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SPANS OF CONTINUA RELATED TO INDENTED CIRCLES

THELMA WEST
University of Louisiana at Lafayette, USA

ABSTRACT. Let X be a special type of simple closed curve in the plane
known as an indented circle. Let Y be a continuum which is contained in
X UV where V is the bounded component of R2 — X. We show that
7(Y) < 7(X) where 7 is the span o, surjective span ¢*, semispan oy,

surjective semispan o, symmetric span s, or the surjective symmetric span

s*.

1. INTRODUCTION

The span of a metric continuum was originally defined by A. Lelek (see
[L1], p. 209). Later variations of the span were defined (cf [L2, L3, D]). In
general it is difficult to calculate the spans of a particular geometric object.
Also, it is not clear how the various spans of related objects compare to each
other. The following question on this topic was asked by H. Cook[C].

If X7 is a plane simple closed curve and X5 is a simple closed curve which
is contained in the bounded component of R? — X; then is 0(X3) < o(X1)?

There have been various partial results on this question (cf [W1, W2, W3,
T1, T2, DF]). In this paper we show the following:

If X is a particular type of a simple closed curve known as an indented
circle and Y is any continuum contained in X UV where V' is the bounded
component of R? — X, then 7(Y) < 7(X) where 7 is any of the various spans.

2. PRELIMINARIES
The standard projections p1,p2 : X x X — X are mappings defined by
pi(z,y) =z and pa(z,y) =y for (z,y) € X x X.
2000 Mathematics Subject Classification. 54F15.
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Let X be a nonempty metric space. The surjective span o*(X) of X is the
least upper bound of real number « such that there exist nonempty connected
sets Cy C X x X with d(z,y) > « for (x,y) € C, and

(c%) p1(Ca) = p2(Ca) = X.
Relaxing condition (¢*) to the conditions

(o) p1(Ca) = p2(Ca),

(75) p2(Ca) = X,

(00) P1(Ca) C p2(Ca),

we obtain the definitions of the span o(X), the surjective semispan o (X),
and the semispan oo(X) of X, respectively.

If to condition (0*) we add the condition that C* = (C*)~! we get s*(X)
the surjective symmetric span. If to condition (¢) we add the condition that
C* = (C*)~! we get s(X) the symmetric span.

In [W1] we defined a particular type of closed curve which we called an
indented circle. The construction is given below.

We start with a circle .S in the complex plane of radius r and center the
origin O. Also, we will consider X as a subset of the real plane whenever this
will simplify the exposition.

We choose angles 64, ..., 0, such that

0<btb << --- <0, <.

1 92 p3 p4 o
We choose 4n more angles 6;, 67,65, 0;, for j =1,2,...,n such that

0<0i <6 <7< <0,<0,<0)<m,
T<O <O +7<07 < <0 <O, 47 <0, < 2m,
cither 6 = 6; = 67 or 0] < 0; <07 for j =1,2,...,m,
cither 67 = 0; + 7 =0} or 6 <0, + 7 < 0] for j = 1,2,...,n,
9j+a§ <11 _O‘}—rl forj=1,2,....,n—1,
where o :Max{ﬂj —0},0; - 03}, o :M?X{Q? - (Gj‘—;— ™), 07 — GJl
Let r; = rei, ¢; = ret0itm), T; = rets Y = rei?s 55 = re'?s | and
t; = rei; for j=1,2,...,n.

_We represent the straight line interval in the plane with endpoints a and b
by ab. Pick points v;,w; # O where v; € Orj and w; € Ogj forj =1,2,...,n.
We must choose v; and w; such that the following restrictions are satisfied
forj=1,2,...,n. If 0;— = GJQ-, then v; = r;. If 9?— = 9;-1, then w; = g;.

