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Sectrix Curves on the Sphere

Sectrix Curves on the Sphere

ABSTRACT

In this paper we introduce a class of curves derived from
a geometrical construction. These planar curves are the
generalization of the less-known sectrix of Ceva. We also
present three variations of the sectrix curves on the sphere
with using the geometrical construction on the sphere,
with the stereographic projection and with a so-called
“rolled” transformation.
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Sektrise na sferi

SAŽETAK

U ovom članku uvodimo klasu krivulja izvedenih geometrij-
skom konstrukcijom. Takve ravninske krivulje su generali-
zacija manje poznatih Cevinih sektrisa. Takod-er, prikazu-
jemo tri varijacije sektrisa na sferi, koristeći geometrijsku
konstrukciju na sferi, stereografsku projekciju i takozvano
“valjano” preslikavanje.

Ključne riječi: sektrisa, folium, Chebyshevjev polinom,
krivulje na sferi

1 Sectrix on the plane

The Sectrix of Ceva is a less-known planar curve ([7,
p. 314-315]), that is defined with the polar equation

ρ = a+2a
sinkϕcos(k+1)ϕ

sinϕ
, a > 0, k ∈N, ϕ ∈ [0,2π].

(1)

Figure 1 shows its shape where a = 1 and k = 2. It has two
perpendicular axes of symmetry. In this article we use this
curve in case a = 1.
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Figure 1: Sectrix of Ceva (k = 2).

If k = 1 then we get the so-called Ceva Cycloid (Figure
2). It was devised by Ceva, who termed it the cycloidum
anomalarum ([2, p. 29], [8]). Its polar equation is

ρ = 1+2cos2ϕ, ϕ ∈ [0,2π]. (2)
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Figure 2: Ceva Cycloid (k = 1 or n = 2k+1 = 3).

In [3] a geometrical construction was defined from which
a generalization of sectrix of Ceva comes. Let e be a line
given by the origin O and angle α between axis x+ and e,
as the angle of polar coordinates of e (Figure 3). Let the
point A0 coincide with O. Let the point A1 be given on e
such that the distance between the points O and A1 is 1. Let
the point A2 be on axis x such that the distance of A1 and
A2 is equal also to 1 and A2 6= O if it is possible. Then let
the new point A3 be on the line e again such that A2A3 = 1
and A3 6=A1 if it is possible. Recursively, we can define the
point Ai (i≥ 2) on the line e or on axis x if i is odd or even,
respectively, where Ai−1Ai = 1 and Ai 6= Ai−2 if it is possi-
ble. For all α the point Ai exists. Figure 3 shows the first
six points. If α is small enough then Ai is between points
O and Ai+2. Let angle OAi+1Ai be αi, then αi = iα can be
proved easily. If A1 is on the axis x we obtain a similar ge-
ometric construction (Figure 4). These constructions gave
a new proof for some trigonometric connections [5].
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The parametric equation system of the orbits of the points
in [3] is determined not only when the point A1 is on line e,
but also when it is on axis x. In case of vertices An (n≥ 1)
the parametric equation system of the curves is

xn(α) = cosα Un−1(cosα)

yn(α) = sinα Un−1(cosα),
(3)

and the polar equation of the curves when α ∈ [0,2π] is

ρn(α) = Un−1(cosα), (4)

where Un−1(x) is the Chebyshev polynomial of the second
kind. (Some orbits can be seen on Figure 3 and 4.) The
recursive definition of the Chebyshev polynomials of the
second kind U`(x) is

U0(x)= 1, U1(x)= 2x, U`+1(x)= 2xU`(x)−U`−1(x), `≥ 1.
(5)

When |x| ≤ 1 the substitution x = cosϕ gives the expres-
sions sin`ϕ = sinϕ U`−1(cosϕ) [6].

A
6

A
4

O

x

y

e1

1 3 5A
2

A
3

A
5

2α
2α

αα 3α 3α

4α
4α

5α 5α

A
1

Figure 3: Generalized sectrix of Ceva in case n = 5.
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Figure 4: Generalized sectrix of Ceva in case n = 6.

Figure 5: Folium – curves in case n = 4 and n =−4.

Lemma 1 If n = 2k + 1 the curves defined by equations
(4) and (1) for a = 1 are the same. (Compare the Figures
1 and 3.)

