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ABSTRACT. Let H be a complex Hilbert space. Given a bounded
linear operator A on H, we describe the set R"(A) = {V*AW : VW :
C" - HV*V = W*W = I,,V*W = 0}. It is shown that the closed
matricial convex hull of R™(A) is a closed ball of radius min{||A — \I|| :
X € C} centered at the origin.

1. INTRODUCTION

Throughout this paper H will denote a complex Hilbert space with an
inner product (-, -). By B(H) we denote the algebra of all bounded linear
operators on H.

In [15] E. L. Stolov showed that the O-numerical range of a linear operator
A acting on a finite dimensional Hilbert space H (i.e., the set Wy(A) =
{(Az,y) : =,y € H,(z,z) = (y,y) = 1,(z,y) = 0}) is a circular disc with
center at the origin and with radius min{||A — M|| : A € C}. The infinite
dimensional analogue of this theorem was given in [8, Proposition 2.11].

In this paper we will consider the matricial generalization of the 0-
numerical range of A € B(H). More precisely, our aim is to provide for
R"(A) = {V*AW : VW : C" — H,V*V = W*W = I,,V*W = 0} a
theorem analogous to the theorem of E. L. Stolov.

One obvious consequence of Stolov’s theorem is that sup{|A| : A € Wy(A)}
is equal to min{||A — M| : A € C}. (For hermitian A € B(H) this result was
first obtained by Mirsky ([11]).) As it will be seen, the same assertion is valid
for the set R™(A).
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2. MAIN RESULT

DEFINITION 2.1. For an operator T € B(H) we define the set
RY"(A)={V*AW : V,W :C" - HV'V =W*'W = I,,, VW = 0}.

REMARK 2.2. Observe that the operators V' and W from the above def-
inition are isometries from C" to H with orthogonal ranges. Therefore, to
avoid the trivial case R™(A) = ), we shall assume that the dimension of H is
greater than or equal to 2n.

REMARK 2.3. Note that x and y are orthogonal unit vectors of H if
and only if V;W : C — H, where V(1) = y and W(1) = «, are isometries
with orthogonal ranges. Then (identifying B(C) with C) we have VAW =
(Az,y). So, in the case n = 1 the set R'(A) coincides to the O-numerical range
of an operator A. (For the definition and more details see [8, 10, 15, 16]).

REMARK 2.4. Similar concept to the set R™(A) is the spatial matricial
range of A € B(H) defined by V*(A) = {V*AV : V : C" — H,V*V =
I,}. When n = 1 this set reduces to the classical numerical range of A,
ie, W(A) = {(Az,z) : = € H,||z|| = 1}. However, the set V"(A4) lacks an
important property of W(A): it need not be convex if n > 1 ([4, p. 142]).
The closure of W(A), known as the numerical range of A, is the set of all
@(A), where ¢ ranges over all norm-one positive linear functionals on B(H).
Using completely positive maps, W. B. Arveson ([1]) generalized the concept
of numerical range in defining matricial range. J. Bunce and N. Salinas proved
in [5, Theorem 3.5] that the matricial convex hull of V™ (A) has the matricial
range of A as its closure. Basic references for the numerical and matricial
ranges are [1, 3, 4, 5, 6, 7, 13, 14].

One other familiar concept is the set {V*AW : VW : C" — H,V*V =
W*W = I,} where H is a finite dimensional space which dimension is greater
than or equal to n. In [9] the authors examine the conditions on A under
which this set is convex or starshaped.

REMARK 2.5. If H is a finite dimensional space then R™(A) is a compact
set. Indeed, let us take an arbitrary sequence (V;*AW;); in R™(A). Since (V)
and (W;) are the bounded sequences of isometries in the finite dimensional
space B(C", H) of all linear operators from C" to H such that V*W; = 0
they have the subsequences which converge to some isometries in B(C™, H)
with orthogonal ranges. Therefore, (V;* AW;); must also have a subsequence
that converges in R™(A). Hence, R™(A) is compact.

Before stating our results we introduce some notation.
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The matricial convex hull of a subset S of B(C"), denoted by mconv(S),
is the set of all finite sums of the form Z T A;T;, where A; € S and where

the operators T; € B(C™) are such that ZTZ*Tl =1,.

We denote by S~ the topological closure of a set S.
The result which follows resembles those obtained by E. L. Stolov ([15])
and by C. K. Li, P. P. Mehta and L. Rodman ([8, Proposition 2.11]).

THEOREM 2.6. Let A € B(H). Then
mconv(R"(A)™) = (mconv(R"(A)))” ={L € B(C") : |L|| < r},

where v = min{||A — X|| : A € C}. Particularly, if H is finite dimensional
then

mconv(R"(A)) = {L € B(C") : | L|| < r}.