Otherwise, we must choose v; and w; so that the following conditions are
satisfied. If 6} # 67, then the smaller angles formed by the following pairs of
line intervals, the pair Z;v; and 7;7;, and the pair 7;0; and 7;7; must be no
greater than 90°. If 95’ #+ 9?, then the smaller angles formed by the following



SPANS OF CONTINUA RELATED TO INDENTED CIRCLES 173

pairs of line intervals, the pair 5;w; and w;g;, and the pair g;w; and w;t;
must be no greater than 90°. We will refer to these conditions as the angle
conditions.

For each j, when 9} #+ 9?, the shorter arc on S with endpoints z; and
y; is replaced by Z;v; U v;; and when 0]3 # 9?, the shorter arc on S with
endpoints s; and ¢; is replaced by s;w; U w,t;.

We refer to both Z;7; UT;7; and s;w; U w;t; as indentations of X for
j =1,2,...,n. We refer to v; and w; as the vertices of the corresponding
indentations. The space X consists of the remaining points of S and the
added indentations.

From the construction of X, we see that it is a simple closed curve. We
call each such simple closed curve X an indented circle (see Fig. 1).

Y2 — —

T2

FIGURE 1

Let d; be the point on T;v; closet to t;,c; the point on 7;y; closest to
54,b; the point on 5;w; closest to y;, and a; be the point on w;t; closest to
zj, for j=1,2,...,n.

Let d; = d(dj,t;),c; = d(cj, s;),b; = d(bj,y;), and a} = d(a;,x;), for
7=1,2,...,n. We call the number

sx = Min{Max{Min{a}, d;}, Min{b},¢;}} : 5 =1,2,...,n}

the indentation spread of the indented circle X.
In [W1] we proved the following:

THEOREM 2.1. If X is an indented circle and sx is the indentation spread
of X, then
o(X)=00(X)=0"(X) =03(X) = sx.
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Though it was not stated in this theorem, the proof also gives us that
s(X) = s*(X), since the continuum C' C X x X constructed in the proof of
Theorem 2.1 is such that C = C~! and p;(C) = p2(C) = X.

3. MAIN RESULT

THEOREM 3.1. If X is an indented circle, V is the bounded component
of R — X, and Y is a continuum such that Y C X UV then 7(Y) < 7(X)
where T = 0,00,0%,0§,,5".

PROOF. Suppose that X* is an indented circle that has n indentations.
We know from [W1, Th2.1] that
o(X*)=0o(X") =03(X") =0"(X") = sx~
= Min{Max{Min{a}, d}}, Min{c},d}} : j = 1,2,...,n}}
where sy« is the indentation spread of X*. For some j,
sx+ = Max{Min{a};, d}}, Min{c}, b} }}.

J 773
Let 7 : R? — R? be the function that rotates the plane by an angle of 3 —

about the origin; so,
i

R

r(v;) = rye

where
vj = Tvewj

and

r(w;) = rwet T
where

wj = rypet @™,
Let

T(wj) = :cn"(yj) = yﬂ“(Sj) = S7T(tj) =1,
r(aj) = a,r(bj) = b,r(c;) = ¢, and r(d;) = d.
Let
d(z,a) =d,d(t,d) =d',d(s,c) = ¢ and d(y,d) = d'.

Let

X =7wUtgUswUwt U {re?|0 € [0,60,] U[6,,0s] U [0, 27}
where 0 < 0, <0, <0, <0, <2mand z = reifs y = rev, s = re?s and
t = re®". From [W1, Th2.1] we see that

sx» =7(X") =7(X) = sx for 7 = 0,00,0", 05.
From the proof of the theorem we also see that
sx» =7(X") =7(X) = sx for 7 =0,00,0%, 05

where 7 = s or s*. Also, if Y is a continuum such that Y C X* U V* where
V* is the bounded component of R?2— X* then Y C X UV where V is the
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bounded component of R? — X. So, without loss of generality we can assume
that our indented circle is X rather than X*. Note that either
a) 0<0, <Z <, <m<b, <3 <0, <2m,
b) 0<0, =2 =0, <m<6 <3 <6 <2m or
€) 0<b, <Z<0,<m<b,=3 =6 <2r
We first consider the situation in a) we have sixteen cases to consider.
Al

