SOME QUESTIONS OF EQUIVARIANT MOVABILITY

P.S. GEVORGYAN Moscow State University, Russia

ABSTRACT. In this article some questions of equivariant movability, connected with the substitution of the acting group G on closed subgroup H and with transitions to spaces of H-orbits and H-fixed points spaces, are investigated. In a special case, the characterization of equivariantly movable G-spaces is given.

1. Introduction

This paper is devoted to equivariant movability of G-spaces, i.e., topological spaces endowed with an action of a given compact group G.

More precisely, in § 3 we define the notion of equivariant movability or G-movability and we prove several theorems, including the following ones. If X is p-paracompact and $H \subseteq G$ is a closed subgroup, then G-movability of X implies its H-movability (§ 3, Theorem 3.3). G-movability of X also implies movability of the space X[H] of H-fixed points in X (§ 4, Theorem 4.1). In particular, equivariant movability of a G-space X implies ordinary movability of the topological space X (§ 3, Corollary 3.5). We construct a non-trivial example which shows, that the converse, in general, is not true, even if we take for G the cyclic group Z_2 of order 2 (§ 5, Example 5.1). If X is a metrizable G-movable space and H is a closed normal subgroup of G, then the space $X|_H$ of its H-orbits is also G-movable (§ 6, Theorem 6.1). In the case H = G we obtain that G-movability of a metrizable G-space implies ordinary movability of the orbit space $X|_G$ (§ 6, Corollary 6.2). The last assertion, in general, is not invertible (\S 6, Example 6.3). However, if X is metrizable, G is a compact Lie group and the action of G on X is free, then X is G-movable if and only if the orbit space $X|_G$ is movable (§ 7, Theorem 7.2). Examples 6.3 (§ 6) and

²⁰⁰⁰ Mathematics Subject Classification. 55P55, 54C56. Key words and phrases. Equivariant shape theory, equivariant movability.

 $3 (\S 8)$ show that in the last theorem the assumption that the group G is a Lie group and the assumption that the action is free cannot be omitted.

Some of the above listed results with an outline of proof were given in [9].

Let us denote the category of all topological spaces and continuous maps by Top, the category of all metrizable spaces and continuous maps by M and the category of all p-paracompact spaces and continuous maps by P. Always in this article it is assumed that all topological spaces are p-paracompact spaces and the group G is compact.

The author is extremely grateful to the referee for his helpful remarks and

The reader is referred to the books by K. Borsuk [4] and by S. Mardešić and J. Segal [15] for general information about shape theory and to the book by G. Bredon [5] for introduction to compact transformation groups.

2. Basic notions and conventions concerning equivariant topology

Let G be a topological group. A topological space X is called a G-space if there is a continuous map $\theta: G \times X \to X$ of the direct product $G \times X$ into X, $\theta(g,x) = gx$, such that

1)
$$g(hx) = (gh)x;$$
 2) $ex = x,$

for all $g, h \in G$, $x \in X$; here e is the unity of G. Such a (continuous) map $\theta: G \times X \to X$ is called an (continuous) action of the group G on the topological space X. An evident example is the so called trivial action of G on X: gx = x, for all $g \in G$, $x \in X$. Another example is the action of the group G on itself, defined by $(g, x) \to gx$ for all $g \in G$, $x \in G$.

If X and Y are G-spaces, then so is $X \times Y$, where g(x,y) = (gx,gy), $g \in G$, $(x,y) \in X \times Y$.

A subset A of a G space X is called invariant provided $g \in G$, $a \in A$ implies $ga \in A$. It is evident, that an invariant subset of a G space is itself a G space. If A is an invariant subset of a G space X, then every neighborhood of A contains an open invariant neighborhood of A (see [17], Proposition 1.1.14).

Let X be any G-space and let H be a closed and normal subgroup of the group G. The set $Hx = \{hx; h \in H\}$ is called the H-orbit of the point $x \in X$. Clearly the H-orbits of any two points in X are either equal or disjoint, in other words X is partitioned by its H-orbits. We denote the set of all H-orbits of the G-space X by $X|_H$. The set $X|_H$ endowed with the quotient topology is called the H-orbit space of X. There is a continuous action of the group G on the space $X|_H$ defined by the formula $gHx = Hgx, g \in G, x \in X$. So, $X|_H$ is a G-space. In case H = G the G-orbit of the point $x \in X$ is called the orbit of the point x and the G-orbit space is called the orbit space of the G-space X.

