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Introduction

Biotech unit operations are often characterized 
by a large number of inputs (operating parameters) 
and outputs (performance parameters) along with 
complex correlations amongst them. A typical bio-
tech process starts with the vial of the cell bank, ends 
with the final product, and has anywhere from 15 to 
30 such unit operations in series. The aforemen-
tioned parameters can impact process performance 
and product quality, as well as interact amongst each 
other. Chemometrics presents one effective approach 
to gather process understanding from such complex 
data sets. The increasing use of chemometrics is fu-
elled by the gradual acceptance of quality by design 
and process analytical technology among the regula-
tors and the biotech industry, which require enhanced 
process and product understanding.

From the standpoint of industrial operation, it 
is important to note that the type of metabolism 
used by the cultivated microorganism for the pro-
cessing of substrates has a decisive impact on pro-
cess performance measured by indicators, like pro-
ductivity and yield. Therefore, the design of 
bioprocess control strategies is to be focused not 
only on the issue of cell environment control, but 
should ideally also aim at the control of the cell 
physiology itself. This issue has been addressed by 
the introduction of a control concept referred to as 
technological state control by Konstantinov and 
Yoshida1. In contrast to conventional control strate-
gies operating in closed loop in respect to the cell 

environment, the physiological state control scheme 
creates a closed loop in respect to the cell state. 
Consequently, the environment is not a goal but a 
tool for manipulating cell physiology.

From all the subtasks of a general technologi-
cal state control strategy, the task of on-line recog-
nition of the physiological state of the cultivated 
microorganism is of key importance. The classifica-
tion schemes involved in this task are usually based 
to some extent on expert knowledge representation 
and are frequently implemented using various artifi-
cial intelligence techniques1,2.

Review of current state

The chemical industry was early in recognizing 
and adopting chemometrics as a quick and economi-
cal method of extracting real-time information from 
data and, thus, leading to improved process monitor-
ing and control. Visible spectroscopy, near-infrared 
(NIR) spectroscopy, mid-infrared (MIR) spectrosco-
py, nuclear magnetic resonance (NMR) spectroscopy, 
and Fourier transform infrared (FTIR) spectroscopy 
are some of the commonly used process analyzers 
that have been used in the chemical industry. Princi-
pal component analysis (PCA), partial least squares 
(PLS) regression, principal component regression 
(PCR), canonical variable analysis (CVA), and mod-
ified soft independent modeling of the class analogy 
(SIMCA) are some of the statistical tools that have 
been used to facilitate analysis and modeling of the 
abundant data that are provided by the aforemen-
tioned process analyzers.
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Chemometric tools have been used in the cell 
culture operations in the last decade. PCA has been 
used for detection and diagnosis of abnormal pro-
cess conditions in an industrial fed-batch cell cul-
ture process. The model was successfully able to 
detect abnormal process conditions, which resulted 
from three known fault types, namely irregular ther-
mal heating, elevated dissolved oxygen values, and 
large variation in agitation3. PLS calibration models 
of NIR spectra have been utilized for the measure-
ment of glucose, lactate, glutamine, and ammonia 
in undiluted serum-based cell culture media4. Ro-
bust, analyte-specific models were generated, and 
the low values of standard errors of prediction for 
each analyte demonstrate that the models can be 
used to (off-line) determine the important nutrient 
and byproduct content in a serum-based cell culture 
medium. A novel PLS approach called evolving 
PLS has been compared with the traditional PLS 
using data from an industrial fed-batch mammalian 
cell culture process for prediction of intermediate 
and final quality variable values5. Use of in situ 2D 
fluorometry in combination with chemometrics has 
been evaluated for monitoring the concentration of 
viable cells and the concentration of recombinant 
proteins in mammalian cell culture6. PCA was used 
to filter the large volumes of redundant spectral 
data, while PLS correlated the reduced data with the 
target state variables. Both viable cells density and 
glycoprotein concentration were accurately estimat-
ed, which strongly suggests that the combination of 
2D fluorometry with suitable chemometric tech-
niques is a consistent technique for the monitoring 
of a cell culture medium. Modeling and monitoring 
of batch processes using neural networks, where the 
principal component analysis is used for the prob-
lem dimensionality reduction is described in Kulka-
rini et al7. Data mining and fuzzy modeling de-
scribed in Ganzle et al8 uses principal component 
analysis parameters reduction and correlation. Prin-
cipal component analysis is used for real time mon-
itoring during real experiments, where the enzyme 
peniciline G acylase was produced, more in Nucci, 
Cruz and Giordano9.

