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ABSTRACT

Travel time forecasting is an interesting topic for many 
intelligent transportation system (ITS) services. Increased 
availability of data collection sensors increases the availabil-
ity of the predictor variables but also highlights the high pro-
cessing issues related to this big data availability. The aim of 
this paper is to analyse the potential of big data and super-
vised machine learning techniques in effectively forecasting 
the travel times. For this purpose fused data from three data 
sources (Global Positioning System vehicles tracks, road 
network infrastructure data and meteorological data) and 
four machine learning techniques (k-nearest neighbours, 
support vector machines, boosting trees and random forest) 
were used. To evaluate the forecasting results they were 
compared in-between different road classes in the context 
of absolute values, measured in minutes, and the mean 
squared percentage error. For the road classes with high 
average speed and long road segments, machine learning 
techniques forecasted travel times with small relative er-
ror, while for the road classes with low average speeds and 
small segment lengths this was a more demanding task. All 
three data sources were proven to have high impact on the 
travel time forecast accuracy and the best results (taking 
into account all road classes) were achieved for the k-near-
est neighbours and random forest techniques. 

KEY WORDS

big data; support vector machines; k-nearest neighbours; 
boosting trees; random forest; forecasting travel times; data 
fusion;

1.	INTRODUCTION

Travel time information is one of the key quantita-
tive performance indicators of the transportation sys-
tem as a whole. It is widely used in many intelligent 
transportation system (ITS) services as dynamic route 
guidance [1, 2, 3], traveller information system [4, 5, 
6] or traffic management system [7, 8]. Another char-
acteristic of travel time information, which distinguish-
es it from other data on the traffic flow, is its level of 
relevance and understanding among different groups 
of the stakeholders such as decision makers, trans-
port system users, transportation planners, etc. [9]. In 

that context, it is the most widely used parameter as 
the relevant one when comparing different transporta-
tion modes [10]. It is also one of the highest costs of 
transportation, and travel time savings are often the 
primary justification for transportation infrastructure 
improvements [11]. 

In literature, different approaches to travel time 
forecasting can be found [6, 7, 12]. Yu et al. use 
support vector machines (SVM) to predict bus arrival 
times at bus stations [5], Zong et al. apply a genet-
ic algorithm to forecast daily commute travel times in 
Beijing [13] and Simroth uses a nonparametric distri-
bution-free regression model [14]. Regarding the data 
sources used for the travel time forecasting these are 
mainly global positioning system (GPS) based data 
[14, 15, 16], survey data [13] or data from different 
types of road detectors [6, 7]. Multiple data sources 
are rarely used [5]. 

When it comes to the factors affecting travel time, 
literature review identifies free flow travel speed, oc-
currence of incident situations, holidays or other un-
common events, congestion level and weather condi-
tions [17, 18].

Nevertheless, studies have so far limited scope 
in the context of transferability as they use limited 
number of data sources (and explanatory variables) 
while applying travel time forecast on a very limited 
geographical area (just one road category) or quite a 
specific group of vehicles (e.g. buses or taxi service). 
There is very little effort given in providing a system-
atic overview of advanced travel time forecasting ap-
proaches which have the capability of dealing with big 
data collected from multiple sources. 

This paper uses three data sources (road network 
data, GPS and weather forecast data) to analyse the 
potential of four supervised machine learning tech-
niques (SVM, k-nearest neighbour, boosting trees and 
random forest) in forecasting travel times on five differ-
ent road categories. The attempt is to give a systemat-
ic overview of the comparable results for travel time 
forecast as a good reference point for future research 
in this field as well as a growing number of developing 
travel time forecast-based services and applications.
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2.	DATA SET DESCRIPTION

One would think that today’s availability of differ-
ent data sources makes travel time forecasting easier. 
And indeed, it allows us to collect very diverse data 
sets but it also brings new challenges regarding the 
storing and processing of the mobility data. In the tra-
ditional trip diaries, information on the weekly trips for 
one person represents about 20 kilobytes of data. To-
day, just the GPS tracks of weekly trips for one person 
range between 10-20 megabytes. Other data sources 
just add up to this number. This brings new challenges 
in travel time forecasting but it also gives a higher lev-
el of details available as well as possibilities for travel 
time forecasting in real time.