We denote by X[H] the subspace of fixed points of H on X, or the H-fixed point subspace of the G-space X. Let us recall that $X[H] = \{x \in X; hx = x, \text{ for any } h \in H\}.$

The set $G_x = \{g \in G; g(x) = x\}$ is a closed subgroup of the group G, for every $x \in X$. G_x is called the stationary subgroup (or stabilizer) at the point x. The action of the group G on X (or the G-space X) is called free if the stationary subgroup G_x is trivial, for every $x \in X$. It is clear that $G_{gx} = gG_xg^{-1}$, i.e., the stationary subgroups at any two points of the same orbit are conjugate. The orbits Gx and Gy of points x and y, respectively, are said to have the same type if the stationary subgroups G_x and G_y are conjugate.

Let X, Y be G-spaces. A (continuous) map $f: X \to Y$ is called a G-map, or an equivariant map, if f(gx) = gf(x) for every $g \in G$, $x \in X$. Note that the identity map $i: X \to X$ is equivariant and the composition of equivariant maps is equivariant. Therefore, all G-spaces and equivariant maps form a category. Let us denote the category of all topological G-spaces and equivariant maps by Top_G , the category of all metrizable G-spaces and equivariant maps by M_G and the category of all p-paracompact G-spaces and equivariant maps by P_G .

Let Z be a G-space and let $Y \subseteq Z$ be an invariant subset. A G-retraction of Z to Y is a G-map $r: Z \to Y$ such that $r|_Y = 1_Y$.

Let K_G be class of G-spaces. A G-space Y is called a G-absolute neighborhood retract for the class K_G or a $G - ANR(K_G)$ (G-absolute retract for the class K_G or a $G - AR(K_G)$), provided $Y \in K_G$ and whenever Y is a closed invariant subset of a G-space $Z \in K_G$, then there exist an invariant neighborhood U of Y and a G-retraction $r: U \to Y$ (there exists a G-retraction $r: Z \to Y$).

A G-space Y is called a G-absolute neighborhood extensor for the class K_G or a $G-ANE(K_G)$ (G-absolute extensor for the class K_G or a $G-AE(K_G)$), provided for any G-space $X \in K_G$ and any closed invariant subset $A \subseteq X$, every equivariant map $f: A \to Y$ admits an equivariant extension $\tilde{f}: U \to Y$, where U is an invariant neighborhood of A in X ($\tilde{f}: X \to Y$).

3. Movability and equivariant movability

The important shape invariant, called movability, was originally introduced by K. Borsuk [2] for metric compacta. Mardešić and Segal [14] generalized the notion of movability to compacta using the ANR-system approach. Kozlowski and Segal in [11] gave a categorical description of this property which applied to arbitrary topological spaces.

Following Mardešić and Segal [14], let us define the notion of equivariant movability or G-movability:

DEFINITION 3.1. An inverse G-system $\underline{X} = \{X_{\alpha}, p_{\alpha\alpha'}, A\}$ where each X_{α} , $\alpha \in A$, is a G-space and every $p_{\alpha\alpha'}: X_{\alpha'} \to X_{\alpha}$, $\alpha \leqslant \alpha'$, is a G-homotopy class, is called equivariantly movable or G-movable if for every $\alpha \in A$, there exists an $\alpha' \in A$, $\alpha' \geqslant \alpha$ such that for all $\alpha'' \in A$, $\alpha'' \geqslant \alpha$ there exists a G-homotopy class $r^{\alpha'\alpha''}: X_{\alpha'} \to X_{\alpha''}$ such that

$$p_{\alpha\alpha''} \circ r^{\alpha'\alpha''} = p_{\alpha\alpha'}.$$

It is known (see [1], Theorem 2) that every G-space X admits a G-ANR-expansion in the sense of Mardešić (see [15], I, § 2.1), which is the same as saying that there is an inverse G-ANR-system (G-system consisting of G-ANR's) $\underline{X} = \{X_{\alpha}, p_{\alpha\alpha'}, A\}$ associated with X in the sense of Morita [16].

DEFINITION 3.2. A G-space X is called equivariantly movable or G-movable if there is an equivariantly movable inverse G - ANR-system $\underline{X} = \{X_{\alpha}, p_{\alpha\alpha'}, A\}$ associated with X.

Note that the last definition of equivariant movability coincides with the notion of ordinary movability if $G = \{e\}$ is the trivial group.

Let X be an equivariantly movable G-space. The evident question arises: does movability of the space X follows from its equivariant movability? The following, more general theorem gives a positive answer (Corollary 3.5) to the above question.

Theorem 3.3. Let H be a closed subgroup of a group G. Every G-movable G-space is H-movable.

To prove this theorem the next result is important.

THEOREM 3.4. Let H be a closed subgroup of a group G. Every $G - AR(P_G)$ $(G - ANR(P_G))$ -space is an $H - AR(P_H)(H - ANR(P_H))$ -space.