Materials and methods

Microorganism and cultivation conditions

The Pseudomonas putida KT2442 strain was 
kindly provided by Dr.  M.  A.  Prieto from CSIB-
CSIC. The inocula for fed-batch cultivations were 
prepared at 30 °C in shaking flasks in a rotary incu-
bator (incubation duration: 1618 h). Composition of 
the incubation medium per litre: 4.7  g (NH4)2SO4, 
0.8 g MgSO4· 7H2O, 12 g Na2HPO4· 7H2O, 2.7 g KH2PO4, 
3 g nutrient broth. Productive medium for the fed-

batch phase contained per litre: 4.7  g (NH4)2SO4, 
0.8 g MgSO4· 7H2O, 9 g Na2HPO4· 7H2O, 2.03 g KH2PO4, 
1 g octanoic acid and 10 mL trace element solution 
(composition per litre: 10 g FeSO4· 7H2O, 3 g CaCl2, 
2.2 g ZnSO4· H2O, 0.5 g MnSO4· 4H2O, 0.3 g H3BO3, 
0.2 g CoCl2· 6H2O, 0.15 g Na2MoO4· 2H2O, 0.02 g 
NiCl2· 6H2O, 1 g CuSO4· 5H2O).

Experimental setup

The fed-batch cultivations (Pseudomonas puti-
da KT2442) were carried out under the following 
conditions: temperature 30 °C, pH = 7, stirrer speed 
900 min–1, air flow 9.5 L min–1. Base (14 % NH4OH) 
and acid (17 % H3PO4) solutions were added to the 
cultivation medium to control pH. Following the 
initial batch phase, octanoic acid was continually 
supplied with a feeding rate set by the operator. 
Feeding strategies varied by individual cultivation 
runs, generally there was a phase of an exponential 
feeding followed by underfeeding and starvation, 
respectively.

All cultivations were carried out in a 7-litre 
laboratory bioreactor (newMBR, Switzerland) at the 
Bioprocess Control Laboratory at the Department 
of Computing and Control Engineering of the Uni-
versity of Chemical Technology in Prague 
(UCT  Prague). The bioreactor was equipped with 
an IMCS 2000 analogue control unit (temperature, 
pH, stirrer speed, antifoam level, and airflow con-
trol), a programmable logic controller (Modicon 
Compact PC-E984-265, Schneider Electric, France), 
and the proprietary Biogenes  II control system 
(based on Factory Suite 2000 software package, 
Wonderware, USA). The dissolved oxygen tension 
was measured by an oxygen probe (Mettler Tole-
do); the oxygen and carbon dioxide concentrations 
in the off-gas were measured by SERVOMEX 1100 
and 1440 analysers, respectively. For the substrate 
supply to the bioreactor, a DP200 peristaltic pump 
(New Brunswick) was used. Control variables feed-
ing rate, acid, base and antifoam addition were also 
recorded.

Classification of technological states

The main aim of this paper was automated 
classification of biotechnological system states. 
However, the proposed methodology of classifica-
tion is more general and consists of several steps.

Primary data preprocessing

Let Ts > 0 be sampling period, N  N be num-
ber of observable variables, ξi

N∈R  be ith sample 
of observable variables at time t = Tsi, and { }x i i

m
=
−
0
1  

be time series of complete primary data consisting 
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of m samples. The only one aim of preprocessing is 
data smoothing. Let rN  be order of symmetric 
linear smoothing, which is based on formula

	 xk k j r
j r

r

r
=

+ + + −
=−

+

∑1
2 1 1x

of simple but optimal robust linear smoother10. The 
final result of data preprocessing is the pattern vec-
tor xk

NR  which is shifted via r steps. Therefore, 
the series of patterns is { }xk k

M
1  where M = m – 2r. 

The time delay of smoothing is Tsr which must be 
approximately equal to the large time constant of 
given technological process.

Dimensionality reduction and Data Whitening

Dimensionality reduction is based on the Prin-
cipal Component Analysis (PCA)11. Firstly, we cal-
culate the mean value vector as

	 x x0
1

1
=

=

∑M k
k

M

and covariance matrix as

	 C x x x x=
−

− −
=

∑1
1 0 0

1M k k
k

M

( )( ) .T

The EigenValue Decomposition (EVD) is based 
on solving of the equation ( )C v− =λI 0  with con-
straint v 1,  where λ≥0  is the eigenvalue and 
vRN  is corresponding eigenvector. The solutions 
of EVD can be ordered as λ λ λ1 2 0≥ ≥…≥ ≥N  
and corresponding eigenvectors are v v1 2, ,…, vN .  
The traditional PCA of order D D N∈ ≤N,  is 
based on the formula for the output vector

	 p W x xk k
D= − ∈T ( )0 R

where

	 W v v ( , ,1 2 … , ) .vD
N D∈ ×R

Data Whitening (DWH)12 is improved PCA 
technique which guarantees unit covariance matrix 
of the resulting vector w L W x xk k

D= − ∈−1 2
0

/ ( )T R  
where

	 L= … ∈ ×diag( , , , )λ λ λ1 2 D
D DR

under the supposition of

	 λD >0.