PROOF. The first equality follows by [6, Corollary 2.5] since R™(A) is a
bounded subset of B(C™) and C" is finite dimensional.
Take any V*AW € R"(A). Since V*W = 0, for every A € C we have

VAW = [[VF(A = ADWI| < [VE]A = MW = [|A = AL]].

Hence, ||[V*AW|| < min{||A — AI| : A € C} = r. We conclude that R"(A) C
{L € B(C") : |L|| < r}. Since {L € B(C") : |L|| < r} is a compact
matricially convex set, it follows that (mconv(R"(A)))~ C {L € B(C") :
1Ll < 7).

Recall that the unit ball in B(C"™) is the closed convex hull of the set of
all unitary operators of B(C™) ([12, Proposition 1.1.12]). Therefore, for the
opposite inclusion it is enough to show that (mconv(R™(A)))~ contains every
normal operator in B(C") whose norm is less than or equal to r. Hence,
let L be a normal operator in B(C") with ||L|| < r. Denote by {e1,...,en}
an orthonormal basis of C" consisting of eigenvectors of L. Let \; be the
eigenvalue of L corresponding to e; and let P; € B(C™) be the orthogonal

projection on the subspace spanned by e;, i = 1,...,n. Clearly, L = Z i P;
i=1

and ZH =1I,. Given 0 < e < lweget |\;—eXi| = (1—¢)|A\| < (1—¢)|| L] <
i=1

(1 —e)r <r,soby [15] (i.e. [8, Proposition 2.11]) there exist two orthogonal

unit vectors x;,y; € H such that

Xi — e = (Axi,y;)

fori =1,...,n. Now, for z;,y; € H and a unit vector e; one can find two
isometries V;, W; : C" — H with orthogonal ranges such that V;e; = y; and
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Wie; = x;, i = 1,...,n. From this we have (V;*AW;e;,e;) = (Az;,y;), so
PZVl*AI/VlPZ = (AJCZ, yl)R Therefore,

L=Y NP,=) (Awi,y:)Pi+ Y e\Pi=Y RV AW,P +elL,
i=1 i=1 i=1 i=1
so we obtain
IL =Y PV} AW;P)|| = ||leL| < er.
i=1
Hence, the arbitrariness of 0 < ¢ < 1 implies L € (mconv(R™(A4)))~.
The second assertion follows from the first one and Remark 2.5. O

Given a bounded linear operator A defined on a complex Hilbert space
H, Mirsky’s constant of A ([11]), i.e.,

sup{|(Az,y)| : =,y € H, (z,2) = (y,y) = 1, (z,y) = 0}
is equal to min{||4 — AI|| : A € C}, which is an obvious consequence of the
result of [15] (see also [8, Proposition 2.11]). In what follows we shall see that
an analogous assertion holds for the set R™(A).

THEOREM 2.7. Let A € B(H). Then
sup{|[V*AW| : V,IW: C" — H, |V| = |[W|=1,V'W =0} =
=sup{||L||: L € R"(A)} = min{]|]4A — M| : A € C}.
PROOF. Let us denote
mi(A) = {|[VAW| : VW : C" — H, |V = W] = 1,V*W = 0}
ma(A) ={|[L]| : L € R"(A)}
r =min{||A — M| : A € C}.

Since V*V = W*W = [, implies |V| = [|[W]| = 1, it follows that mo(A) C
mq(A). Further, for VW :C" — H, ||[V| = |W| =1, V*W =0 we have

[VZAW]| = [VF(A = ADW | < [VE[A = M[[[[W] = A = M|
for every A € C, so ||[V*AW/|| < r. Hence,
(2.1) supma(A) < supmq(A) <.

If » = 0 we are done. So assume that r > 0. By [15] (i.e. [8, Proposition 2.11])
we conclude that for an arbitrary 0 < € < r there exist z.,y. € H such that
(e o) = (Ye,Ye) = 1, (e, ye) =0, [(Aze,ye)| =7r —e. Let V., W, : C" — H
be two isometries with mutually orthogonal ranges such that V.e = y. and
Wee = x., where e € C" is an arbitrary unit vector. Then we obtain

r—e=|[(Azc,ye)| = [(AWee, Vee)| = [(VZAWe, e)| < VAW,
so r = supma(A). To complete the proof, it remains to apply (2.1). O
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REMARK 2.8. In the original manuscript a concept of a generalized nu-
merical range equivalent to the one introduced in Definition 2.1 was described
for operators on Hilbert C*-modules. As it was pointed out by the referee this
reduces to the case of Hilbert space operators (after representing a Hilbert
C*-module as a concrete space of operators). However, in our subsequent
paper we shall present some results concerned with the generalized numeri-
cal ranges for operators on Hilbert C*-modules that can be obtained by the
methods based on the results of [2].
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