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Abstract. Let H be a complex Hilbert space. Given a bounded
linear operator A on H, we describe the set Rn(A) = {V ∗AW : V,W :
Cn → H,V ∗V = W ∗W = In, V ∗W = 0}. It is shown that the closed
matricial convex hull of Rn(A) is a closed ball of radius min{‖A − λI‖ :
λ ∈ C} centered at the origin.

1. Introduction

Throughout this paper H will denote a complex Hilbert space with an
inner product (· , ·). By B(H) we denote the algebra of all bounded linear
operators on H .

In [15] E. L. Stolov showed that the 0-numerical range of a linear operator
A acting on a finite dimensional Hilbert space H (i.e., the set W0(A) =
{(Ax, y) : x, y ∈ H, (x, x) = (y, y) = 1, (x, y) = 0}) is a circular disc with
center at the origin and with radius min{‖A − λI‖ : λ ∈ C}. The infinite
dimensional analogue of this theorem was given in [8, Proposition 2.11].

In this paper we will consider the matricial generalization of the 0-
numerical range of A ∈ B(H). More precisely, our aim is to provide for
Rn(A) = {V ∗AW : V,W : Cn → H,V ∗V = W ∗W = In, V

∗W = 0} a
theorem analogous to the theorem of E. L. Stolov.

One obvious consequence of Stolov’s theorem is that sup{|λ| : λ ∈W0(A)}
is equal to min{‖A− λI‖ : λ ∈ C}. (For hermitian A ∈ B(H) this result was
first obtained by Mirsky ([11]).) As it will be seen, the same assertion is valid
for the set Rn(A).
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2. Main result

Definition 2.1. For an operator T ∈ B(H) we define the set

Rn(A) = {V ∗AW : V,W : Cn → H,V ∗V =W ∗W = In, V
∗W = 0}.

Remark 2.2. Observe that the operators V and W from the above def-
inition are isometries from Cn to H with orthogonal ranges. Therefore, to
avoid the trivial case Rn(A) = ∅, we shall assume that the dimension of H is
greater than or equal to 2n.

Remark 2.3. Note that x and y are orthogonal unit vectors of H if
and only if V,W : C → H , where V (1) = y and W (1) = x, are isometries
with orthogonal ranges. Then (identifying B(C) with C) we have V ∗AW =
(Ax, y). So, in the case n = 1 the set R1(A) coincides to the 0-numerical range
of an operator A. (For the definition and more details see [8, 10, 15, 16]).

Remark 2.4. Similar concept to the set Rn(A) is the spatial matricial
range of A ∈ B(H) defined by V n(A) = {V ∗AV : V : Cn → H,V ∗V =
In}. When n = 1 this set reduces to the classical numerical range of A,
i.e., W (A) = {(Ax, x) : x ∈ H, ‖x‖ = 1}. However, the set V n(A) lacks an
important property of W (A): it need not be convex if n > 1 ([4, p. 142]).
The closure of W (A), known as the numerical range of A, is the set of all
φ(A), where φ ranges over all norm-one positive linear functionals on B(H).
Using completely positive maps, W. B. Arveson ([1]) generalized the concept
of numerical range in defining matricial range. J. Bunce and N. Salinas proved
in [5, Theorem 3.5] that the matricial convex hull of V n(A) has the matricial
range of A as its closure. Basic references for the numerical and matricial
ranges are [1, 3, 4, 5, 6, 7, 13, 14].

One other familiar concept is the set {V ∗AW : V,W : Cn → H,V ∗V =
W ∗W = In} where H is a finite dimensional space which dimension is greater
than or equal to n. In [9] the authors examine the conditions on A under
which this set is convex or starshaped.

Remark 2.5. If H is a finite dimensional space then Rn(A) is a compact
set. Indeed, let us take an arbitrary sequence (V ∗

i AWi)i in R
n(A). Since (Vi)

and (Wi) are the bounded sequences of isometries in the finite dimensional
space B(Cn, H) of all linear operators from Cn to H such that V ∗

i Wi = 0
they have the subsequences which converge to some isometries in B(Cn, H)
with orthogonal ranges. Therefore, (V ∗

i AWi)i must also have a subsequence
that converges in Rn(A). Hence, Rn(A) is compact.

Before stating our results we introduce some notation.
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The matricial convex hull of a subset S of B(Cn), denoted by mconv(S),

is the set of all finite sums of the form
∑

i

T ∗
i AiTi, where Ai ∈ S and where

the operators Ti ∈ B(Cn) are such that
∑

i

T ∗
i Ti = In.

We denote by S− the topological closure of a set S.
The result which follows resembles those obtained by E. L. Stolov ([15])

and by C. K. Li, P. P. Mehta and L. Rodman ([8, Proposition 2.11]).

Theorem 2.6. Let A ∈ B(H). Then

mconv(Rn(A)−) = (mconv(Rn(A)))− = {L ∈ B(Cn) : ‖L‖ ≤ r},
where r = min{‖A − λI‖ : λ ∈ C}. Particularly, if H is finite dimensional
then

mconv(Rn(A)) = {L ∈ B(Cn) : ‖L‖ ≤ r}.

Proof. The first equality follows by [6, Corollary 2.5] since Rn(A) is a
bounded subset of B(Cn) and Cn is finite dimensional.

Take any V ∗AW ∈ Rn(A). Since V ∗W = 0, for every λ ∈ C we have

‖V ∗AW‖ = ‖V ∗(A− λI)W‖ ≤ ‖V ∗‖‖A− λI‖‖W‖ = ‖A− λI‖.