ISIERSIERNTE

sx = max{d’,b'}
aFwFb
A2
sx = max{c,d'}
cFv#d
If we rotate X by 180° in R? about the origin then case A2 is compa-
rable to case Al.
B1
sx = max{d’, '}
aF#w,c#v
B2
sx = max{d,b'}
d#v,b#w
If we rotate X by 180° in R? about the y-axis then case B2 is compa-

rable to case Bl.
C1
sx = max{d’, b’}
a=b=w
C2
sx = max{c, d}
c=v=d
If we rotate X by 180° in R? about the origin then case C2 is compa-
rable to case C'1.
D1
sx = max{d’,c'}
a=w,c=v
D2
sx = max{d', b’}
d=v,b=w
If we rotate X by 180° in R? about the y-axis then case D2 is compa-
rable to case D1.
E1
sx = max{d’, b’}
a=w,b#w
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E2
sx = max{d’, b’}
a# w,b=w

If we rotate X by 180° in R? about the y-axis then case E2 is compa-
rable to case E1.
E3
sx = max{d', '}
d=wv,c#v

If we rotate X by 180° in R? about the x-axis then case E3 is compa-
rable to case E1.
E4
sx = max{d’,c'}
d#v,c=v

If we rotate X by 180° in R? about the origin then case F4 is compa-
rable to case E'1.
F1
sx = max{d’,c'}
a=w,c#v
F2
sx = max{d’,c'}
a#w,c=v

If we rotate X by 180° in R? about the origin then case F2 is compa-
rable to case F'1.
F3
sx = max{d', b’}
d=v,b#w

If we rotate X by 180° in R? about the x-axis then case F3 is compa-
rable to case F'1
F4
sx = max{d,b'}
d#v,b=w
If we rotate X by 180° in R* about the y-axis then case F4 is compa-
rable to case F'1.

Now we consider the situations in b) and c).
G1

G2
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If we rotate X by 180° in R? about the origin then case G2 is comparable
to case G1. So, in order to prove the theorem we just need to examine cases
Al,B1,C1,D1,E1, F1 and G1.

In order to do this we first define functions p. and ¢. under various con-
ditions. We define continuous functions p. and g. where

p;._-:R—M;t>
g : L — ws

R={(z1,1n) € XUV]|z1 >0},
and
L={(z1,11) € X UV]|zy <0}.
First we define p. in two different cases.
pe CASE 1: a #w
We define p. for € where 0 < ¢ < 3 min{d(w,a),d(w,v)}. Pick m € wa

such that 0 < d(w,m) < e. Let n € UT such that mn is perpendicular to wt.
Let P; be the portion of the plane which is bound by

By =tmUmnUAT U {re?|0 <0 <6,,0, <6 < 2r}

together with its boundary Bj.
For0<t<1,let ny =tn+(1—1t)v, my =tm—+ (1 —t)w, and Ry = myny.
We define p. : R — wt as follows:
a) pe/P1 is the perpendicular projection of P; into u_nf)7
b) p:/R; is the constant function which sends each point of R; to my for
0<t< 1.

OBSERVATION 1: If z1 and x5 € P; where T1x3 is perpendicular to ER
then d(z1,z2) < a'.

ProoF. To see this, let L, be the line through = which is parallel to wi.
Note that

> >
P, C L, Uwt UV (L, wt)

where V(Lm,m) is the portion of the plane bound by L, and wt. Con-

sequently, if 1 and zo € P, where Tizs is perpendicular to m then
d(z1,29) < d(a,x) =da’. O

OBSERVATION 2: If w1, 79 € Ry then d(x1,22) < a’ + 2¢.
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PRrROOF. Note that
d(x1,22) < d(my,ny)

< d(m¢,m) + d(m,ny)
<e+d(m,n:)
< e+ max{d(m,v),d(m,n)}
< e+ max{d,d(v,w) + e}
<e+max{d,a +¢}
=a + 2.