Being inspired by PCA and DWH, we de
velop  novel technique of Compromise Whiten-
ing  (CWH) which is based on the formula 
y L W x xk k

D= − ∈−α/ ( )2
0

T R  where α∈ [ , ]0 1  also 
enables to realize PCA and DWH as extreme cases. 

Meanwhile, the PCA does not perform data stan-
dardization, the DWH does, but it also increases the 
noise level of higher order components. Therefore, 
we suppose that CWH as a compromise between 
these two disadvantages, can be a more efficient 
tool than PCA and DWH of the same dimension D 
in particular cases, related to the cluster analysis as 
the final step of data processing.

Cluster analysis of time series

Whitened time series { }yk k
M
1  can be split into H 

disjoint sub-series which correspond with the techno-
logical states for given H 2.  The resulting sub-se-
ries are compact data segments in the ideal case 
when the technological process stays in the first state 
for several steps and then sequentially moves to the 
second and the other states. But the reality of the 
technological changes is more complex in general. 
Let q Hk ∈ …{ , , , }1 2  be class (technological state) 
membership of kth pattern yk  and { }qk k

M
1  be ade-

quate time series of class memberships. We use a 
modification of K-means clustering algorithm13 con-
sisting of three operations: cluster initialization, up-
date of cluster centers, and revision of cluster com-
position. The traditional K-means randomly initialize 
the clusters which can cause convergence problems. 
Our modification is based on the equilateral initial-
ization according to the idea of idealized state se-
quence. We postulate the initial state as

	 q
kH
Mk =







which approximately guarantees equal cardinality 
of clusters. The cluster centers are updated via tra-
ditional formula

	 t

y

j

k
k q j

k q j

k

k

=
=

=

∑

∑
:

:

1

for j = 1,…,H. Novel pattern memberships are then 
recalculated as

	 qk
j H

k j
new ∈ −

≤ ≤
argmin
1

y t

for k = 1,…,M. When { }qk k
Mnew
1  differs from { } ,qk k

M
1  

we perform the next update of the cluster centers 
and adequate membership revision until pattern 
membership stabilization, as usual.

Let SSQ be residual sum of squares of the final 
clustering. Classical Akaike Information Criterion14, 
divided into M, has the form

	 AIC
SSQ
M

H= +2
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which is useful for the determination of the opti-
mum cluster number, i.e. the number of technologi-
cal states in our case. The cluster number which 
minimizes AIC is declared to be optimal. The choice 
of AIC is motivated by its cross-validation proper-
ties14. The other criteria of clustering quality are not 
recommended due to their poor relation to the 
cross-validation process.

Optimum parameter setting

The proposed classification method of techno-
logical states has the optional parameters as the pat-
tern vector length N, the order of smoothing r, the 
number of whitened components D, CWH index a, 
and the number of states H. But the parameters N 
and r are strongly connected with the biotechnolog-
ical process, its monitoring, and time constants. 
Therefore, they are not subjects of optimization 
with three aims:

–– optimal clustering with minimal value of 
AIC as declared above,

–– maximal number of clusters H for detailed 
analysis of the technological states

–– maximal number of CWH components D for 
saving of the data dimensionality.

The optimization task seems to be a multi-cri-
teria one, but its solution would be sensitive to the 
choice of AIC, H, and D weights in the compromise 
objective function. We prefer the three-stage hierar-
chical optimization process driven by three optimi-
zation aims. To avoid multiplicities, we define the 
left minimum (left maximum) as the lower possible 
value of the scalar variable, which guarantees the 
minimal (maximal) value of the given function.

The optimum values of H, D, and a can be ob-
tained for the given data set and fixed N, r as fol-
lows:

Optimum H*(D,a) is obtained by the minimi-
zation of AIC(H) as the left minimum for constant 
D, a.

Optimum D*(a) is obtained by the maximiza-
tion of H*(D) as the left maximum for constant a.

Optimum a* is obtained by the maximization 
of D*(a) as the left maximum.

Therefore, a*, D*(a*), and H*(D*(a*),a*) are 
the obtained optimal values, which form the main 
result of our novel approach to the automated state 
classification of biotechnological process from 
measured time series.

