of solu-
tions that are non-dominated with respect to each 
other. While moving from one Pareto solution to 
another, there is always a certain amount of sacri-

F i g .  9 	–	 Effect of feed O2/CH4 on (a) final methane conver-
sion and (b) hydrogen molar flow rate
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fice in one objective(s) to achieve a certain amount 
of gain in other(s)23. The Pareto-optimal solution 
sets after 200 generations are shown in Table 10 
and Fig. 10.

By comparing the solutions (chromosomes) in 
Table 10, it seems that chromosome 2 was the best 
solution, because it had the maximum molar rate 
and reasonable methane conversion. It is obvious 
that there was a huge increase in the produced hy-
drogen molar flow to the base case (from 0.0223 to 
0.1382 mol s–1), which showed the importance of 
optimizing the autothermal reformers for hydrogen 
production.

Conclusions

A steady-state one-dimensional heterogeneous 
reactor model was used to simulate adiabatic fixed 
bed catalytic autothermal reactor for hydrogen pro-
duction. Intra-particle concentration gradients were 
explicitly taken into account by solving the corre-
sponding continuity equations in each position 
along the reactor coordinate. Effects of operating 
parameters such as inlet gas temperature, inlet gas 
mass flux, inlet O2/CH4, and H2O/CH4 ratios on the 
system behavior were also studied. Finally, the au-
tothermal reformer for hydrogen production was 
optimized using NSGA-II method. The optimiza-
tion parameters were determined for the maximum 
hydrogen production rate and methane conversion. 
These parameters were determined for feed tem-
perature, feed mass flux, inlet O2/CH4, and H2O/
CH4 ratios as 957.2 K, 0.960 kg m–2 s–1, 0.540, and 
1.410, respectively. In this optimum condition, the 
produced outlet hydrogen molar flow and final 
methane conversion were 0.138 mol s–1 and 0.961, 
respectively. It can be seen that there was a huge 
increase in the produced hydrogen molar flow to 
the base case and optimization was necessary for 
this system.

Ta b l e  1 0 	– Non-dominated Pareto-optimal solutions after 200 generations

4CHX
nH

1
2
(mol s )2

4 inlet

H O
CH

 
 
 

2

4 inlet

O
CH

 
 
 

 G (kg m–2 s–1)TFeed (°C)No.

0.9970870.0390551.3623400.5416510.262525933.76111

0.9610320.1381991.4106700.5396430.959743957.22952

0.9964580.0724251.4617410.5393880.481647962.81863

0.9778850.1152661.4603740.5439210.785450963.77074

0.9814300.1062761.4649610.5425390.720830963.69665

0.9651710.1372441.4542750.5410080.948793961.90386

0.9869710.0973601.4857360.5445270.657087963.10807

0.9893390.0899141.4683560.5426680.604525962.42428

0.9928680.0838641.4883070.5415770.561418963.07659

0.9669010.1295591.4203460.5399400.892967960.6819100

0.9914650.0890951.4792030.5444910.597917963.8173110

0.9696910.1292461.4466090.5421630.888731962.6552120

0.9751250.1199581.4702190.5435500.820658961.9893130

0.9850730.1012571.4835480.5444560.684760963.6072140

0.9837080.1042881.4887300.5447170.706699963.0931150

0.9955250.0821641.4819490.5440110.548701963.8856160

0.9961570.0798101.4834480.5435380.532209964.0712170

0.9715320.1273981.4768690.5427850.875058962.5524180

0.9728250.1234201.4618650.5421710.845776962.8281190

0.9738390.1205181.4521760.5438330.826032959.5964200

F i g .  1 0 	 –	 Non-dominated Pareto optimal solutions after 200 
generations
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N o m e n c l a t u r e

Ai	 –	Pre-exponential factor of species i, atm
Ai'	 –	Pre-exponential factor of reaction i, reaction de-

pendent
av	 –	External pellet surface area per unit reactor vol-

ume, m–1

Ci	 –	Molar concentration of species i at bulk gas, 
mol m–3

Ci
o	 –	 Inlet molar concentration of species i at bulk gas, 

mol m–3

Ci,s	 –	 Intra-particle molar concentration of species i, 
mol m–3

Ci,s
s	 –	Molar concentration of species i at the external 

pellet surface, mol m–3

Cp	 –	Specific heat at constant pressure, J kg–1 K–1

Cp,i	 –	Specific heat of component i, J kg–1 K–1

De,i	 –	Effective diffusion coefficient of species i in cat-
alyst, m2 s–1

Dk,i	 –	Knudsen diffusion coefficients, m2 s–1

Di,m	 –	Molecular diffusion coefficients, m2 s–1

dr	 –	Reactor diameter, m
Eact	 –	Activation energy, J mol–1

G	 –	Superficial feed mass flux, kg m–2 s–1

hf	 –	Gas-to-solid heat transfer coefficient, W m–2 K–1

JD	 –	 Mass transfer Chilton–Colburn j-factor
JH	 –	 Heat transfer Chilton–Colburn j-factor
K	 –	Conduction heat transfer coefficient, W m s–1

Ki
ox	 –	Adsorption constant for component i in combus-

tion reaction, atm–1

Kj	 –	Equilibrium constant of reaction j, reaction de-
pendent

Kj
o	 –	Equilibrium constant of reaction j at 25 °C, reac-

tion dependent
ki	 –	Reaction rate constant of reaction i, reaction de-

pendent
Kg	 –	Gas-to-solid mass transfer coefficient, m s–1

lr	 –	Reactor length, m
Mave	 –	Molecular weight of gaseous mixture, g mol–1

Mi	 –	Molecular weight of species i, g mol–1

nH2 	 –	Outlet hydrogen molar flow
Pi	 –	Partial pressure of component i, atm
Ptot	 –	Total pressure, atm
R	 –	Universal gas constant, atm m3 mol–1 K–1

r	 –	Radius reactor co-ordinate, m
ri	 –	Rate of component i production, mol kg–1 s–1

rj	 –	Rate of reaction j (j = 1,2,3), mol kg–1 s–1

ri
s	 –	Rate of reaction j (j = 1,2,3) at the external pellet 

surface, mol kg–1 s–1

rp	 –	Pellet radius, m
r 	 –	Average pore radius
T	 –	Gas-phase temperature, K
T°	 –	 Inlet gas-phase temperature, K
Ts	 –	Solid temperature, K
XCH4 –	Methane conversion

yi	 –	Mole fraction of species i 

z	 –	Axial reactor co-ordinate, m
rf	 –	Fluid density 
rs	 –	Catalyst density
hi	 –	Effectiveness factor of reaction i
x	 –	Dimensionless pellet co-ordinate 
e	 –	Catalyst porosity
eB	 –	Void fraction of packing 
m	 –	Viscosity of gaseous mixture, kg m–2 s–1

DHi	 –	Standard adsorption enthalpy of component i, 
J mol–1

DHi
o	 –	Standard adsorption enthalpy of component i at 

25 °C, J mol–1

DHj
o	 –	Standard adsorption enthalpy of reaction j at 

25 °C, J mol–1

DGi
o	 –	Gibbs free energy of component i at 25 °C, 

J mol–1

DGj	 –	Gibbs free energy of reaction j, J mol–1

DGj
o	 –	Gibbs free energy of reaction j at 25 °C, J mol–1

–DfHi	–	Heat of formation of species i, J mol–1
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