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INTRODUCTION 

The term “mycotoxin” is usually reserved for the 
secondary metabolites produced by fungi that read-
ily colonize crops. The sphingosine-like fumonisins are 
produced by several species of Fusarium molds, such 
as Fusarium verticillioides. The most commonly con-
taminated crop is maize (Zea mays). Fumonisins are 
common mycotoxins in maize, although these toxins 
can occur in a few other crops as well (Placinta et al., 
1999). The primary health concerns associated with 
fumonisins are carcinogenic properties and acute toxic 
effects (Voss et al., 2007). The disruption of sphingolipid 
metabolism by inhibition of ceramide synthase has been 
proposed to be responsible for the carcinogenicity and 
toxicity (Wang et al, 1991). Four groups of fumonisins 
(FA, FB, FC and FP) were classified based on different 
structure of the carbon backbone and the location of the 
of nitrogen functional group (Musser and Plattner, 1997). 
Fumonisin (FB1) is the most common and economically 
important form, followed by B2 and B3, where the index 
numbers refer to the different location of the hydroxyl 
groups on the carbon chain. Therefore, the metabolic 
investigations are focused on FB1 in vivo (Fodor et al., 
2008) and in vitro (Cirlini et al. 2015; Falavigna et al. 
2012). 

Mycotoxins undetectable by conventional, extrac-
tion-based analytical methods are termed as masked or 
hidden mycotoxins (Berthiller et al., 2013). Extractable 
mycotoxins can be easily detected  but bound and/or 
hidden mycotoxins cannot be directly analysed. They 
have to be liberated from the matrix by chemical or enzy-
matic pre-treatment prior to chemical analysis. Dall’Asta 
et al. (2010) reported that with an in vitro digestion 
model method - after an enzymatic pre-treatment -, 
significantly more (30-40%) fumonisin was detected as 
compared to the measured moiety with conventional 
extraction method. In case of naturally contaminated 
(field derived) crop samples the hidden proportion of 
fumonisin is identical (35.6±22.3%, Dall’ Asta et al., 
2010). In case of inoculated crop cultures produced at 
laboratory-scale this value is 38.6±18.5% (Szabó-Fodor 
et al., 2015). Chemically modified mycotoxins are cur-
rently the largest group of modified mycotoxins and can 
be classified as “thermally formed” and “non-thermally 
formed” (Rychlik et al., 2014). Thermal degradation 
products have been described for several mycotoxins. 
A prominent example is fumonisin FB1 which can react 
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in a Maillard-type reaction with reducing sugars leading 
to N-(1-deoxy-D-fructos- 1-yl) fumonisin B1 (NDF). The 
formation of hydrolyzed fumonisins (HFB1), on one hand, 
are biologically modified and formed by the intestinal 

microbiota (Fodor et al., 2008) and, on the other, are 
formed under alkaline conditions during food processing 
(Humpf and Voss, 2004). 
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Figure 1. Structures of mentioned fumonisins 
 
FB1 is an inhibitor of sphinganine N-acyltransferase and increases the ratio of sphinganine/ 
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best to our knowledge, no additional computation study was made to clarify the type of connection 
between sphinganine N-acyltransferase and fumonisin’s monogastic metabolites.Density Functional 
Theory (DFT) calculation is an efficient method to determine the hydrophilic and hydrophobic site of 
molecules and it provides feasible input structures for the profound enzyme-substrate docking studies, 
in order to support the toxicological investigations.  
From structural point of view, fumonisins provide a special nature: the long hydrophobic carbon chain 
bears electronegative (hydroxyl, amino- and carboxyl) functional groups. Due to free rotation around 
the carbon chain’s single bonds, there could be several conformations – with different spatial location 
of functional groups –, beingconvenient for the above mentioned enzymes as “key”, according to the 
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Several toxin molecules were investigated by theoretical DFT studies (e.g. Song et al., 2011; Rahmani 
brothers, 2014) including also mycotoxins(e.g. Türker and Gümüş, 2009). The first step of these 
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Development, Inc. (ACD/Labs-ACD/3D) as .mol files and then converted to GaussView 3.09. The 
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Figure 1. Structures of mentioned fumonisins

FB1 is an inhibitor of sphinganine N-acyltransferase 
and increases the ratio of sphinganine/ sphingosine (Sa/
So). Thus, elevation in the Sa/So ratio in  different tis-
sues (e.g. serum, urine, liver, kidney)  is the  exclusive 
biomarker of fumonisin exposure in exposed animals or 
human. However, best to our knowledge, no additional 
computation study was made to clarify the type of con-
nection between sphinganine N-acyltransferase and 
fumonisin’s monogastic metabolites. Density Functional 
Theory (DFT) calculation is an efficient method to deter-
mine the hydrophilic and hydrophobic site of molecules 
and it provides feasible input structures for the profound 
enzyme-substrate docking studies, in order to support 
the toxicological investigations. 