(*) So we see that for y’ € p.(R), diam(p-{y'}) < a’ + 2e.

pe CASE 2: a=w

We define p. for &€ where 0 < & < min{d(v,w),d(w,t)}. Pick m € wt
such that 0 < d(w,m) < e. Pick m; € mt such that 0 < d(m1,m2) < e. Let
mo € X such that myms is perpenducular to wt. Let my = re'mz . Either
0 <0, <Oz or b <Op, <2m.

Let

By = mat Umrmg U Xy,

where Xy, = {re|0 € [0;,0p,] if 3 < 61, < 27, 0r 0 € [6,27) U [0, b,,,] if
0<0m, <5}

Let P, be the portion of the plane bound by B; together with its boundary
Bl. Let

Xonze = {0 € [y, 0] i 0 < b1, < Tov

6 € (B, 27) U [0, 6,] if 37” <0, < 2r}.

Let r : [0,1] — X, be a continuous surjective function where r(0) = mq
and (1) = z. Let
mye = (1 — t)mq + tm and

Mt = mltr(t).

For 0 <t <1 let
ng =tx + (1 —t)v,
my =tm+ (1 — t)w, and
Ry = myny.
We define p. : R — wt as follows:

a) pe/Pp is the perpendicular projection of P; into m—l;f,
b) p:/M; is the constant function which sends each point of M; to the
point my4,
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¢) pe/R: is the constant function which sends each point of R; to the
point my.

OBSERVATION 3: If 21,72 € My then d(z1,72) < a’ + 2e.

PROOF. First we observed that the funcion d* : [0,1] — R™ given by
d*(t) = d(mq,r(t)) is increasing. To see this compare the two triangles A
Omqr(0) and A Omqr(t) where 0 < t < 1. Let a; be the smaller angle
between Om and Or(¢) for 0 < ¢ < 1. Note that Om; is of fixed length, r is
the length of Or(t) for each 0 < ¢ < 1, and ayr > ay for 0 < ¢ <t < 1. So,
d*(ma1,r(t)) increases as t increases. Hence, d(mq, ms) < d(mq,z) < o’ + 2e.

o

In this case as in case 1, we see that for y’ € p.(R),
diam(p_ {y'}) < a’ + 2.
Now we define ¢, in four different cases.

g CASE 1: b#w

We define g. for & where 0 < ¢ < 1 min{d(w,b),d(w,v)}. Pick p € 5w

such that 0 < d(w,p) < e. Let u € Fv such that pu is perpendicular to sw.
For 0 <t <1, let
pe=tp+ (1 —t)w,
ug =tu+ (1 —t)v, and
L, = prug.
Let P> be the portion of the plane which is bound by
By =3pUpuUuy U {re”|9, <0 < 6,}
together with its boundary B,. We define ¢. : L — w3 as follows

a) qc/Ly is the constant function which sends each point of L; to P,
b) g./P» is the perpendicular projection of Py into ws.

From previous observations we can see that for 3’ € ¢.(L),

diam(q- *{y'}) < b + 2e.

qe CASE 2: b=w

We define ¢. for & where 0 < ¢ < Xmin{d(v,w),d(w,s)}. Pick p € ws
such that 0 < d(w, p) < e. Pick p; € Ps such that 0 < d(p1,p) < e.Let py € X
such that pipz is perpendicular to ws. Let py = re®r2. For 0 <t < 1 let

ur =ty + (1 —t)v,
pr =tp+ (1 —t)w, and
Ly = wpy.
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Let Xp,y = {re®|0 € [0,,0,,)y. Let 1 : [0,1] — X,,, be a continuous surjective
function where 1(0) = po, (1) = y. Let p1z = (1 — t)p1 + tp and Uz = p14l(2).
Let P, be the portion of the plane which is bound by By = 3p1 Upipa U X,
where X,,s = {re'|,, < 0 < 0,} together with its boundary Ba. We define
¢ : L — ws$ as follows

a) ge /e, is the constant function which takes each point of L; to the point

Dt
b) q. /v, is the constant function which sends each point of U; to the point

D1,
c) ¢ /Py is the perpendicular projection of Py into ws.