PROOF. According to a theorem of de Vries ([7], Theorm 4.4), it is sufficient to show that if X is a p-paracompact H-space, then the twisted product $G \times_H X$ is also p-paracompact. Indeed, since X is p-paracompact and G is compact, $G \times X$ is p-paracompact. Therefore, the twisted product $G \times_H X$ is p-paracompact.

PROOF OF THEOREM 3.3. Let X be any equivariantly movable G-space. With respect to the theorem of Smirnov ([18], Theorem 1.3), there is a closed and equivariant embedding of the G-space X to some $G - AR(P_G)$ -space Y. Let us consider all open G-invariant neighborhoods of type F_{σ} of the G-space X in Y. By a result of R. Palais ([17], Proposition 1.1.14), these neighborhoods form a cofinal family in the set of all open neighborhoods of X in Y, in particular, in the set of all open and H-invariant neighborhoods of the H-space X in the H-space Y, which, by Theorem 3.3 is an $H - AR(P_H)$ -space. Hence, from the G-movability of the above mentioned family follows

its H-movability, i.e. from the G-movability of the G-space X follows the H-movability of the H-space X.

From Theorem 3.3 we obtain the following corollary if we consider the trivial subgroup $H = \{e\}$ of the group G.

COROLLARY 3.5. Every equivariantly movable G-space X is movable.

The converse, in general, is not true, even if one takes for G the cyclic group Z_2 of order 2 (see Example 5.1).

4. Movability of the H-fixed point space

Theorem 4.1. Let H be a closed subgroup of a group G. If a G-space X is equivariantly movable, then the H-fixed point space X[H] is movable.

The proof requires the use of the following theorem.

THEOREM 4.2. Let H be a closed subgroup of a group G. Let X be a $G - AR(P_G)(G - ANR(P_G))$ - space. Then the H-fixed point space X[H] is an AR(P)(ANR(P))-space.

PROOF. Let X be a $G-AR(P_G)(G-ANR(P_G))$ -space. By Theorem 3.4, it is sufficient to prove the theorem in the case H=G. I.e., we must prove that X[G] is AR(P)-space. By a theorem of Smirnov ([18], Theorem 1.3), we can consider X as a closed G-subspace of a $G-AR(P_G)$ -space $C(G,V)\times\prod D_\lambda$ where V is a normed vector space and thus an AE(M)-space, C(G,V) is the space of continuous maps from G to V with the compact-open topology and with the action $(g'f)(g) = f(gg'), g, g' \in G, f \in C(G,V)$ of the group G and D_λ is a closed ball of a finite-dimensional Euclidean space E_λ with the orthogonal action of the group G.

First, let us prove that the set $(C(G,V) \times \prod D_{\lambda})[G]$ of all fixed points of the G-space $C(G,V) \times \prod D_{\lambda}$ is an AR(P)-space. The spaces C(G,V) and E_{λ} are normed spaces. Since the actions of the group G on C(G,V) and E_{λ} are linear, the sets C(G,V)[G] and $E_{\lambda}[G]$ will be closed convex sets of locally convex spaces C(G,V) and E_{λ} , respectively. Therefore, by a well-known theorem of Kuratowski and Dugundji [3], C(G,V) and E_{λ} are absolute retracts for metrizable spaces. By a theorem of Lisica [12], they are also absolute retracts for p-paracompact spaces. For a closed ball $D_{\lambda} \subset E_{\lambda}$ the last conclusion is true since the set $D_{\lambda}[G] = D_{\lambda} \cap E_{\lambda}[G]$ is closed and convex in E_{λ} .

Since the group G acts on the product $C(G, V) \times \prod D_{\lambda}$ coordinate-wise,

$$(C(G, V) \times \prod D_{\lambda})[G] = C(G, V)[G] \times \left(\prod D_{\lambda}\right)[G].$$

Hence, $(C(G, V) \times \prod D_{\lambda})[G]$ is an AR(P)-space, because it is a product of two AR(P)-spaces.

Now let us prove that X[G] is an AR(P)-space. Since X is a $G-AR(P_G)$ -space, it is a G-retract of the product $C(G,V)\times\prod D_{\lambda}$. Therefore, X[G] is a retract of the AR(P)-space $(C(G,V)\times\prod D_{\lambda})[G]$, hence, it is an AR(P)-space. The absolute neighborhood retract case is proved similarly.