Proof. Since

sin(2k+1)α = sin(k+ k+1)α
= sinkαcos(k+1)α+ coskαsin(k+1)α
= sinkαcos(k+1)α

+coskα(sinkαcosα+ coskαsinα)

= sinkαcos(k+1)α
+sinkαcoskαcosα+ cos2 kαsinα

= sinkαcos(k+1)α
+sinkα(cos(k+1)α+ sinαsinkα)

+cos2 kαsinα

= 2sinkαcos(k+1)α+ sin2 kαsinα

+cos2 kαsinα

= 2sinkαcos(k+1)α+ sinα,

if ϕ = α then we have

U2k(cosα) =
sin(2k+1)α

sinα
=

2sinkαcos(k+1)α+ sinα

sinα

= 1+2
sinkαcos(k+1)α

sinα
.

�
The Cartesian equation of curves (without the point in the
origin) defined with (3) or (4) is

x2 + y2 = U2
n−1

√ x2

x2 + y2

 , (6)

where x2 + y2 6= 0. We extend the equation (6) to negative
values n. The definition of the Chebyshev-polynomials for
negative indexes with definition (5) is

U`−1(x) = 2xU`(x)−U`+1(x), ` < 1. (7)

Now, U−1(x) = 0 and Um(x) =−U−m−2(x), (m≤−2) and
x2 + y2 6= 0 implies n 6= 0. If n = 2k+1 then equation (6)
gives the sectrix of Ceva. Otherwise, if n = 2k we get the
union of curves in case n and −n (see Figure 5 and 6).

Figure 6: Union of curves in case n = 4 and n =−4.

Moreover, the polar equation of folium curve is

ρ = cosϕ
(
4asin2

ϕ−b
)
, ϕ ∈ [0,2π], (8)

and the curve defined by equations (4) is the folium
curve if n = −4 and a = 2, b = 4, as U−5(cosα) =
−U3(cosα) = −8cos3 α + 4cosα = −4cosα(2cos2 α−
1) = cosα(8sin2

α−4) (see Figure 5).
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Here are some Cartesian equations from (6):

• |n|= 1: x2 + y2 = 1 (circle)

• |n|= 2: (x2 + y2)2 = 4x2 (two circles)

• |n|= 3: (x2 + y2)3 = (3x2− y2)2

(Ceva cycloid, Figure 2)

• |n|= 4: (x2 + y2)4 = 16x4(x2− y2)2

(union of foliums, Figure 6)

• |n|= 5: (x2 + y2)5 = (5x4−10x2y2 + y4)2

(sectrix of Ceva, Figure 1).

The two biggest loops are very similar to the loops of the
lemniscates. In Figure 7 we can see that the angles between
any two lines mi (i = 1, ...,2n) are the multiples of π/(2n),
where mi is a tangent line of the curve in the origin or a
line goes through the origin and one of the extrema of the
curve (x = n or y = ±1). For some more details, for more
figures and for a generalization see [3, 4]. These curves
can also be considered as the generalizations of the well-
known rose curves (see in [1]).
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Figure 7: Curve with some properties in case n = 5.

1.1 Sectrix on the sphere

In this subsection we determine the orbit of the point
An (n ≥ 1) with similar conditions as in Section 1 on a
sphere. We consider a sphere with radius 1 with equation
x2+y2+z2 = 1. Let the axes ξ and ψ of the coordinate sys-
tem on it, with origin K(1,0,0), be main circles according
to Figure 8.
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Figure 8: Construction on the sphere.

Let e also be a main circle through point K and let the rota-
tion angle between the axis ξ and the “line” e be α, where
0 ≤ α ≤ 2π. Moreover, let the distance between two con-
secutive points be d, where 0 < d < π/2.

Figure 9 demonstrates the construction in a plane with
coordinate axes ξ and ψ. (Compare Figures 8 and 9.)
Moreover, Figure 9 shows an odd case when A1 lies on
e and n = 5. Let αi (i ≥ 1) be the angles AiAi−1Ai+1
and Ai−1Ai+1Ai and let 2βi be the angle Ai−1AiAi+1. (If
αi < π/2 then the point Ai (i≥ 2) is further from the origin
then Ai−2.)
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Figure 9: Construction in the plane with coordinate axes ξ

and ψ.

Let the orthogonal projection of Ai to ξ or e in case if i is
odd or even, respectively, be A′i. We denote by bi and ai the
spherical segments Ai−1A′i = Ai+1A′i and AiA′i, respectively.
Now we determine the angles αi recursively.

