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In this paper we present the application of a modified Extended Kalman filter on a test device. This device
is intended to be both rugged and simple to use, providing an accurate position and velocity output for land ve-
hicles. As there are already many applications available for this purpose, our test device is unique in a way that
it can be mounted in an arbitrary position on any metal surface on a vehicle, while it automatically discovers its
orientation and aligns itself during the first stage of the test period. It comes as an extremely robust and low-cost
solution. Furthermore, the pre-alignment outputs are corrected using a reverse output correction during the test
period, immediately providing accurate outputs. The alignment algorithm greatly (by factor of 20 or more) reduces
the initialization time. In addition, a novel smoothing algorithm with forward computation is described. The devel-
oped algorithm is tested with real-world experiments and proved to have a similar accuracy as the reference system,
although using much cheaper and less-reliable sensor equipment.
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Poboljsana estimacija poloZaja za navigaciju vozila Kkoristeli poravnavanje sustava i unaprijedno
izgladivanje. U ovome radu opisana je implementacija modificiranog proSirenog kalmanovog filtra na testnom
uredaju. Uredaj je robustan i jednostavan za upotrebu te omogucava dobivanje tocne pozicije i brzine kao izlaznih
parametara zemljanih vozila. S obzirom da postoji velik broj postojecih aplikacija, na$ testni uredaj je jedinstven u
smislu da mozZe biti postavljen u proizvoljnu poziciju na metalnu povrsinu na vozilu. Uredaj automatski odreduje
svoju orijentaciju te se poravnava tijekom prvog dijela testnog perioda. Ujedno je vrlo robustan i niske cijene. 1zlaz
koji se dobije prije poravnavanja ispravljen je koriste¢i obrnutu korekciju izlaza tijekom testne faze ¢ime se dobiju
tocni izlazi. Algoritam poravnavanja znatno (za faktor 20 i viSe) reducira vrijeme potrebno za inicijalizaciju. Opisan
je novi algoritam izgladivanja s unaprijednim proracunom. Razvijeni algoritam testiran je na stvarnim podacima te
je pokazano da ima sli¢nu preciznost kao referentni sustav, unato¢ koriStenju jeftinije i manje pouzdane opreme.

Kljucne rijeci: poravnavanje, prosireni kalmanov filtar, GPS/INS navigacija, izgladivanje

1 INTRODUCTION

During the development of different applications using
the Global Positioning System and Inertial Navigation Sys-
tem (GPS/INS) a lot of solutions have been proposed and
many improvements have been made. Researchers have
usually focused on different problems that arise when us-
ing a vast number of different possible setups of sensors.
Usually, GPS sensor and Inertial Measurement Unit (IMU)
sensors — gyroscopes and accelerometers — are the basic
configuration for land vehicle navigation. However, us-
ing these sensors is not the only possible solution. Often
other sensors were used to replace GPS or IMU unit. In
[1-3], for example, cameras were used instead of GPS to
obtain visual information and help calculate the vehicle’s
position within environment. This approach can also help
build the map of the environment with the use of SLAM
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algorithm which is extremely important at urban places [4]
or at places where self-localization is important [5]. Some
researchers also used wheel rotational speed sensors [6],
laser rangefinder (LRF) sensor [7] or maps of the environ-
ment [8]. It is a well-known fact that Micro-electro me-
chanical sensors (MEMS) are often exposed to high levels
of drift. This means that they are quite useless without
GPS updates, except when using additional magnetometer
sensors. During GPS outages this approach can improve
the solution 30 times [9].

All the sensors used in navigation are somehow lim-
ited. For a satisfactory solution the errors and limitations
must be known and taken care of. GPS signal, for example,
can be lost due to different natural (forest, canyon, etc.) or
artificial (bridges, high buildings in urban environments,
parking garages, etc.) obstructions. MEMS signals, on the
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other hand, experience high noise levels and several low-
frequency errors. However, the latter is taken into account
within the correction part of the filter. These errors are
reduced by updating the integration filter (prediction part)
with the position and the velocity obtained by the GPS re-
ceiver [10]. On the other hand, high-frequency noise (with
a particularly significant effect on low-cost units, such as
the one, used in our experiments) cannot be effectively fil-
tered using low-pass filters as the filter’s cut-off frequency
should be lower than the GPS frequency (equal to the re-
ciprocal of the INS working-alone time). This means that
the filter’s cut-off frequency should be less than 1 Hz,
which would mean the loss of important data from the INS
signals as shown in [11].