PROOF OF THEOREM 4.1. Let X be a G-movable space. By Theorem 3.3, it is sufficient to prove the theorem in the case H=G. So, we must prove movability of the space X[G] of all G-fixed points. We consider the G-space X as a closed and G-invariant space of some $G-AR(P_G)$ -space Y ([18], Theorem 1.3). The family of all open, G-invariant F_{σ} -type neighborhoods U_{α} of the G-space X in Y, is cofinal in the set of all open neighborhoods of X in Y ([17], Proposition 1.1.14). It consists of $G-ANR(P_G)$ -spaces. The intersections $U_{\alpha} \cap Y[G] = U_{\alpha}[G]$ are ANR(P)-spaces (Theorem 4.2). They form a cofinal family of neighborhoods of the space X[G] in Y[G]. Indeed, for any neighborhood U of the set X[G] in Y[G] there is a neighborhood V of the set X[G] in Y such that $V \cap Y[G] = U$. Then the set $W = (Y \setminus Y[G]) \cup V$ is a neighborhood of the set X in Y, moreover, $W \cap Y[G] = U$. There is an α such that $U_{\alpha} \subset W$ and therefore $U_{\alpha}[G] \subset U$. So the family of neighborhoods $U_{\alpha}[G]$ is cofinal.

Since X is G-movable, for every U_{α} there is a neighborhood $U_{\alpha'} \subset U_{\alpha}$ such that, for any other neighborhood $U_{\alpha''} \subset U_{\alpha'}$, there exists a G-equivariant homotopy $F: U_{\alpha'} \times I \to U_{\alpha}$ such that F(y,0) = y and $F(y,1) \in U_{\alpha''}$, for any $y \in U_{\alpha'}$. It is not difficult to verify that the homotopy $F[G]: U_{\alpha'}[G] \times I \to U_{\alpha}[G]$, induced by F, satisfies the condition of movability of X[G].

5. Example of a movable, but not equivariantly movable space

EXAMPLE 5.1. We will use the idea of S. Mardešić [13]. Let us consider the unit circle $S = \{z \in C; |z| = 1\}$. Let us denote $B = [S \times \{1\}] \cup [\{1\} \times S]$. B is the wedge of two copies of the unit circle S with base point $\{1\}$. Let us define a continuous map $f: B \to B$ by the formulas:

$$f(z,1) = \begin{cases} (z^4, 1), & 0 \leqslant arg(z) \leqslant \frac{\pi}{2} \\ (1, z^4), & \frac{\pi}{2} \leqslant arg(z) \leqslant \pi \\ (z^{-4}, 1), & \pi \leqslant arg(z) \leqslant \frac{3\pi}{2} \\ (1, z^{-4}), & \frac{3\pi}{2} \leqslant arg(z) \leqslant 2\pi \end{cases}$$

$$f(1,t) = \begin{cases} (t^{-4}, 1), & 0 \leqslant arg(t) \leqslant \frac{\pi}{2} \\ (1, t^{-4}), & \frac{\pi}{2} \leqslant arg(t) \leqslant \pi \\ (t^{4}, 1), & \pi \leqslant arg(t) \leqslant \frac{3\pi}{2} \\ (1, t^{4}), & \frac{3\pi}{2} \leqslant arg(t) \leqslant 2\pi \end{cases}$$

П

for every z and t from S. Let us consider the ANR-sequences

$$B \stackrel{f}{\longleftarrow} B \stackrel{f}{\longleftarrow} B \stackrel{f}{\longleftarrow} \cdots$$

and

$$\Sigma B \stackrel{\Sigma f}{\longleftarrow} \Sigma B \stackrel{\Sigma f}{\longleftarrow} \Sigma B \stackrel{\Sigma f}{\longleftarrow} \cdots$$

where Σ is the operation of suspension. Let us denote

$$P = \lim\{B, f\}.$$

Then

$$\Sigma P = \underline{\lim} \{ \Sigma B, \Sigma f \}.$$

Let us define an action of the group $Z_2 = \{e, g\}$ on ΣB by the formulas

$$e[x, t] = [x, t];$$
 $g[x, t] = [x, -t].$

for every $[x,t] \in \Sigma B, -1 \leqslant t \leqslant 1$. It induces an action on ΣP .

Proposition 5.2. The space ΣP has trivial shape, but it is not Z_2 -movable.

PROOF. The triviality of shape of the space ΣP is proved by the method of Mardešić [13]. Let us prove that the space ΣP is not Z_2 -movable. Consider the set $\Sigma P[Z_2]$ of all fixed-points of Z_2 -space ΣP . It is obvious that $\Sigma P[Z_2] = P$. Hence, by Theorem 4.1, it is sufficient to prove the following proposition.

Proposition 5.3. The space P is not movable.