Hence, ‖V ∗AW‖ ≤ min{‖A− λI‖ : λ ∈ C} = r. We conclude that Rn(A) ⊆
{L ∈ B(Cn) : ‖L‖ ≤ r}. Since {L ∈ B(Cn) : ‖L‖ ≤ r} is a compact
matricially convex set, it follows that (mconv(Rn(A)))− ⊆ {L ∈ B(Cn) :
‖L‖ ≤ r}.

Recall that the unit ball in B(Cn) is the closed convex hull of the set of
all unitary operators of B(Cn) ([12, Proposition 1.1.12]). Therefore, for the
opposite inclusion it is enough to show that (mconv(Rn(A)))− contains every
normal operator in B(Cn) whose norm is less than or equal to r. Hence,
let L be a normal operator in B(Cn) with ‖L‖ ≤ r. Denote by {e1, . . . , en}
an orthonormal basis of Cn consisting of eigenvectors of L. Let λi be the
eigenvalue of L corresponding to ei and let Pi ∈ B(Cn) be the orthogonal

projection on the subspace spanned by ei, i = 1, . . . , n. Clearly, L =

n∑

i=1

λiPi

and

n∑

i=1

Pi = In. Given 0 < ε < 1 we get |λi−ελi| = (1−ε)|λi| ≤ (1−ε)‖L‖ ≤

(1− ε)r < r, so by [15] (i.e. [8, Proposition 2.11]) there exist two orthogonal
unit vectors xi, yi ∈ H such that

λi − ελi = (Axi, yi)

for i = 1, . . . , n. Now, for xi, yi ∈ H and a unit vector ei one can find two
isometries Vi,Wi : C

n → H with orthogonal ranges such that Viei = yi and
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Wiei = xi, i = 1, . . . , n. From this we have (V ∗
i AWiei, ei) = (Axi, yi), so

PiV
∗
i AWiPi = (Axi, yi)Pi. Therefore,

L =

n∑

i=1

λiPi =

n∑

i=1

(Axi, yi)Pi +

n∑

i=1

ελiPi =

n∑

i=1

PiV
∗
i AWiPi + εL,

so we obtain

‖L−
n∑

i=1

PiV
∗
i AWiPi‖ = ‖εL‖ ≤ εr.

Hence, the arbitrariness of 0 < ε < 1 implies L ∈ (mconv(Rn(A)))−.
The second assertion follows from the first one and Remark 2.5.

Given a bounded linear operator A defined on a complex Hilbert space
H , Mirsky’s constant of A ([11]), i.e.,

sup{|(Ax, y)| : x, y ∈ H, (x, x) = (y, y) = 1, (x, y) = 0}
is equal to min{‖A − λI‖ : λ ∈ C}, which is an obvious consequence of the
result of [15] (see also [8, Proposition 2.11]). In what follows we shall see that
an analogous assertion holds for the set Rn(A).

Theorem 2.7. Let A ∈ B(H). Then

sup{‖V ∗AW‖ : V,W : Cn → H, ‖V ‖ = ‖W‖ = 1, V ∗W = 0} =
= sup{‖L‖ : L ∈ Rn(A)} = min{‖A− λI‖ : λ ∈ C}.

Proof. Let us denote

m1(A) = {‖V ∗AW‖ : V,W : Cn → H, ‖V ‖ = ‖W‖ = 1, V ∗W = 0}
m2(A) = {‖L‖ : L ∈ Rn(A)}
r = min{‖A− λI‖ : λ ∈ C}.

Since V ∗V = W ∗W = In implies ‖V ‖ = ‖W‖ = 1, it follows that m2(A) ⊆
m1(A). Further, for V,W : Cn → H , ‖V ‖ = ‖W‖ = 1, V ∗W = 0 we have

‖V ∗AW‖ = ‖V ∗(A− λI)W‖ ≤ ‖V ∗‖‖A− λI‖‖W‖ = ‖A− λI‖
for every λ ∈ C, so ‖V ∗AW‖ ≤ r. Hence,
(2.1) supm2(A) ≤ supm1(A) ≤ r.
If r = 0 we are done. So assume that r > 0. By [15] (i.e. [8, Proposition 2.11])
we conclude that for an arbitrary 0 < ε ≤ r there exist xε, yε ∈ H such that
(xε, xε) = (yε, yε) = 1, (xε, yε) = 0, |(Axε, yε)| = r − ε. Let Vε,Wε : C

n → H
be two isometries with mutually orthogonal ranges such that Vεe = yε and
Wεe = xε, where e ∈ Cn is an arbitrary unit vector. Then we obtain

r − ε = |(Axε, yε)| = |(AWεe, Vεe)| = |(V ∗
ε AWεe, e)| ≤ ‖V ∗

ε AWε‖,
so r = supm2(A). To complete the proof, it remains to apply (2.1).
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Remark 2.8. In the original manuscript a concept of a generalized nu-
merical range equivalent to the one introduced in Definition 2.1 was described
for operators on Hilbert C∗-modules. As it was pointed out by the referee this
reduces to the case of Hilbert space operators (after representing a Hilbert
C∗-module as a concrete space of operators). However, in our subsequent
paper we shall present some results concerned with the generalized numeri-
cal ranges for operators on Hilbert C∗-modules that can be obtained by the
methods based on the results of [2].
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