Many studies [12-14] have shown that the errors asso-
ciated with Gyro sensors (accelerometers and gyroscopes)
can be minimized using different methods of off-field
calibration. These methods usually take a lot of time
(which is also the case with our test reference ADMA-G
! from Genesys®), which requires 10 seconds of stand-
still, straight-line acceleration from O to 5 m/s and dy-
namic driving for 120 seconds, which can take nearly 3
minutes of calibration, at best, before starting the measure-
ment, without the installation of hardware being taken into
account) and can require additional calibration equipment
[15 and 16]. Furthermore, prior calibration cannot remove
all the errors, which depend on the testing temperature, the
test-track configuration, the method of affixing the sensors
to the vehicle, etc.

The greatest and most important part of navigation is
a software algorithm. It was shown in [17] that develop-
ing a positioning algorithm can be a complex task, involv-
ing the use of appropriate estimation techniques and sen-
sor systems for a specific application, and the selection of
a suitable algorithm for the navigation. Only with a good
positioning solution other tasks, such as Vehicle Routing
Problem (VRP) can be taken care of [18].

The majority of algorithms are either completely or
partially based on Kalman filter. The basic and widely used
approach in terrestrial applications is Extended Kalman
filter (EKF) which can give satisfactory results, using a
variety of additional approaches to eliminate most com-
mon errors. However, in the last few years many different
approaches were used, including Unscented or Adaptive
Kalman filters which provide better accuracy, especially if
the errors change significantly but are potentially unstable
compared to EKF [19]. Here some of the most important
are mentioned.

In [20] the curve-to-curve matching algorithm after
Kalman filtering is described and data fusion using map

'Datasheet can be obtained at:

adma.de/adma.php?ID=6935

http://www.genesys-
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matching is implemented to correct for the INS drift error.
In [21] linear Kalman filters (LKF) were used to determine
the trajectory of an athlete executing jumps while skiing,
snowboarding, etc. While GPS sensor can give satisfac-
tory results when monitoring the whole track, it lacks in
precision at quick changes. This also applies to different
land vehicle maneuvers, such as emergency braking, quick
turns and full acceleration. This is why accelerometers and
gyroscopes are extremely important as can be also con-
cluded from [22], where a hybrid fusion methodology uti-
lizing Dempster-Shafer theory augmented by Support Vec-
tor Machines was introduced. This solution can provide
accurate results during GPS availability and during GPS
outages as well. GPS errors are often the problem when
it comes to accuracy, reliability or continuity of position
data. This is why sometimes Bayesian filters are used to
fuse data from different sensors [23]. It is important that
the model of the system is correct as the estimation perfor-
mance of the Bayesian filters depends on that. As the ve-
hicle model changes with the change of vehicle dynamics
during different driving conditions, it is sometimes relevant
to use the interacting multiple model (IMM) which adapts
to changes of various driving conditions [24]. For GPS
denied environments, a centralized or decentralized sensor
fusion can be used in the form of dependable navigation,
as shown in [25]. It was also shown [26] that sometimes
the number of sensors can be reduced without significant
changes in accuracy and resulting in much lower costs.

However, each of the mentioned approaches has its
downsides, either being computationally very demanding
and therefore not adequate for low-cost and mobile units or
not low-cost in relation to the equipment used in applica-
tion. Some were only developed for specific environments
(urban areas, snow sports, test tracks with good GPS visi-
bility) or maneuvers (either low or high dynamic). Others
were research oriented and could not provide a satisfac-
tory solution for an average user or lack the application of
an algorithm and tests in the real world.

Therefore, the features of the proposed solution are the
following:

- Low-cost solution, affordable for non-professional
use [27], with all the sensors mounted in one case, result-
ing in robust navigation.

- No additional off-field or on-field calibration for the
immediate start of the measurement.

- Use of the EKF algorithm for a stable and computa-
tionally undemanding solution.

- General algorithm for all kinds of applications and
maneuvers, especially suitable for automotive applica-
tions.