Interleaved Cross-validation Strategy

We split the original pattern series { }xk k
M
1  into 

training series { }x2 1 1k k
Q

− =  of odd patterns denoted as 
TS, and verification series { }x2 1

1
k k
Q
=
−  of even pat-

terns denoted as VS, where Q M= + ( )/ .1 2  We 
then perform CWH and cluster analysis only on the 
TS yielding odd pattern membership series { }qk k

Qodd
1  

together with CWH and clustering parameters, 
which are directly used for processing of even pat-
terns from VS. The resulting even pattern member-
ship series is { } .qk k

Qeven
=
−
1
1

The novel Interleaved Cross-validation Strate-
gy (ICVS) is based on the hypothesis of stabile 
technological states, which rarely changes to anoth-
er state in the meaning of small change probability. 
When q qk k

odd odd= +1,  the neighbor states of TS are the 
same, and according to the hypothesis of stabile 
technological states, the adequate interleaved state 
of VS must be also the same, i.e. q q qk k k

even odd odd= = +1.  
Let S be the number of stabile cases when 
q qk k
odd odd= +1,  and E be the number of misclassified 

cases when q q qk k k
odd odd even= ≠+1 .  Therefore, the clas-

sification error can be defined as ERR  =  E/T as a 
good post-optimization indicator of the parameter 
setting quality in the case of a single technological 
experiment.

Final Cross-validation Strategy

The final cross-validation methodology is 
based on general assumptions15. Having data from 
two independent technological experiments, we can 
easily perform traditional cross-validation, which is 
based on a separate parameter setting from both ex-
periments. We define inner classification as ICVS 
using the data from the given experiment and opti-
mum values H*, D*, a*. The outer classification is 
defined as ICVS using the data from the other ex-
periment, which vectors x0, t1, ..., tH and matrices L, 
W are applied to the data from the given experiment 
to obtain a potentially different state classification.

The final cross-validation strategy consists of:
(i) Optimization of H, D, and a in case of the 

first experiment.
(ii) Evaluation of CWH and cluster analysis 

vectors and matrices in the case of the first experi-
ment.

(iii) Inner classification of technological states 
according to (ii) in the case of the first experiment.

(iv) Evaluation of CWH and cluster analysis 
vectors and matrices in the case of the second ex-
periment.

(v) Inner classification of technological states 
according to (iv) in the case of the second experi-
ment.

(vi) Outer classification of technological states 
according to (ii) in the case of the second experi-
ment.
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(vii) Comparison of inner (v) and outer (vi) 
classification in D×D contingency table.

(viii) Evaluation of the classification error from 
the contingency table.

Results

The general methodology was directly applied 
to the real data from two experiments with the giv-
en biotechnological process. Sampling period was 
60 sec. The order of smoothing r was set to 10, 
which corresponds with the time constant of the 
given biotechnological process. The first data set 
consists of 2096 points. The influence of CWH pa-
rameter a on parameter D is demonstrated in Table 
1. The dimensionality D of CWH varies between 1 
(poor) and 4 (rich) with maximum for a*  =  0.54, 
which is recommended as the optimum value for 
the best dimensionality D*  =  4, and consequently 
H*  =  5 as the optimum number of technological 
states. The traditional cases of PCA (a  =  0) and 
DWH (a  =  1) obtain poor dimensionality D  =  1. 
Therefore, the novel CWH technique obtains better 
results than the referential methods on the given 
task. Time dependency of these four components in 

the first experiment is depicted in Fig. 1 as tradi-
tional PCA. Adequate classification into the five 
technological states is demonstrated in Fig. 2. As 
seen in Table 1, the classification error ERR ob-
tained via ICVS varies between 2.96  % and 
19.76 %, but this criterion was not a subject of min-
imization. The optimum CWH has interleaved 
cross-validation error ERR  =  19.08  % in the first 
experiment.