PROOF. Since the movability of an inverse system remains unchanged under the action of a functor, it is sufficient to prove non-movability of the inverse sequence of groups

(1)
$$\pi_1(B) \stackrel{f_*}{\longleftarrow} \pi_1(B) \stackrel{f_*}{\longleftarrow} \pi_1(B) \stackrel{f_*}{\longleftarrow} \cdots,$$

where $\pi_1(B)$ is the fundamental group of the space B and f_* is the homomorphism induced by the mapping $f: B \to B$.

It is known that for sequences of groups movability implies the following condition of Mittag-Leffler, abbreviated as ML ([15], p. 166, Corollary 4):

The inverse system $\{G_{\alpha}, p_{\alpha\alpha'}, A\}$ of the pro - GROUP category is said to be ML provided for every $\alpha \in A$, there exist $\alpha' \in A, \alpha' \geqslant \alpha$, such that $p_{\alpha\alpha'}(G_{\alpha'}) = p_{\alpha\alpha''}(G_{\alpha''})$, for any $\alpha'' \in A, \alpha'' \geqslant \alpha$.

Thus, it sufficient to prove that the sequence (1) does not satisfy condition ML. Let us observe that $\pi_1(B)$ is a free group with two generators a and b, and f_* is the homomorphism defined by the formulas

$$f_*(a) = aba^{-1}b^{-1}, f_*(b) = a^{-1}b^{-1}ab.$$

 f_* is a monomorphism, because $f_*(a) \neq f_*(b)$, but not an epimorphism, because, for example, $f_*(x) \neq a$, for all $x \in \pi_1(B)$. Hence, for any natural m and $n, Im f_*^m \subsetneq Im f_*^n$ only if m > n. It means that the inverse sequence (1) does not satisfy condition ML.

6. Movability of the orbit space

Theorem 6.1. Let X be a metrizable G-space. If X is G-movable then for any closed and normal subgroup H of the group G, the H-orbit space $X|_H$ is also G-movable.

PROOF. Without losing generality one may suppose that X is a closed G-invariant subset of some $G - AR(M_G)$ -space Y ([18], Theorem 1.1). $X|_H$ is a closed G-invariant subset of $Y|_H$ ([5], Theorem 3.1).

Let $\{X_{\alpha}, \alpha \in A\}$ be the family of all G-invariant neighborhoods of X in Y. Let us consider the family $\{X_{\alpha}|_{H}, \alpha \in A\}$, where each $X_{\alpha}|_{H} \in G-ANR(M_{G})$ and is a G-invariant neighborhood of $X|_{H}$ in $Y|_{H}$. Let us prove that the family $\{X_{\alpha}|_{H}, \alpha \in A\}$ is cofinal in the family of all neighborhoods of $X|_{H}$ in $Y|_{H}$. Let U be an arbitrary neighborhood of $X|_{H}$ in $Y|_{H}$. By a theorem of Palais ([17], Proposition 1.1.14), there exists a G-invariant neighborhood $V \supset X|_{H}$ laying in U. Let us denote $\tilde{V} = (pr)^{-1}(V)$, where $pr: Y \to Y|_{H}$ is the H-orbit projection. It is evident that \tilde{V} is a G-invariant neighborhood of the space X in Y and $V = \tilde{V}|_{H}$. So in any neighborhood of the space $X|_{H}$ in $Y|_{H}$, there is a neighborhood of type $X_{\alpha}|_{H}$, where X_{α} is a G-invariant neighborhood of X in Y.

Now let us prove the G-movability of the space $X|_H$. Let X be G-movable. It means that the inverse system $\{X_{\alpha}, i_{\alpha\alpha'}, A\}$ is G-movable. We must prove that the induced inverse system $\{X_{\alpha}|_H, i_{\alpha\alpha'}|_H, A\}$ is G-movable. Let $\alpha \in A$ be any index. By the G-movability of the inverse system $\{X_{\alpha}, i_{\alpha\alpha'}, A\}$, there is $\alpha' \in A, \alpha' > \alpha$, such that for any other index $\alpha'' \in A, \alpha'' > \alpha$, there exists a G-mapping $r^{\alpha'\alpha''}: X_{\alpha'} \to X_{\alpha''}$, which makes the following diagram G-homotopy commutative

Diagram 1.

It turns out that, for given $\alpha \in A$, the obtained index $\alpha' \in A, \alpha' > \alpha$, also satisfies the condition of G-movability of the inverse system

$$\{X_{\alpha}|_{H}, i_{\alpha\alpha'}|_{H}, A\}.$$

This is obvious, because the G-homotopy commutativity of Diagram 1 implies the G-homotopy commutativity of the following diagram

Diagram 2.

where $r^{\alpha'\alpha''}|_H: X_{\alpha'}|_H \to X_{\alpha''}|_H$ is induced by the mapping $r^{\alpha'\alpha''}$. So, the G-movability of the space $X|_H$ is proved.