This paper uses three data sources. Spatiotempo-
ral data are collected via GPS vehicle tracks. The data 
on the road network infrastructure, on which spatio-
temporal GPS data are matched, are collected from 
the road network database. And the meteorological 
data that are collected by the network of sensors are 
provided by the national Meteorological and hydrolog-
ical service. The complete database fused from three 
sources, based on the location and time data, con-
tained 39 gigabytes of data. 

2.1	 Spatiotemporal data

Spatiotemporal data are dynamically collected 
from 300 probe vehicles that used the road network in 
the City of Zagreb (Croatia). The installed GPS devices 
sent data via mobile network to the central database. 
These data included:

–– Vehicle ID;
–– Information on location (x and y coordinates);
–– Vehicle speed; 
–– Vehicle course;
–– Logging time.

In the database, these data were joined with the at-
tributes on the day of the week, special events (holidays, 
scheduled traffic flow disturbances, school days, etc.), 
historical average of speeds recorded for the same road 
and standard deviation of historical speed records. 

2.2	 Infrastructural data

Infrastructural database contained information on 
the complete road network including:

–– Road length;
–– Road name;
–– Start and end coordinates of every road segment;
–– Direction (one-directional street or not);
–– Traffic modes using the road;
–– Number of traffic lanes.

Based on the infrastructural data (particularly the 
start and end coordinates of every road segment), 
unique vehicle IDs, logging times and the observed 
travel times were joined to every road segment. 

2.3	 Meteorological data

Meteorological data were obtained from the sensor 
network and provided by the national Meteorological 
and hydrological service. This data set included infor-
mation on:

–– 	Air temperature;
–– 	Ground temperature;
–– 	Pavement condition (wet or not);
–– 	Snow (falling or not and the thickness of the new 

snow on the road); 
–– 	Rain;
–– 	Humidity;
–– 	Wind;
–– 	Horizontal visibility.

3.	METHODS

Before conducting the travel time forecast, based 
on the spatiotemporal and infrastructural data, a hy-
brid approach was used to classify the roads. This 
was done based on the hypothesis that by including 
information on actual vehicles movements along the 
road far better insight into similarities between differ-
ent roads and way they are used can be obtained than 
by merely relying on infrastructure characteristics (as 
in traditional road classification approaches). For this 
purpose we used multiple regression and factor analy-
sis to identify parameters that most influence the road 
classification and these were historical speed average, 
standard deviation of the historical speed, length of 
the road segment and count of the vehicles that used 
this road segment. Figure 1 and Figure 2 give an over-
view of five road classes based on the most distinctive 
variables. More detailed description of this procedure 
can be found in literature [18]. 
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Figure 1  –  Summary of road class differences based on 
the average speed in km/h and standard deviation of the 

speed
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Figure 2  –  Summary of road class differences based 
on the average length of road segments (in metres, right 
y-axis) and average number of records per road segment 

(count, left y-axis)

For the travel time forecasting, for each of the five 
road classes, four supervised machine learning regres-
sion techniques (k-nearest neighbours, support vector 
machines, boosting trees and random forest) were used.

3.1	 The k-nearest neighbours

The k-nearest neighbours (kNN) is a non-parametric 
method that can be used for both regression and clas-
sification tasks [19, 20, 21, 22]. As our goal is to fore-
cast travel time (continuous dependent variable) the 
focus will be primarily on the kNN regression. The kNN 
regression is a technique that based on the k closest 
training examples in the feature space gives the output 
forecast as the property value for the object (average 
of the values of its k nearest neighbours). The feature 
space is created based on the independent variables 
which can be either continuous or categorical [22]. 
More detailed description of the basic principles of the 
kNN regression can be found in literature [23, 24]. 