From previous observations we can see that for 3’ € ¢.(L),

diam(q- {y'}) < b + 2e.

qe CASE 3: ¢c# v

We define ¢. for e where 0 < &€ <  min{d(v, w),d(v, ¢)}. Pick u € ¢v such
that 0 < d(u,v) < e. Let p € sw such that pu is perpendicular to vy. Let

up = tu+ (1 —t)v,
pr =tp+ (1 — t)w, and
Ly =w;pe.
Let P» be the portion of the plane bound by
By :WUWU@UXW
where X5 = {e%|6, < 0 < 0,} together with its boundary Bs. Let ¢ : L — vy
be defined as follows

a) q/L; is the constant function that sends each point of L; to wy,

b) q/P is the perpendicular projection of P, into v7.

Let q(L) = vy’. Let ¢* : vy’ — 3w be a surjective continuous map such
that ¢*(v) = w, ¢*(u) = p,¢*(y') = s. Let ¢. = ¢* o q. From previous observa-
tions it is clear that if y’ € sw, diamg-'{y'} < ¢/ + 2e.

ge CASE 4: v=c¢

We define . for ¢ where 0 < € <  min{d(v, w),d(v,y)}. Pick u € vy such
that 0 < d(v,u) < e. Pick u; € wy such that 0 < d(u,u;) < e. Let ug € X
such that @ywy is perpendicular to 77. Let up = re?“2. Let

up = tu+ (1 —t)v,

pr =ts+ (1 —t)w.
Let Ly = Up,. Let Xy, = {re®|0,, < 0 < 6,}. Let [ : [0,1] — X,,s be
a continuous surjective function where {(0) = ug and I(1) = s. Let uy; =
(1 = t)ug + tu and Uy = uq,l(t). Let By = Uy U uqug U Xy, where X, =
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{rei9|9y <6 <0,,}. Let P, be the portion of the plane bound by By together
with its boundary Bs. We define a function ¢ : L — vy as follows

a) q/L; is the constant function that sends each point of L; to Uy,

b) q/U; sends each point of u; to uie,

c) q/P; is the perpendicular projection of P, into u17.

Let q(L) = vy’. Let ¢* : vy’ — W be a surjective continuous map such
that ¢*(v) = w,¢*(y') = s. Let g- = ¢* o q. From previous observations it is
clear that if 2/ € 5w then diamg_ {2’} < ¢’ + 2¢.

Let Y be the continuum as given above. We consider 7 cases as given
below:

Case Al: sx =max{d,b'} a#w#b

Case Bl: sy =max{a’,c'} a #w,c#v

Case Cl: sy =max{d,b'}a=w=1>

Case D1: sx = max{d,cd'} a=w,c=wv

Case E1: sx = max{a’,b'} a =w,b#w

Case F1: sx =max{d,d} a=w,c#v

Case G1: v=re'? s, = d(v,w)

Let C CY x Y be a continuum such that p1[C] C p2[C] C Y.

Case Al: sx =max{d,b'} a£w#b

Let p: LUR — w3 Uwt be given by p/R = p. as defined in case 1 for p..
p/L = q. as defined in case 1 for ¢..

Consider po p1,pops : C — ws U wt. The functions pop; and p o pg are
continuous, p o p1[C] C pope[C] = J C wé U wt. Clearly J is an interval and
there is a ¢ € C such that popi(c) = popa(c). From previous observations we
see that diam (p~'{popi(c)}) < max{a’ + 2¢,b' + 2¢}. So, d(p1(c), p2(c)) <
max{a’ + 2¢,b" + 2e}. Since this is true for all € > 0, we conclude that

7(Y) < max{a’,b'} = sx = 7(X) where 7 is any of the spans.