Therefore, the technological process was clas-
sified into five states. The first state describes the 
beginning of the experiment, i.e., the batch phase 
and the beginning of fed-batch phase. The second 
and third states describe the production phase of the 
experiment where the optimal feeding presents 
90 % of the span, of which underfeeding is repre-
sented by 10 %. The beginning of the fourth state 
comes with the concentration of dissolved oxygen 
at 17 % and with the evident decreasing in the dis-
solved oxygen difference. Finally, the fifth state is 

Ta b l e  1 	–	Optimum compromise whitening for the first ex-
periment

a D H AIC err [%]

0.00 1 8 107.4890 14.14

0.10 1 8 52.5981 14.14

0.20 1 8 30.6401 14.14

0.30 2 8 24.0317 14.25

0.40 2 6 17.8663 19.76

0.42 2 6 17.0290 19.24

0.44 3 6 16.9660 14.56

0.46 3 6 16.3167 14.40

0.48 3 5 15.5427 15.86

0.50 3 5 14.8464 17.42

0.52 3 5 14.2488 16.69

0.54 4 5 13.9929 19.08

0.56 3 4 12.9685 19.40

0.58 3 4 12.3289 18.62

0.60 1 3 8.4479 5.20

0.70 3 4 9.9722 21.48

0.80 2 3 6.9752 11.44

0.90 1 2 4.3509 2.96

1.00 1 2 4.1404 2.96

F i g .  1  – Optimum components for the first experiment

F i g .  2  – Optimum clustering for the first experiment
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represented by the dissolved oxygen and the differ-
ence of dissolved oxygen equal to zero.

In the case of the second experiment, the data 
set consists of 1923 points. The optimum classifica-
tion parameters a* = 0.54, D* = 4, and H* = 5 from 
the first experiment were used for the inner and out-
er classification of data points in the second experi-
ment. Meanwhile, the inner classification formed 
new CWH components and cluster centers from the 
second data set, the outer classification used the old 
CWH components and cluster centers from the first 
experiment to data from the second one. The results 
of the final cross-validation are collected in Table 2 
in the form of a contingency table. There are only 
416 missclassified data points, meaning a cross-val-
idation error of 21.63  % using independent data 
sets. This quality measure is very similar to inter-
leaved cross-validation error of 19.08 %. Therefore, 
the novel methodology of optimum CWH with 
cluster analysis is able to generalize the relation-
ships from one experiment to be applicable to an-
other one.

Ta b l e  2 	–	Final cross-validation on the second experiment

Outer states

Inner 
states

437     6     0     0     0

    0 550     0     0     0

    0 130 191     0     0

    0   25 185 136     0

    0     0     0   70 193

Conclusions

The general methodology based on compro-
mise data whitening, cluster analysis, interleaved 
cross-validation, and cross-validation on the second 
data set, was applied to two data sets from the bio-
technological process of Pseudomonas putida fed-
batch cultivation on octanoic acid. The optimum 
compromise data whitening outperformed both PCA 
and traditional data whitening in the given cases. 
The resulting fourth component system localized 
five technological states with an interleaved 
cross-validation error of 19.08 % and final cross-val-
idation error of 21.63 % on the second data set. The 
resulting states have biotechnological interpretation. 
The proposed methodology of biotechnological 
state analysis can be used in similar cases.

L i s t  o f  a b b r e v i a t i o n s

CVA		 –	Canonical Variable Analysis
CWH	 –	Compromise Whitening

DWH	 –	Data Whitening
EVD		 –	EigenValue Decomposition
FTIR		 –	Fourier Transform Infrared spectroscopy
ICVS	 –	Interleaved Cross-validation Strategy
MIR		  –	Mid-infrared spectroscopy
NIR		  –	Near-infrared spectroscopy
NMR	 –	Nuclear Magnetic Resonance spectroscopy
PC		  –	Principal Component
PCA		  –	Principal Component Analysis
PCR		  –	Principal Component Regression
PLS		  –	Partial Least Squares regression
SIMCA	–	Soft Independent Modeling of the Class Analogy
TS		  –	Training Series
VS		  –	Verification Series

L i s t  o f  s y m b o l s

AIC	 –	Akaike Information Criterion
D	 –	dimension of PCA, DWH, and CWH
E	 –	number of misclassified cases
ERR	 –	classification error
H	 –	number of technological states
i	 –	 index of primary data samples
j	 –	 index of filtering
k	 –	 index of pattern
M	 –	number of valid patterns
m	 –	number of samples
N	 –	number of observable variables
Q	 –	number of training patterns
r	 –	order of smoothing
S	 –	number of stabile cases
SSQ	 –	 residual sum of squares
t	 –	 time
Ts	 –	sampling period
a	 –	CWH parameter
λ	 –	eigenvalue
C	 –	covariance matrix
I	 –	 identity matrix
p	 –	PCA vector
q	 –	class membership vector
qnew	 –	 improved class membership vector
t	 –	cluster center vector
v	 –	eigenvector
W	 –	PCA matrix
w	 –	DWH vector
x0	 –	mean value vector
x	 –	pattern vector
y	 –	CWH vector
x	 –	sample vector of observable variable
T	 –	 transposition
*	 –	optimal value
N	 –	set of natural numbers
R	 –	set of real numbers
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