COROLLARY 6.2. Let X be a metrizable G-space. If X is G-movable, then the orbit space $X|_G$ is movable.

PROOF. In the case H = G from the last theorem we obtain that the orbit space $X|_G$ with the trivial action of the group G is G-movable. Therefore, it will be movable by Corollary 3.5.

Corollary 6.2 in general is not invertible:

EXAMPLE 6.3. Let Σ be a solenoid. It is known ([4], Theorem 13.5) that Σ is a non-movable compact metrizable Abelian group. By Corollary 3.5, the solenoid Σ with the natural group action is not Σ -movable although the orbit space $\Sigma|_{\Sigma}$ as a one-point set is movable.

The converse of Corollary 6.2 is true if the group G is a Lie group and the action is free (see Theorem 7.2).

7. Equivariant movability of a free G-space

THEOREM 7.1. Let G be a compact Lie group and let Y be a metrizable $G - AR(M_G)$ -space. Suppose that a closed invariant subset X of Y has an invariant neighborhood whose orbits have the same type. If the orbit space $X|_G$ is movable, then X is equivariantly movable.

PROOF. The orbit space $X|_G$ is closed in $Y|_G$, which is a G - AR(M)space. Let U be an arbitrary invariant neighborhood of X in Y. By the
assumption of the theorem, it follows that there exists a cofinal family of
neighborhoods of X in Y, whose orbits have the same type. Therefore, one

may suppose that all orbits of the neighborhood U have the same type. The orbit set $U|_G$ will be a neighborhood of $X|_G$ in $Y|_G$. From the movability of $X|_G$ it follows that, for the neighborhood $U|_G$, there is a neighborhood \tilde{V} of the space $X|_G$ in $Y|_G$, which lies in the neighborhood $U|_G$ and contracts to any preassigned neighborhood of the space $X|_G$.

Let us denote $V=(pr)^{-1}(\tilde{V})$, where $pr:Y\to Y|_G$ is the orbit projection. It is evident that V is an invariant neighborhood of the space X lying in U. Let us prove that V contracts in U to any preassigned invariant neighborhood of X. Let W be any invariant neighborhood of X in Y. We must prove the existence of an equivariant homotopy $F:V\times I\to U$, which satisfies the condition

$$F(x,0) = x$$
, $F(x,1) \in W$,

for any $x \in V$. Since $W|_G$ is a neighborhood of the space $X|_G$ in $Y|_G$, there is a homotopy $\tilde{F}: V|_G \times I \to U|_G$ such that

(2)
$$F(\tilde{x},0) = \tilde{x}, \quad \tilde{F}(\tilde{x},1) \in W|_{G},$$

for any $\tilde{x} \in V|_G$. The homotopy $\tilde{F}: V|_G \times I \to U|_G$ preserves the G-orbit structure, because $V \subset U$ and all orbits of U have the same types (see Diagram 3).

Diagram 3.

By the covering homotopy theorem of Palais ([17], Theorem 2.4.1), there is an equivariant homotopy $F: V \times I \to U$, which covers the homotopy \tilde{F} and satisfies F(x,0) = i(x) = x. That is, the following diagram is commutative (Diagram 4).

Diagram 4.

 $F: V \times I \to U$ is the designed equivariant homotopy. It only remains to verify that $F(x,1) \in W$. But this immediately follows from (2) and the commutativity of Diagram 4.

THEOREM 7.2. Let G be a compact Lie group. A metrizable free G-space X is equivariantly movable if and only if the orbit space $X|_{G}$ is movable.

PROOF. The necessity in a more general case was proved in Corollary 6.2. Let us prove the sufficiency. Let the orbit space $X|_G$ be movable. One can consider the G-space X as a closed and invariant subset of some $G-AR(M_G)$ -space Y. Let $P\subset X$ be any orbit. From the existence of slices it follows that around P there is such an invariant neighborhood U(P) in Y that $typeQ\geqslant typeP$, for any orbit Q from U(P) ([5], Corollary 5.5). Since the action of the group G on X is free, typeQ=typeP=typeG, for any orbit Q lying in U(P). Let us denote $V=\cup\{U(P); P\in X|_G\}$. It is evident that V is an invariant neighborhood of the space X in Y and that all of its orbits have the same type. Then, by Theorem 7.1, X is equivariantly movable.

Example 6.3 shows that the assumption that G is a Lie group is essential in the above theorem. The Example 8.1 which follows shows that the condition of freeness of the action of the group G is also essential in the above theorem.