One of the main challenges when using kNN tech-
nique is the choice of k (neighbourhood size) as it can 
strongly influence the quality of forecast [25, 26]. For 
any given problem, a small value of k will lead to a large 
variance in predictions and a large value may lead to a 
large model bias. Literature suggests no exact solutions 
for finding the optimal size of k but rather to use the heu-
ristic approach [27, 28]. For this purpose the cross-vali-
dation technique was used. Cross-validation divides the 
data sample into a number of v folds (randomly drawn, 
disjointed sub-samples or segments). Then, for a fixed 
value of k, the kNN technique is applied to make the 
forecast on the v-th segment (others are used as exam-
ples) and to evaluate the error. This process is then suc-
cessively applied to all possible choices of v and various 
k. The value achieving the lowest error is then selected 
as the value for k [29, 30]. In travel time forecasting 
the original data set was divided into quarters, three of 
which were used for learning and one for testing. The 
distance between neighbours was calculated based on 
the squared Euclidian distances as defined by Equation 

(1) where p and q are the query point and a case from 
the examples sample, respectively.

( ) ( )2,D p q p q= - 	 (1)

The 10-fold cross validation was used to select 
the value of k for each road category separately. The 
search range for k was from 1 to 50, with the incre-
ment of one.

3.2	 Support vector machine

Support vector machines (SVM) are supervised 
learning models with associated learning algorithms 
that can be used for both classification and regression 
analysis. For example, the SVM can be used to learn 
polynomial, radial basis function (RBF) and multi-lay-
er perceptron (MLP) classifiers [31]. In principle, SVM 
works with the concept of decision planes that de-
fine decision boundaries (separate between a set of 
objects having different class memberships). In the 
multidimensional space these decision planes are hy-
perplanes that are, in a sense, equidistant from the n 
sets of objects. In the simplest case, these are linearly 
separable sets of objects, but in practice this is often 
not the case and the kernel functions are used. For a 
reader interested in more details about SVM technique 
a detailed overview is given in literature [32, 33, 34].

For the travel time forecasting, the SVM regression 
was used where the relationship between the inde-
pendent (y) and dependent variables (x) is given by a 
deterministic function f plus the addition of some ad-
ditive noise as defined by Equation 2:

( )y f x noise= + 	 (2)

The SVM model was trained to find a functional 
form for f that can correctly forecast travel times for 
the new cases with which the SVM had not been pre-
sented before. This was done by the sequential optimi-
zation of an error function defined by Equation 3:

*

1 1

1
2

N N
T

i i
i i

w w C Cε ξ ξ
= =

= + +∑ ∑ 	 (3)

where:
	 C	–	capacity constant;
	 w	–	vector coefficients;
	 ξ	–	parameters for handling non-separable 

data (inputs);
	 N	–	number of training cases.

The error function was minimized in regard to:

( ) *       T
i i iw x b yφ ε ξ+ - ≤ + 	 (4)

( ) 
        T

i i i iy w x bφ ε ξ- - ≤ + 	 (5)
*,    0,  1, ,i i i Nξ ξ ≥ = … 	 (6)

where:
	 φ	–	kernel used to transform data from the 

input to the feature space; 
	 b	–	constant.
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For the kernel we used radial basis function de-
fined by Equation 7:

2
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	 (7)

where: 
	 |x-x'|2	–	squared Euclidean distance between the 

two feature vectors;
	 σ	–	free parameter.

3.3	 Boosting trees

Boosting Trees (BT) evolved from the application of 
boosting methods to regression trees. The main idea 
is to compute a sequence of simple trees, where each 
successive tree is built for the prediction residuals of 
the preceding tree and in this way, by combining many 
weak learners it forms a single strong one [35]. In prin-
ciple, BT has a form (Equation 8) that can be trained 
by optimizing the scalar αt and the weak learner ht(x) 
at each iteration t. 