- Smoothing algorithm without any additional compu-
tational cost.
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- Alignment algorithm for arbitrary positioning of a test
device.

- All the algorithms are tested on a real device in a real-
world environment.

The paper is organized as follows. In next section the
hardware of a test device is described. Then, different parts
of GPS/INS algorithm, including initialization, prediction
and correction, are described. In sections 3.4 and 3.5 a
novel smoothing algorithm with forward correction and
an alignment algorithm are described, respectively. Then,
real-world tests and results are presented. Finally, the most
important conclusions are drawn.

2 DESCRIPTION OF THE HARDWARE

We tried to develop a system that would be as au-
tonomous and simple to use as possible. A plug-in was
created that receives the data from all the sensors — global
positioning system (GPS) and inertial measurement unit
(IMU) — and calculates the outputs. The test device (re-
ferred to as Gyro in the following) used in the experiments
consists of a small MEMS accelerometer and gyroscope
unit ADIS 164002, a GPS receiver CW25> and has an in-
tegrated GPS antenna. It is implemented in the form of a
strap-down arrangement [28].

The sensors were put in an aerodynamic, waterproof,
plastic (allowing the GPS signal to be uninterrupted) box
with three magnets in the base for fixing it to the roof of
the vehicle (Fig. 1).

Fig. 1. Test device (Gyro) with GPS and inertial sensors
and its own coordinate system

This unit is very small (120 mm x 110 mm x 40 mm)
and light (220 g). Its sensors output six parameters of in-
ertial data (the acceleration and the angular velocities in

2Datasheet can be found at: http://www.analog.com/en/index.html
3Datasheet available at: http://www.navsync.com

AUTOMATIKA 56(2015) 2, 120-131

three axes) with a 768-Hz sample rate and six parameters
of GPS data (longitude - ), latitude - ¢, altitude - h, num-
ber of visible satellites - .5, velocity - v and heading - v))
with a 1-Hz sample rate. The serial data connection and
power involve a 4-pin Controller Area Network (CAN) ca-
ble connector. The data sent from the Gyro device is stored
and processed by a measurement device.

The GPS receiver used in our tests, though being inex-
pensive, was designed especially for weak-signal environ-
ments. In reality, the quality of the GPS outputs depends
on the speed of the vehicle (when stationary the GPS sys-
tem cannot determine the heading and also the positional
error is relatively large) and the number of visible satellites
(more satellites results in a better accuracy). A demonstra-
tion of this statement can be seen in Fig. 2, where the static
accuracy of the GPS sensor is shown. While dynamic error
of GPS data is typically less than 10 m, the static error can
be more than 50 m.

Fig. 2. Static GPS error during a 3-hour test

3 DESCRIPTION OF GPS/INS ALGORITHM

For a better understanding of the algorithm, first the
coordinate systems used in this paper and the relations
between them are presented. The world geodetic system
(WGS84) is a standard, Cartesian, right-handed coordinate
system used for GPS data. Its axes are longitude, latitude,
— in radians, and altitude — height above the sea level — in
meters. The navigation coordinate system (NED), which
is very similar to WGS84, is a geodetic system. The axes
(in meters) are x (north), y (east) and z (down). The NED
coordinate system and WGS84 are presented in Fig. 3 and
are linearly connected. The NED frame is the main frame
in our study, since all the outputs are given in it. It was
chosen because it has the most intuitive representation of
the navigation data.

The body frame is presented in Fig. 4. Its center and
axes are aligned with the car. If the vehicle were to move
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Fig. 3. NED and WGS84 coordinate system

forward, x would point in the direction of travel and the z
axis would point towards the centre of the Earth.

Fig. 4. Body coordinate system

As was already mentioned, the Gyro device can be
mounted at an arbitrary angle on the surface of the vehi-
cle. This means that the body and the device (shown in
Fig. 1) coordinate systems are not necessarily aligned. If
the device is installed on a flat, level surface, the x axis
is pointing forward, the y axis is pointing right and the z
axis is pointing downwards. The alignment procedure is
described in Section 3.5.

To obtain the position and velocity from the Gyro test
device, first the initial position must be known. Then
each time inertial data (a® = [ al az a’ ]T is a
vector of the accelerations in the body frame and w® =

T, .
[ wh Wb wb ] isavector of the turn rates in the body

123

frame) arrive, the prediction step of the Kalman filter is
executed.