8. Example of a non-free not Z_2 -movable space with a movable orbit space

EXAMPLE 8.1. Let us consider the space $P = \varprojlim \{B, f\}$ constructed in Example 5.1. Let us define an action of the group $Z_2 = \{e, g\}$ on the space B by the formulas

(3)
$$e(z,1) = (z,1)$$
$$e(1,t) = (1,t)$$
$$g(z,1) = (1,z^{-1})$$
$$g(1,t) = (t^{-1},1),$$

for any z and t from S. B is a $Z_2 - ANR(M_{Z_2})$ space with the fixed-point $b_0 = (1, 1)$.

Proposition 8.2. The mapping $f: B \to B$, defined by formulas (3), is equivariant.

PROOF. It is necessary to prove the following two equalities:

(4)
$$f(g(z,1)) = g(f(z,1)) f(g(1,t)) = g(f(1,t)),$$

for any z and t from S. Let us prove the first one. Consider the following cases:

$$\begin{array}{lll} Case \ 1. & 0 \leqslant argz \leqslant \frac{\pi}{2} & \Leftrightarrow & \frac{3\pi}{2} \leqslant argz^{-1} \leqslant 2\pi. \\ & \text{Then } f(g(z,1)) = f(1,z^{-1}) = (1,z^{-4}) = g(z^4,1) = gf(z,1). \\ & Case \ 2. & \frac{\pi}{2} \leqslant argz \leqslant \pi & \Leftrightarrow & \pi \leqslant argz^{-1} \leqslant \frac{3\pi}{2}. \\ & \text{Then } f(g(z,1)) = f(1,z^{-1}) = (z^{-4},1) = g(1,z^4) = gf(z,1). \\ & Case \ 3. & \pi \leqslant argz \leqslant \frac{3\pi}{2} & \Leftrightarrow & \frac{\pi}{2} \leqslant argz^{-1} \leqslant \pi. \\ & \text{Then } f(g(z,1)) = f(1,z^{-1}) = (1,z^4) = g(z^{-4},1) = gf(z,1). \\ & Case \ 4. & \frac{3\pi}{2} \leqslant argz \leqslant 2\pi & \Leftrightarrow & 0 \leqslant argz^{-1} \leqslant \frac{\pi}{2}. \\ & \text{Then } f(g(z,1)) = f(1,z^{-1}) = (z^4,1) = g(1,z^{-4}) = gf(z,1). \end{array}$$

The second equality of (4) is proved in a similar way.

PROPOSITION 8.3. P is a connected, compact, metrizable and equivariantly non-movable Z_2 -space which is free at all points except at the only fixed point $(b_0, b_0, ...)$ and $sh(P|_{Z_2})=0$.

П

PROOF. P is a Z_2 -space because it is an inverse limit of $Z_2 - ANR(M_{Z_2})$ -spaces B and f is an equivariant mapping. The uniqueness of the fixed point is evident. The connectedness, compactness and metrizability follows from the properties of inverse systems ([8], Theorem 6.1.20, Corollary 4.2.5). The non Z_2 -movability follows from Proposition 5.3 and Corollary 3.5.

Let us prove that $sh(P|_{Z_2})=0$ and thus the orbit space $P|_{Z_2}$ is movable. Let $X=\varprojlim\{B|_{Z_2},f|_{Z_2}\}$. X is equimorphic to the orbit space $P|_{Z_2}$. Indeed, let us define a mapping $h:X\to P|_{Z_2}$ in the following way:

$$h(([x_1], [x_2], ...)) = [(x_1, x_2, ...)]$$

where $([x_1], [x_2], ...) \in X$, and $x_1, x_2, ...$ are selected from the classes $[x_1], [x_2], ...$ in such way that $(x_1, x_2, ...) \in P$ or what is the same $f(x_{n+1}) = x_n$, for any n = 1, 2, ... Let us prove that the mapping h is defined correctly. Let $\tilde{x}_1, \tilde{x}_2, ...$ be some other representatives of the classes $[x_1], [x_2], ...$, respectively, satisfying the conditions $f(\tilde{x}_{n+1}) = \tilde{x}_n$ for any $n \in N$. Since each class $[x_n]$ has two representatives: x_n and gx_n , where $g \in Z_2 = \{e, g\}$, either $\tilde{x}_n = gx_n$ or $\tilde{x}_n = x_n$. But it is obvious that, if for some $n_0 \in N$, $\tilde{x}_{n_0} = gx_{n_0}$, then, for any $n \in N$, $\tilde{x}_n = gx_n$, because f is equivariant. Thus, in the case of another choice of the representatives of the classes $[x_1], [x_2], ...$, we have

$$h(([x_1], [x_2], ...)) = [(\tilde{x}_1, \tilde{x}_2, ...)] = [(gx_1, gx_2, ...)] =$$
$$= [g(x_1, x_2, ...)] = [(x_1, x_2, ...)].$$

However, h is a continuous bijection and thus, it is a homeomorphism ([8], Theorem 3.1.13).