( ) ( )t t
t

H x h xα=∑ 	 (8)

Before the training begins, a non-negative weight 
(wi) is assigned to each data sample (xi). The weighted 
expansion of simple regression trees will be computed 
and the prediction residuals fitted on all the preceding 
trees. In this procedure, for an independently drawn 
sample of observations, each individual tree is fitted to 
the residuals computed thereby introducing a certain 
degree of randomness into the estimation procedure 
and avoiding overfitting [36, 37, 38]. 

For travel time forecasting the maximum number 
of nodes for each individual tree in the boosting se-
quence is defined to be three to create a single split 
or partitioning of the training sample at each step. As 
empirical studies from literature suggested [37], for 
the weighted expansion of simple regression trees, the 
weight (wi) assigned before training is set to be 0.1. 

3.4	 Random forest

The Random Forest (RF) technique is built upon the 
idea that the use of different learning models increas-
es the accuracy of forecasting. It is basically built as 
a large collection of decorrelated decision trees, each 
capable of producing a response when presented with 
a set of predictor values [39]. 

For regression problems [40, 41], as travel time 
forecasting, the tree responses are averaged to obtain 
an estimate of the dependent variable as described by 
Equation 9: 

1

1 
K

th

K

RF forecast K
k =

= ∑  tree response,	 (9)

where:
	 k	–	index that runs over the individual trees in 

the forest.

As other, previously mentioned methods, RT can 
also be used for classification tasks. In this case the 
response takes the form of a class membership, which 
associates a set of independent predictor values with 
one of the categories present in the dependent vari-
able [42, 43].

For travel time forecasting, the stopping condition 
for the random tree technique of 10 levels and the 
maximum of 100 nodes was defined. The stopping 
conditions were equal for every road class.

4.	RESULTS

To evaluate the results of the travel time forecast-
ing techniques, the representative roads (test sample) 
for every road class was selected. Table 1 gives the 
names for the selected roads and Figure 1 shows their 
spatial distribution in the traffic network of the city of 
Zagreb. When selecting the test samples, we tried to 
select the roads that were located in different parts of 
the city, but had a high frequency of GPS tracks (were 
often used) and had a number of linked segments 
classified to belong to the same road class. 

4.1	 The k-nearest neighbours results

To determine the size of the neighbourhood for ev-
ery road class, the cross validation method was used. 
This allowed the examination of the cross validation 
error for every road class separately (Figure 4). In gener-
al, for every road class, the error was growing together 
with the size of the neighbourhood. For the road class-
es with high average speeds and long road segments 
(class A, B and C) the error initially grew fast but soon 
got stabilized, while for the road classes E and D, it grew 
almost linearly across a very small range of values. 

When comparing the cross validation error across 
the road classes, the lowest overall error was for road 
class E. For all the rest, except for road class A, the 
error remained below the 0.2 margin. 

For the size of the neighbourhood that yields the low-
est cross validation error the travel time forecast was 
made. Figure 5 shows the relationships between the ob-
served values of the travel times, forecast values and 
the residuals for the kNN technique. In general, the high-
est accuracy of the forecast is when the raw data (the 
points) are aligned on the diagonal of the three-dimen-
sional plane in the approximate height of the middle of 
the residual axis (z). This would mean that the observed 
value is equal to the forecast value, and respectively 
that the residual is equal to zero (middle of the z-axis). 
Taking into account this interpretation, one can see that 
the best results are achieved for road classes B, C, and 
D. The forecast for road class A is equally dispersed 
around the diagonal line and for road class E it tends 
to overestimate the values for the long travel times, but 
this overestimate is never higher than two minutes.