The system operation can be divided into three stages.
The first stage is a determination of the initial values and
the alignment. The second stage is normal operation,
which can be divided into two modes. The first mode of
the second stage (default) is the operation with GPS mea-
surements available (Fig. 5). Second mode of the sec-
ond stage is operation with GPS measurements unavail-
able, which means that only Gyro measurements are used
(the prediction stage of the Kalman filter). The third stage
begins when the alignment is finished. During the third
stage (which runs simultaneously with the second stage)
the prior outputs are calculated with the alignment values
taken into account. This technique enables us to obtain all
the data from the beginning of the measurement as if they
were all measured with calibrated, un-biased and aligned
sensors. This stage could be carried out in post-production,
but the used measurement software allows us to calculate
the outputs during the measurement, making the system
interesting for the control of vehicles [29] and [30].

3.1 [Initialization

During initialization procedure the determination of
initial values is performed. Since the alignment is made
afterwards, the initial values are determined as if the vehi-
cle is level with a flat surface.

At the start of the measurement (standstill) the GPS
data, i.e., initial longitude, latitude, altitude, velocity and
vertical velocity, and the IMU data, i.e., initial accelera-
tions a¥ and turn rates wy, are determined by averaging.
The initial heading cannot be exactly defined at standstill
(i.e., with the GPS velocity being less than 0.5 m/s) and is
determined later, when the vehicle starts to move. At least
one GPS sample is needed for a successful initialization,
while the number of INS data needs to be much higher.
This is because the INS data contain a lot of noise and av-
eraging gives better results.

The initial roll (¢) and pitch (f) angles in the NED
frame can be determined with the use of elements of the
Direction Cosine Matrix(DCM). The yaw angle - direction
(1) cannot be determined until the vehicle starts to move.

The covariance matrices for the Gyro and GPS outputs
are determined during initialization (standstill), because
their values can vary from one test cycle to another.

The noise covariance matrix of the Gyro measurements
for the normal operational mode can be written as

. 2 2 2 2 2 2
Q= dlag(gaxv Oays Oazr Owzyr Owy> awz)v (1)

where o denotes the standard deviation of each measure-
ment. The variance values are calculated during the initial-
ization (at standstill) using a statistics formula integrated

AUTOMATIKA 56(2015) 2, 120-131



Improved Pose Estimation for Vehicle Navigation using Frame Alignment and Forward Smoothing

R. Juhant, D. Vrecko, J. Knez, S. Blazi¢

Accelerations Apply Calculate quaternions
- ) i L and rotational
Turn rates | transformation matrix
Gyro data

Calculate
P accelerations and
angles in NED frame

Longitude
Latitude

Correct angles,
velocity and

ST ~ position
matrix of Gyro
measurements f

Update and predict
state error vector

Noise covariance

measurements

matrix of GPS f

Update and predict
state error
covariance matrix

4

State error
covariance
matrix

Velocity I
Visible satellites

Velocity

e

GPS data
Y
Position
Dynamics errors »
> matrix F
Distance J
\ J

Kalman gain |

LAAJ

approximation of transition matrix

MNumerical and first order Caleulate design

matrices G and H

Fig. 5. Block diagram of a system during the first mode of the second stage

into the measurement software. The following formula for
a variance determination in a discrete system is used:

kst

of == (@ =), @)

k=0

where x;, denotes the current (last) accelerometer, gyro-
scope or GPS value and = denotes the average of the corre-
sponding signal. Typical values for the acceleration stan-
dard deviations 0, 04y and o, during the test were 0.22
m/s, while the gyroscope standard deviations oz, 0.,y and
0., were 3.50-10-3 rad/s.

3.2 Prediction

Each time new Gyro data arrive (768-Hz sample rate),
the position and the velocity are calculated. This also
serves as a prediction part of the Kalman filter. All the
input inertial variables are first transformed from the body
frame to the NED frame using quaternions and transfor-
mation matrix DCM. After that velocity is calculated using
the backward differentiation formula. The position in the
WGS84 frame is calculated using the trapezoidal method.