Case B1l: sy =max{a’,c'}, a #w,c#v

In this case we define p: LU R — ws U wi by p/R = p. as in case 1 for
pe and p/L = ¢ as in case 3 for q..

The rest of this case is handled as in case A1l. Our conclusion now is that

7(Y) < max{d’, ¢’} = sx = 7(X) where 7 is any of the spans.

Case Cl: sy =max{a,b'},a=w=">

In this case we define p : LUR — w3 Uwi by p/R = p. as defined in case
2 for p. and p/L = q. as defined in case 2 for ¢..

In a manner similar to the previous cases we can conclude that

7(Y) < max{a’, '} = sx = 7(X) where 7 is any of the spans.

Case D1: sx = max{d/,c'}, a=w,c=v
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In this case we define p: LUR — sw U wi by p/R = p. as in case 2 for
pe and p/L = ¢. as in case 4 for g..
As in the previous cases we can conclude that

7(Y) < max{d’, ¢’} = sx = 7(X) where 7 is any of the spans.

Case E1: sx = max{a’,b'}, a = w,b # w

In this case we define p: LUR — 5w Uwi by p/R = pe as defined in case
2 for p. and p/L = q. as defined in case 2 for g..

In this case we can conclude that

7(Y) < max{a’, '} = sx = 7(X) where 7 is any of the spans.

Case F1: sx = max{d’,c'},a =w,c#v

In this case we define p: RU L — 5w U wt by p/R = p. as in case 2 for
pe and p/L = ¢. as in case 3 for q..

Our conclusion in this case is that

7(Y) < max{d’, ¢’} = s, = 7(X) where 7 is any of the spans.

Case G1: -

We define p : RU L — wt U ws when v = re?. In this case sx = d(v,w).
Pick € where 0 < ¢ < *min{d(w,t),d(w,s)}. Pick m € wt such that 0 <
d(w,m) < €. Let n € X such that mn is perpendicular to wt. Pick u € ws
such that 0 < d(w,u) < e. Let p = re’”? € X such that pu is perpendicular
to 5. Let By = nm U mt U Xy, where Xy, = {re'|0 € [0,0,] U [6,,2n) if
0< 6, <Z,0 € [0:;0,]if 37” < 6, < 27}. Let Py be the portion of the
plane bound by Bj together with its boundary Bj. Let r : [0,1] — X,,
where X,,, = {re|f, < 0 < Zif0< 6, < 3,0 € [0,,2m) U[0, %] if
3T < 0, < 27} be a continuous, surjective function such that r(0) = v and
r(1) = n. Let my = (1 — t)w + tm. Let Ry = myr(t). Let 1 : [0,1] — Xup
where X, = {re”®|Z < 0 < 6,} be a continuous surjective function such that

1(0) =v,l(1) = p. Let uy = (1—t)w+tu. Let Ly = u,l(t). Let By = SuUupUXps
where X5 = {re??|f, < 6 < 0,}. Let P> be the portion of the plane bound by
Bj together with its boundary By. We define p: RUL — wt U w$ as follows:

p/ Py is the perpendicular projection of P; into mi

p/ Ry is the constant function which sends each point in R; to my.

p/ Ly is the constant function which sends each point in L; to u;.

p/P» is the perpendicular projection of Py into v3.

OBSERVATION 4:

Note that the continuous function d* : [0,1] — RT given by d(w,r(t)) is
decreasing. So, for each t € [0, 1], d(my, r(t)) < d(v, w)+e. Similarly, it follows
that d(ug, d(t)) < d(v,w)+e for ¢t € [0, 1]. Using this observation together with
observation 1, we see that for y' € p(RUL), diam p~'{y'} < d(v,w)+e¢. Since
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is true for all € > 0, we can conclude that

7(Y) < d(v,w) = sx = 7(X) where 7 is any of the spans.
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