I. Šemanjski: Potential of Big Data in Forecasting Travel Times

Promet – Traffic&Transportation, Vol. 27, 2015, No. 6, 515-528	 519

Table 1  –  Selected representatives for the travel time forecasting for each road class

Road class Kind of movements served Road name
Class A Long distance movements Zagrebačka avenija, Slavonska avenija
Class B Long to medium distance movements Avenija Dubrovnik, Selska cesta, Avenija grada Vukovara
Class C Medium distance movements Savska cesta, Kralja Zvonimira, Maksimirska
Class D Medium to short distance movements Mirogojska cesta, Prisavlje
Class E Short distance movements Harambašićeva, Jordanovac, Hrvatskog proljeća

Legend
Road class A
Road class B
Road class C
Road class D
Road class E
roads
waterways

Figure 3  –  Spatial distribution of the selected test samples for each road category
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Figure 4  –  Cross validation error values for all road classes
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4.2	 Results of the support vector machines

For the support vector machines, the best results 
were achieved for road classes C, D and E Figure 6. For 
road class A, SVM actually gave a very small range of 
the forecast values. This resulted in the equally distrib-
uted range of residual values, but very limited sensitiv-
ity in the context of actually observed values of travel 
times. For road class B, the forecasts were quite good, 
with just a few extreme values (residual between 2 and 
4 minutes). 

In general, the SVM resulted in the smallest range 

of residual values for road classes D and E and the 
largest for road class A. When compared with the kNN 
results, SVM showed less forecasting sensitivity and 
obtained lower prediction accuracy for all road classes.

4.3	 Boosting trees results

For the boosting tree technique, we firstly reviewed 
how consecutive boosting steps improved the accura-
cy (quality of the forecasting model) for the randomly 
selected training data and testing data (Figure 7). For 
every road class, the forecast actually improved with 
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e) Road class E
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Figure 5  –  Comparison of the observed and the forecast travel time values in minutes for all road classes (kNN technique)



I. Šemanjski: Potential of Big Data in Forecasting Travel Times

Promet – Traffic&Transportation, Vol. 27, 2015, No. 6, 515-528	 521

the addition of the consecutive boosting steps and the 
lowest error was achieved in the final step. However, 
road classes A, C and E yield the lowest difference be-
tween the average squared error for the training and 
test data. Nevertheless, for none of the road classes 
the overfitting occurred. 

When examining the independent variables im-
portance for every road class, one can notice that the 
members of the set of just eight independent variables 
was among the five most important variables for the 
travel time forecast for every road class (Table 2). Equal 
number of times the most important predictors were 

the length of the road segment and the standard de-
viation for the speed values. It is interesting to notice 
that the variables from all three input data sources are 
among the most important predictors. 

Evaluating the forecast results (Figure 8), one can see 
that the boosting trees yield good and stable forecast 
for all road classes. Only for road class C it happened 
that for the longer travel times the boosting tree tech-
nique overestimated the travel times and for the shorter 
travel times it underestimated the travel times, but in 
both cases this was never for more than +/- 2 minutes. 
In general, it achieved better results than SVM method. 
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Figure 6  –  Comparison of the observed and the forecast travel time values in minutes for all road classes (SVM technique)
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Figure 7  –  Boosting trees average square error vs. number of trees

Table 2  –  Rank of independent variables importance in regard to every road class (Boosting trees)

Class A Class B Class C Class D Class E
Length 1 2 2 1 3
Count 2 – 3 5 2

Speed st_dev 3 1 4 3 1
Hour_of_day 4 4 – 2 5
Coordinate – 3 1 4 4

Horizontal visibility 5 – – – –
Precipitation – 5 – – –

Snowing – – 5 – –



I. Šemanjski: Potential of Big Data in Forecasting Travel Times

Promet – Traffic&Transportation, Vol. 27, 2015, No. 6, 515-528	 523

4.4	 Random forest results

For the random forest technique, it was first re-
viewed how the averaged squared error changed over 
the entire training cycles for each road class (Figure 9). 
In general, the smaller the road segments, speed and 
changes of speed for the road class the lower was the 
error. When considering the importance of predictor 
variables, the set that contained five most important 
variables for every road class consists of the list of just 
seven independent variables (Table 3). Once again, 

these seven variables included information from all 
three sources (GPS tracks, meteorological database 
and road network infrastructural data). 

