ERYTHROCYTOSIS IN A HEMODIALYSIS PATIENT TREATED WITH IRON SUCROSE

Nikolina Bašiæ-Jukiæ, Bruna Brunetta, Martina Blažev, Iva Blajiæ, Nikolina Dumančiæ, Petar Kes

Department of Dialysis, Zagreb University Hospital Center, Zagreb, Croatia

SUMMARY – A 59-year-old Caucasian male started intermittent hemodialysis in March 1995 for the treatment of end-stage renal disease of unknown etiology. In December 2002, he started receiving parenteral iron sucrose, 100 mg every two weeks, for iron deficiency. One month later he experienced severe pruritus. Blood analysis revealed erythrocytosis. Iron therapy was discontinued immediately, and four venepunctures were performed to avoid thrombosis of AV fistula. Malignant disease was excluded. It was decided to apply an angiotensin convertase enzyme inhibitor (ACEi), ramipril, in a dose of 2.5 mg/day. However, the patient developed severe cough as a side effect of ramipril and was switched to an angiotensin receptor type II antagonist (AAR), losartan, in a dose of 25 mg/day. While the patient was prone to hypotension during the dialysis sessions, losartan was administered every evening at bedtime. One month after the introduction of AAR, a stable hemoglobin level was achieved. On control MSCT six months later, there was no sign of malignant disease. Oral ACEi and AAR are appropriate treatment in the control of erythrocytosis in dialysis patients.

Key words: hemodialysis, erythrocytosis, losartan, ramipril

Introduction

Anemia is one of the cardinal features of end-stage renal disease (ESRD). It is considered to be the consequence of structural changes of the failing kidney with interstitial fibrosis and destruction of erythropoietin (EPO) producing cells[1]. However, recent observations have shown that a failing kidney may retain the ability to produce EPO. Erythropoietin concentration is within the normal range in many of dialysis patients, although low for the level of hemoglobin[2,3]. Anemia worsens after bilateral nephrectomy[4,5]. Acute hypoxic or hemorrhagic stress causes an increase in serum EPO concentration[6,7]. Finally, EPO causing erythrocytosis in patients with kidney transplant is mostly derived from native kidneys[8,9].

Erythrocytosis in hemodialysis patients is rare. We describe a case of a man with ESRD treated with hemodi-
Table 1. Laboratory values before the administration of iron-sucrose, two months after the introduction of iron when severe erythrocytosis was present, and the last control measurements during the treatment with losartan; nd—not done.

<table>
<thead>
<tr>
<th></th>
<th>December 2002</th>
<th>February 2003</th>
<th>July 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (x10 12/l)</td>
<td>4.36</td>
<td>6.02</td>
<td>3.74</td>
</tr>
<tr>
<td>Hb (g/l)</td>
<td>123</td>
<td>192</td>
<td>124</td>
</tr>
<tr>
<td>Htc (l/l)</td>
<td>0.398</td>
<td>0.560</td>
<td>0.362</td>
</tr>
<tr>
<td>Rtc (/1000 E)</td>
<td>nd</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>Epo (IU/l)</td>
<td>nd</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Fe (mmol/l)</td>
<td>5</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Ferritin (ng/ml)</td>
<td>1.04</td>
<td>320</td>
<td>75.21</td>
</tr>
</tbody>
</table>

Discussion

This report documents development of severe erythrocytosis secondary to intravenous iron therapy in the patient with ESRD treated with intermittent hemodialysis. Four urgent venepunctures were necessary to maintain hemoglobin concentration below 170 g/L, to avoid thrombosis of AV fistula. Stable hemoglobin concentration of 140 g/l was achieved one month after the introduction of AAR.

There are few reports of erythrocytosis in patients treated with dialysis. Erythrocytosis has been reported in several patients treated with continuous ambulatory peritoneal dialysis, with volume depletion and iron therapy suggested as the possible cause for the development of erythrocytosis in this group of patients. Erythrocytosis may be found in almost 20% of patients after kidney transplantation. It can be controlled with ACEI, AAR, or theophylline derivatives. The mechanisms associated with an increased post-transplant erythropoietin production, apart from the acute and chronic graft rejection, or malignant diseases, include diabetes, amyloidosis, renal artery stenosis, hepatic erythropoietin production, androgens, and hypoxia. The same predisposing conditions may play a role in the development of erythrocytosis in patients treated with dialysis, including the polycystic kidney disease as the most common cause.

Some novel hypotheses propose abnormalities in insulin-like growth factor (IGF-I) and IGF-I receptor production as a cause of erythrocytosis after renal transplantation.

Erythrocytosis is rare in hemodialysis patients. However, it is well known that some of dialysis patients do not need erythropoietin therapy to maintain appropriate erythropoiesis. Our daily practice shows the patients who do not need erythropoietin therapy for the treatment of anemia to be mostly overweight, or at least to have good nutritional status. The question is: which factor might be responsible for substituting for EPO in dialysis patients? Leptin is...
a small peptide hormone, mainly produced in adipose tissue, thus reflecting the amount of body fat. Together with its receptor B219/OB it constitutes a novel hematopoietic pathway. It is increased in patients with ESRD due to either increased synthesis or reduced clearance. An increased blood concentration of leptin may be responsible for the increased hemoglobin concentration in some of dialysis patients.

The most probable cause of erythrocytosis in our patient was the treatment with intravenous iron sucrose. With the severe iron depletion, there was no substrate for the production of erythrocytes, and after the introduction of iron sucrose, red blood cells started to proliferate as seen from the increased reticulocyte count in the peripheral blood smear. The normal erythropoietin concentration indicated that epithelial cells of the kidney cysts produced erythropoietin, and once there was enough substrate for cell production (iron administration), erythrocytosis developed. It is also possible that iron may induce expression of some factors that are capable of inducing erythropoiesis. The possible candidates include insulin-like growth factor I, leptin, or angiotensin II. Unfortunately, we had no possibility to investigate their expression.

Oral ACEi and AAR are appropriate treatment for the control of erythrocytosis in dialysis patients. Monitoring of serum potassium and good patient compliance are necessary because these medications may cause hyperkalemia. Iron is an invaluable medication in the treatment of renal anemia. However, caution is necessary when administering intravenous iron in patients with secondary cysts, as they can produce erythropoietin and induce erythrocytosis, which will increase the risk of thrombosis of the vascular access or small to medium blood vessels. Special attention is necessary when prescribing iron in patients with diabetes, amyloidosis, those on androgen therapy, and in patients suffering from hypoxia, as these conditions were found to be associated with an increased risk for the development of erythrocytosis.

Investigations in patients with kidney failure who retain the ability of normal hematopoiesis may improve the understanding of erythrocyte production, ultimately leading to the improvement in the treatment of renal anemia.

References


Sažetak

ERITROCITOZA U BOLESNIKA NA HEMODIJALIZI LIJEČENOG ŽELJEZNOM SUKROZOM

N. Bašić-Jukić, B. Brunetta, M. Blažević, I. Blažić, N. Dumančić i P. Kes


Ključne riječi: hemodializa, eritrocitoza, losartan, ramipril (molim ključne riječi kao i u drugim člancima)