Consequently,

$$P|_{Z_2}=\varprojlim\{B|_{Z_2},f|_{Z_2}\},$$

where $B|_{Z_2} \cong S$ and the mapping $\bar{f} = f|_{Z_2} : S \to S$ is defined by the formulas:

(5)
$$\bar{f}(z) = \begin{cases} z^4, & 0 \leqslant arg(z) \leqslant \frac{\pi}{2} \\ z^{-4}, & \frac{\pi}{2} \leqslant arg(z) \leqslant \frac{3\pi}{2} \\ z^4, & \frac{3\pi}{2} \leqslant arg(z) \leqslant 2\pi \end{cases}$$

for any $z \in S$. Thus, we conclude that the orbit space $P|_{Z_2}$ is a limit of the inverse sequence

$$S \stackrel{\bar{f}}{\longleftarrow} S \stackrel{\bar{f}}{\longleftarrow} S \stackrel{\bar{f}}{\longleftarrow} \cdots$$

By formula (5), the mapping \bar{f} induces a homomorphism $\bar{f}_*: \pi_1(S) \to \pi_1(S)$, which acts as follows:

$$\bar{f}_*(a) = aa^{-1}a^{-1}a,$$

where $a \in \pi_1(S) \cong Z$ is the generator of the group Z. From the above formula, it follows that \bar{f}_* is the null-homomorphism and thus, $deg\bar{f}=0$. For any $k=1,2,\cdots,\bar{f}_*^k$ is also a null-homomorphism and thus, $deg\bar{f}^k=0$. Therefore, by the classical Hopf theorem ([10], Section 2.8, Theorem H^n) all $\bar{f}^k:S\to S$ are null-homotopic and $sh(P|_{Z_2})=0$.

References

- [1] S.A. Antonian and S. Mardešić, Equivariant shape, Fund. Math. 127 (1987), 213-224.
- [2] K. Borsuk, On movable compacta, Fund. Math. 66 (1969), 137-146.
- [3] K. Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44 Państwowe Wydawnictwo Naukowe, Warszawa, 1967.
- [4] K. Borsuk, Theory of shape, Lecture Notes Series 28 Matematisk Institut, Aarhus Universitet, Aarhus, 1971.
- [5] G.E. Bredon, Introduction to compact transformation groups, New York, 1972.
- [6] Z. Čerin, Equivariant shape theory, Math. Proc. Camb. Phil. Soc. 117 (1995), 303-320.
- [7] J. De Vries, Topics in the theory of topological transformation groups, Topological structures II, Mathematical centre tracts 116 (1979), 291-304.
- [8] R. Engelking, General Topology, Polish Scientific Publishers, Warszawa, 1977.
- [9] P.S. Gevorgyan, G-movability of G-spaces, Uspehi Mat. Nauk 43 (1988), 177-178 (in Russian).
- [10] Hu Sze-Tsen, Homotopy Theory, Academic Press, New York, 1959.
- [11] G. Kozlowski and J. Segal, Movability and shape-connectivity, Fund. Math. 93 (1976), 145-154.
- [12] Yu.T. Lisica, Extension of continuous maps, Sibirski Matem. Ž. 14 (1973), 128-139 (in Russian).
- [13] S. Mardešić, A non-movable compactum with movable suspension, Bull.Acad. Polon. Sci. 19 (1971), 1101-1103.
- [14] S. Mardešić and J. Segal, Movable compacta and ANR-systems, Bull.Acad. Polon. Sci. 18 (1970), 649-654.
- [15] S. Mardešić and J. Segal, Shape theory The inverse system approach, North-Holland, Amsterdam, 1982.
- [16] K. Morita, On shapes of topological spaces, Fund. Math. 86 (1975), 251-259.
- [17] R.S. Palais, The classification of G-spaces, Mem. AMS 36 (1960).

[18] Yu. M. Smirnov, Shape theory for G-pairs,, Uspehi matem. nauk ${f 40}$ (1985), 151-165 (in Russian).

Department of Higher Geometry and Topology

Moscow State University

Russia

E-mail: gevorgyan@mech.math.msu.su, pgev@angelfire.com

Received: 31.08.2001

Revised: 22.01.2003. & 26.05.2003