3.3 Correction

The GPS data are received with a significantly smaller
sample rate than the INS data and are used as a correction
part in the Kalman filter. Correction part of our algorithm
is based on a nine-state Kalman filter (position, velocity
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and rotations), presented in [16], and modified in a way to
comply with our system.

The noise covariance vector of the GPS measurements
needs to be determined. It can be defined as

. 2 2 2 2 2 2 2 2
R = diag (o’W TXs Ohs Ouns Oves Ouds Tpys or.). 3

The non-holonomic constraints are related to the as-
sumption that the vehicle’s velocity in the plane perpen-
dicular to the forward direction (left-right and up-down)
is almost zero. This is why the variables o,, and o,
from equation (3) are used as measurement updates for the
Kalman filter. They can be calculated with the use of co-
sine transformation matrix as:

vl =Ty, 4)

vh =

[ Up Uy U ]T and v" =
[ UN UE UD }T denote the velocity in the body
and the navigation frame, respectively, and C is the DCM

matrix.

where

As the accuracy of the GPS values also depends on the
number of visible satellites, an additional factor, defined as
w = 1/8, (where S, denotes number of visible satellites),
for the GPS variance’s weight is introduced.

Experiments have shown that for more than four visible
satellites the noise covariance vector can be defined as:

R = w - diag (10, 10, 20, 0.1, 0.1, 0.1, 10, 10). (5)
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If the number of visible satellites is less than four (not
enough satellites for a position and velocity determina-
tion), the elements of the noise covariance matrix of the
GPS measurements have the following values

R = diag (100, 100, 200, 1, 1, 1, 0.01, 0.01). (6)

3.4 Smoothing

The error state vector is used to correct the accelera-
tions, turn rates, velocities and positions that will be used
for subsequent prediction steps. During 767 prediction
steps without correction (note: 768-Hz Gyro rate and 1-Hz
GPS rate) the position and velocity can experience such
drift that the correction produces significant changes in the
output signals. Therefore, it is common to use different
computationally challenging smoothing methods, for ex-
ample, factor graph-based incremental smoothing as pro-
posed by [31]. Our algorithm (forward smoothing), in con-
trast, uses the error state vector to incrementally correct the
calculated outputs. This means that instead of correcting
the output signals only once after each correction cycle,
they are also corrected 767 times during each prediction
cycle. Using this approach resulted in smooth output val-
ues and no additional processor load. For smoothing pur-
poses a new variable is introduced. This variable can cor-
rect for special cases, which can occur between two cycles
of correction. It can be explained with a simple example.

If a vehicle was to accelerate from one to another cycle
of correction (from correction sampling instant (j — 1)to
J) and the prediction velocity vrys(j) at sampling instant
Jj was to be smaller than vgps(j), then the state error vec-
tor would tend to correct the velocity with positive velocity
correction factors. If then after prediction between sam-
pling instants j and (j + 1) the velocity v;yg would start
to decrease, it would still be corrected with positive state
error vector factors. In this case it is better to decrease the
contribution of the state error correction factor. This idea is
used for all variables that are corrected with the state error
vector (position, velocity and rotation). Our implementa-
tion of this idea is explained with the following equations.

The change factor vector can be defined as:

Cc= [ Cr Cy C¢ ]T7 (7)
where c, = [ Co Cx Cp ]T, Cy =
[ Con  Cve Cud ]T and c, = [ Cp Co Cy ]T

Considering the above equation, the position during the
prediction is calculated using the modified equation from
[16]:

r"(k) =r"(k — 1) + 0.5D ' (k) (v" (k)

8
—|—Vn(]<5—1) )At]NS—Cr(SI‘n, ®)
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where
N L~ B
D™(k)=| 0  mprmeoss O ©)
0 0 -1

andr"(k) = [ ¢ A h ]. Ry and Rg are north and
east radii of curvature, respectively, v”(k) and v*(k — 1)
are the current and previous velocity in the NED frame,
respectively, At;yg is the interval between the previous
and the current (last) Gyro sample and can be expressed as
Atins = f(k) — f(k — 1) = 1/fINS7 where fryg is the
frequency of inertial data.

The velocity during the prediction is calculated using
following modified equation:

vi(k)=v"(k—1)+v"(k)At;ns — c,0v"™,  (10)

where v (k) denotes the time derivative of the velocity.