Lemma 2 If i≥ 2 then

αi = π−2βi−1−αi−2,

where α0 = 0, α1 = α and βi−1 = arccot(cosd tanαi−1).

Proof: From the triangle A0A1A2 we obtain at point A1 that
α2 = π−2β1 (see Figure 9). We suppose the lemma holds
for any j from 2 up to i−1. From the triangle Ai−2Ai−1Ai
(i≥ 3) we obtain at point Ai−1 that αi−2 +αi = π−2βi−1
and by the use of the spherical trigonometric identity

cotαi−1 cotβi−1 = cosd

in the right angled triangle Ai−2Ai−1A′i−1 we get the
lemma. �

From the triangle Ai−1A′iAi using the spherical trigonome-
try the next lemma holds.

Lemma 3

sinai = sind · sinαi,

tanbi = tand · cosαi.

Theorem 1 follows from the summation of the lemmas.
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Theorem 1 The equation system of the sectrix on the
sphere is

xn(α) = cosψn(α)cosξn(α)

yn(α) = cosψn(α)sinξn(α)

zn(α) = sinψn(α),

where

ξn(α) =

{
2(b1 +b3 + · · ·+bn−2)+bn if n = 2k+1,
1+2(b2 +b4 + · · ·+bn−2)+bn if n = 2k,

ψn(α) = an.

We mention that from the triangle OA′nAn the equation

sinξn(α) = cotα · tanψn(α)

gives the implicit connection between the coordinates.

By using the parametric equations from Theorem 1, we
obtain the visualizations of the curves in the software
Maple 17 (from Maplesoft). In this article, we improve the
quality of Maple-graphics by re-rendering in the software
POV-Ray.

Figures 10–12 show some curves on the sphere in case
n = 3, 4 and 5.

Figure 10: Sectrix curve on sphere in case n = 3 and
d = π/6.

Figure 11: Sectrix curves on sphere in case n= 4, d = π/6
and d = π/3.

Figure 12: Sectrix curves on sphere in case n= 5, d = π/8
and d = π/4.

1.2 Sectrix curves with stereographic projection

We obtain similar curves on the surface of a sphere with
the stereographic projection of the sectrix. Let the curve
be in plane z =−R and project it from point N(0,0,R) into
the sphere with centre (0,0,0) and radius R (Figure 13).
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Figure 13: Stereographic projection.

In this case one can easily gain that the stereographic pro-
jection of a general point P(x,y,−R) from the plane is
P′(cx,cy,1−2c), where c = 4R2/(x2 + y2 +4R2).

Thus the stereographic projection of the curve with equa-
tion (3) is

xn(α) = c(α)cosα Un−1(cosα),

yn(α) = c(α)sinα Un−1(cosα),

zn(α) = 1−2c(α),
(9)

where

c(α) =
4R2

U2
n−1(cosα)+4R2

, α ∈ [0,2π].

Figures 14 and 15 give some examples in case n = 3, 4, 5,
6, 7 and 10 where R = 1 and in the figures we rotated the
curves around axis z for better visualization.
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Figure 14: Stereographic projection of sectrix in case n = 3, 5 and 7.

Figure 15: Stereographic projection of sectrix in case n = 4, 6 and 10.

1.3 Rolled sectrix on the sphere

In this subsection we give curves which are ”rolled” to
sphere. Let the radius of the sphere with centre O(0,0,0)
be R and let the plane of sectrix be the plane z =−R (with
point S(0,0,−R)) according to Figure 16.
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Figure 16: Rolling of the sectrix onto sphere.

Let P with parameter α be one of the points of the sectrix
defined by (3), take the plane Π incident to the axis z and
parallel to direction α (thus P is on Π) and let P′ ∈Π be a
point on the sphere so that the length of arc SP′ be equal to
ρn(α) from polar equation (4). In that way we project the
point of the sectrix onto the sphere and the equation system
of the curves (α ∈ [0,2π]) is

xn(α) = Rcos(r(α))cosα,

yn(α) = Rcos(r(α))sinα,

zn(α) = Rsin(r(α)),
(10)

where

r(α) =
Un−1(cosα)

R
− π

2
.

Figures 17 and 18 show some examples of the rolled sec-
trix curves, where the curves are rotated for better visual-
ization.
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Figure 17: Sectrix rolled onto sphere (n = 3, 4, 7 and R = 1).

Figure 18: Sectrix rolled onto sphere (n = 5, 6, 9 and R = 1, 2, 2).
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