Considering the relationship between the observed 
and forecast values for the random forest technique 
(Figure 10), one can notice that the highest accuracy of 
the travel time forecast is achieved for road classes C, 
D and E. For road class A the residuals are fairly evenly 
distributed and for road class B only extreme value of 
the long travel time was overestimated for 3 minutes. 
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Figure 8  –  Comparison of the observed and the forecast travel time values in minutes for all road classes  
and boosting trees technique
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Figure 9  –  Random trees average square error vs. number of trees

Table 3  –  Rank of independent variable importance in regard to every road class

Class A Class B Class C Class D Class E
Length 1 1 2 2 2
Count 2 – 3 5 1

Speed st_dev 3 2 4 3 3
Hour_of_day 4 4 5 1 5
Coordinate – 3 1 4 4

Temperature of 
wet pavement 5 – – – –

Air temperature – 5 – – –
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4.5	 Mean absolute percentage error of the 
travel time forecast

To gain a better insight in the travel time forecast 
among different techniques and road classes the 
mean absolute percentage error (MAPE) was calculat-
ed as defined by Equation 10.

1

1 n
i i

i i

A F
MAPE

n A=

-
= ∑ 	 (10)

where:

	 Ai	–	observed value,
	 Fi	 –	forecast value.

The largest MAPE is for road class E and the sup-
port vector machines technique (Figure 11). Although, 
when measured in minutes, the residuals were the 
lowest, but when taking into account the relative ratio 
(regarding the road length and respectively the travel 
time needed to travel across the whole road), this error 
was the highest. Overall, road class E has the highest 
difference in the forecast error among different tech-
niques and road class C has the smallest. 

a) Road class A b) Road class B

c) Road class C d) Road class D

e) Road class E
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Figure 10  –  Comparison of the observed and the forecast travel time values in minutes for all road classes  
and the random forest technique
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Figure 11  –  MAPE values for travel time forecast for all 
road categories and kNN, SVM, Boosting trees and Random 

forest technique

5.	DISCUSSION AND CONCLUSION

It was found that for the roads with high speeds 
and long road segments the supervised machine 
learning techniques analysed in this paper (k-nearest 
neighbours, support vector machines, boosting trees 
and the random forest) will yield the most uniform re-
sults. More demanding in this context, are the local 
and arterial roads. Here the impact of adequate travel 
time forecasting technique is crucial. 

If one cannot afford a complex travel time forecast-
ing system that would take into account different road 
categories then, based on our results, it would be ad-
visable to use the k-nearest neighbour technique or 
random forest as two of these yield the lowest overall 
error across different road categories. Nevertheless, 
it should be noted that the kNN technique was more 
computationally expensive. One reason for this is the 
use of the cross validation method to estimate the op-
timal size of the neighbourhood, but indeed this step 
does not need to be repeated every time when cal-
culating the travel time forecast (rather just the first 
time and then this value should be stored and recalled 
before every forecast calculation). Another detail that 
is worth noting, regarding the kNN method, is that it 
will gain the highest accuracy for the smallest sizes of 
the neighbourhood (in real time forecasting this would 
often mean a short forecasting period). Therefore, 
one could define the error margin for the forecasting 
quality (e.g. 5% error) and accept larger sizes of the 
neighbourhood, where the cross validation error is still 
below the defined margin. 

If one would design a travel time forecasting sys-
tem that would take into account different road class-
es, then for the high speed roads with long road seg-
ments (like highways) and streets with the average 
speed around 50km/h and average length of the road 
segment longer than 150 m we would advise the kNN 
technique (alternatively the random forest). It is import-
ant to notice that although the kNN gave the largest ab-
solute error for road class A, when placed in the relative 

context (in regard to the overall travel time and respec-
tively to the road length) it is actually a very small MAPE 
value. For the roads with the average speed close to 40 
km/h the kNN and the boosting trees yield the highest 
accuracy. For the local and residential roads this was 
the case with the random forest technique. 