From structural point of view, fumonisins provide 
a special nature: the long hydrophobic carbon chain 
bears electronegative (hydroxyl, amino- and carboxyl) 
functional groups. Due to free rotation around the carbon 
chain’s single bonds, there could be several confor-
mations – with different spatial location of functional 
groups –, being convenient for the above mentioned 
enzymes as “key”, according to the lock and key enzyme 
model. 

Several toxin molecules were investigated by 
theoretical DFT studies (e.g. Song et al., 2011; Rahmani 
brothers, 2014) including also mycotoxins (e.g. Türker 
and Gümüş, 2009). The first step of these compution-
al studies is always the structure optimization followed 
by enzyme docking studies (e.g. Kumar and Garg, 2014). 
Docking studies needs huge computing power, usually 
executed in a computer cluster,  which was not avail-
able in this case. The aim of this work was to highlight 
the lack amidst fumonisin metabolites and computa-

tional chemistry, as well as to provide some preliminary 
results for further, enzyme docking studies.

MATERIAL AND METHODS 

All calculations were performed by Gaussian 
03W. The structures were built in Advanced Chemistry 
Development, Inc. (ACD/Labs-ACD/3D) as .mol files 
and then converted to GaussView 3.09. The geometry 
of fumonisin metabolites were first pre-optimized with 
semi-empirical PM3 method and these structures were 
re-optimized in terms of DFT Gaussian 03 calcula-
tions for structural parameters using B3LYP (Becke’s 
three-parameter functional with exact HF exchange 
and Lee-Yang-Parr exchange-correlation)/6-311G basis 
set. The FMO analysis (HOMO - highest occupied 
molecular orbital, LUMO - lowest unoccupied molecular 
orbital), are acronyms for and, involving hybridizations 
of selected bonds are also calculated at B3LYP methods 
and 6-311G level of the theory. Although most of all 
biologically relevant DFT studies set water as model 
solvent to investigate the solvation effect, in this case 
solvent interactions were neglected because of the long 
computation time; therefore all model calculations were 
executed in vacuum. GaussView 3.09’s cube generator 
was used to calculate and visualize the electrostatic 
potential maps from the DFT results.

RESULTS AND DISCUSSION 

Although the calculations are performed in vacuum 
– which is obviously not the medium of a living cell –, 
some ascertainment should be noted. The optimized 
structure of FB1 is more spheroidal than expected which 
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is be explained with the zwitterion-like force between 
the Lewis base amine and acidic carboxyl group. It is in 
agreement with the more linear structure of NDF, where 
amine form N-glycosidic bond which is unable to show 
the above mentioned intermolecular interaction. HFB1 
became also a semicircle instead of a line, but with a 
smaller curve than FB1, representing the ground state 
torsional angle between bonds (Figure 2.). Computed 
energy gap values (Δε) are shown in Table 1. The results 
are in agreement with the awaited stability (the first and 
second hydrolyzation step of NDF): HFB1>FB1>NDF.

Table 1.  B3LYP/6-311G calculated LUMO, HOMO and 
Δε (energies, are in eV) (Δε = εLUMO − εHOMO)

Energy – (eV) FB1 HFB1 NDF

LUMO -4.08 -2.48 -5.01

HOMO -9.82 -9.88 -8.98

Δε -5.74 -7.40 -3.97
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Figure 2. Optimized geometry of the investigated fumonisin molecules at 37°C in vacuo – tube model

CONCLUSION 

The structures of FB1, NDF and HFB1 have been 
optimized by the Gaussian 03W at B3LYP/6-311G level. 
With the help of the results – and within the frame-
work of the lock and key model –, researchers can 
better picture how the active site of the sphinganine 
N-acyltransferase approaches and joins the investigated 
fumonisin metabolites inhibiting the function of the 
enzyme in question. 

By all means, these calculations should be han-
dled as preliminary results, since solvation effects 
haven’t been taken into consideration. Moreover, pH 
has momentous influence on the structure, especially 
in the case of FB1. It should be calculated at isoelectric 
point as a zwitterion, with -NH3

+ and -COO– functional 
groups. Due to the limited computational sources, we 
have to decide in the future to use smaller basis set 
instead of B3LYP/6311G and recomputing with solvent 
effect or to use a computer cluster to assess exact 
calculations.
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