Regarding data sources, it is worth considering mul-
tiple data sources as in our case all of them, the GPS 
data, the road network data and meteorological infor-
mation had high importance when forecasting the trav-
el times. Nevertheless, one should be selective when 
choosing among different available variables from 
these sensors as not all are equally important. Among 
the GPS data the most useful were proven to be the 
information on the standard deviation of the speeds for 
the given road together with the time of the day, the in-
formation on how often this road is used and what was 
the position of the vehicle along the road. Regarding 
the road network data the most interesting was the in-
formation on the average length of the road segments 
(e.g. how often the traffic flow is interrupted). For the 
meteorological data, information on the horizontal visi-
bility and precipitation (is it snowing, raining and is the 
road surface wet and frozen). Meteorological informa-
tion also had higher impact on the travel time forecast-
ing for the roads with higher speeds as here they were 
influencing the travel times more severely. 

Overall, the supervised machine learning tech-
niques approach has proven to be useful when dealing 
with multiple data sources for the travel time forecast. 
All techniques were fairly sensitive to different spatio-
temporal conditions among different road classes and 
different weather conditions. Although, for the road 
classes with the high average speeds and long road 
segments the absolute travel time error (measured in 
minutes) was almost always the highest, it is important 
to notice that simultaneously these travel times were 
the longest. When looking in the relative context of over-
all travel times, errors for these road classes are actu-
ally the smallest and the more demanding forecasting 
is required for road classes with small road segments 
and low average speeds (residential and local streets).
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POTENCIJAL VELIKIH SETOVA PODATAKA U PROGNO-
ZIRANJU VREMENA PUTOVANJA 
 
SAŽETAK

Prognoziranje vremena putovanja je ključan element 
mnogih usluga u sklopu inteligentnih transportnih sustava 
(ITS). Povećana dostupnost raznih osjetilnih uređaja pozitiv-
no utječe na dostupnost prediktorskih varijabli potrebnih za 
prognoziranje, ali i dodatno naglašava probleme vezane uz 
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zahtjevno procesiranje ovih velikih setova podataka. U ovom 
članku nastojimo analizirati potencijal metoda nadziranog 
strojnog učenja u savladavanju ovog problema. U tu smo 
svrhu koristili združene setove podataka iz tri izvora (tragove 
vozila prikupljene putem sustava globalnog pozicioniranja, 
bazu podataka o izgrađenoj cestovnoj infrastrukturi i meteo-
rološke podatke), te četiri metode nadziranog strojnog učen-
ja (metoda potpornih vektora, k-najbližih susjeda, metodu 
rastućih stabala i metodu slučajne šume). Kako bismo us-
poredili postignute rezultate, isti su međusobno uspoređeni 
među različitim klasama prometnica kao apsolutne vrijedno-
sti prognoziranog vremena putovanja (izražene u minutama) 
i kao srednja kvadrirana postotna pogreška. Za one klase 
prometnica koje odlikuju visoke prosječne brzine kretanja 
vozila i dugi neprekinuti segmenti prometnica, metode na-
dziranog strojnog učenja su polučile rezultate s malom rela-
tivnom pogreškom, dok je za prometnice s nižim prosječnim 
brzinama i kratkim segmentima prognoziranje bilo puno 
zahtjevniji zadatak. Sva su tri korištena ulazna seta podata-
ka opravdala svoju primjenjivost za ovu namjenu jer su imala 
veliki utjecaj na preciznost prognoziranja. Najbolji su rezulta-
ti (uzevši u obzir sve klase prometnica) postignuti primjenom 
metoda k-najbližih susjeda i slučajne šume.
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veliki setovi podataka; metoda potpornih vektora; metoda 
k-najbližih susjeda; metoda rastućih stabala; metoda sluča-
jne šume; prognoziranje vremena putovanja, fuzija podataka;
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