The matrix C can be corrected during the prediction
using the equation:

1 —Cp€ED CHEE
CC = CoED 1 —CyEN C, (11)
—Cy€E CyEN 1

T . .
where ¢" = [ EN €E €D ] is an attitude error vector.
There are two options for the coefficients of the change

factor vector, as explained above. Let us give the equation
for the determination of the longitude change factor:

ey = Fips’ AdiffOX >0,
Frvs@=py AdiffoA <0,

where Agisp = A — Ag—1 and b = sign(0A)Ag;ry.
O\ is the first element of the error state vector, ex-
pressed as x = [ or™  dv"h € ]T, where ir" =

[ 60 6x 6h ", 6v" = [ buy bvg 6up |  and

or" = [ dp 00 Y ]T. Equations, analogue to (12),
can be applied for all coefficients of a change vector. The
improvement in the output signals when using this ap-
proach is shown in Section 4.2.

(12)

3.5 Frame Alignment

Let us assume that we have two different GPS loca-
tions at sampling times ¢(k)and t(k + 1). At time ¢(k)
we start calculating the outputs with the Gyro device. If
the device and body (car) coordinate system were to be
aligned, then the position r} at t(k + 1), calculated from
the accelerometers and gyroscopes, would be the same as
the GPS position (r3). Since the coordinate systems are
not necessarily aligned, the positions would generally be

AUTOMATIKA 56(2015) 2, 120-131
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different, as can be seen in Fig. 6. Although the angle
o = [ @z ay o, ] consists of three angles in three
planes, in this visual example the Gyro device is rotated
by an angle of 90° in one plane (for a simple illustration
only the 1D angle is used), which means that the y-axis
points in the direction of the car’s movement instead of the
z-axis. If then between two GPS data the vehicle (body)
was to move forward in the x direction from point R; to
point Rs, in the device coordinate system, that would be
a movement in the y direction. After the transformation
using matrix C, this would result in a movement perpen-
dicular to the actual change of position.

Fig. 6. Demonstration of different coordinate systems and
alignment method

Let us define two vectors: 77; = R{R5 and r_; = R R).
In order to calculate the misalignment between the body
and the device coordinate system, we need to determine an
angle o between those two vectors, which involves a sepa-
rate calculation of three angles using the scalar product of
the vectors Fc and the projection of a vector 7“7 , denoted as
fp. All the calculations are made with respect to the body
coordinate system. The angle o, can be calculated with
the following formula:

JEEGEEN

_Te'Tp ; (13)

‘ N N

Te Tp
where zz denotes the plane to which the vector rj is pro-
jected. Analogous formulas can be applied to calculate

Gy = arccos

zZT
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(with a projection to the zy plane) and o, (with a projec-
tion to the yz plane).

After the angles are determined, they need to be applied
during the next prediction step. This is done with rotational
matrix, defined as

R=R (o) R(ay)R(az), (14)

where R (a,) is a rotational matrix about the z-axis,
R (ay) is a rotational matrix about the y-axis and R ()
is a rotational matrix about the z-axis of a device coordi-
nate system. The accelerations and turn rates can now be
converted from the device to the body coordinate system at
the beginning of each prediction step. The alignment pro-
cedure is calculated after every correction step until suffi-
cient accuracy is achieved. Usually, it takes up to 30 cor-
rection cycles to successfully align the device and the body
coordinate system.

Note that the alignment procedure (calculation of the
angles) is performed only when the number of GPS satel-
lites is sufficient (six or more) to prevent large errors.

3.6 Pre-alignment correction

When the alignment procedure is finished, the outputs
from the beginning of the test to the end of the alignment
procedure need to be corrected. In this phase of the de-
velopment the calculation is performed using the standard
procedures, described in Sections 3.2 and 3.3. The draw-
back of this method is the discontinuity that can occur at
the border between the end of the alignment and the be-
ginning of the normal calculation mode. This can be over-
come by the use of smoothing.

4 TESTING AND RESULTS

Various tests have been made at different stages of the
algorithm’s development. The initial tests indicated the
direction in which the algorithm needed to be improved.
Some tests were performed using a 20-Hz GPS sensor that
was built in a logging device.

The proposed system is denoted as Gyro and its data is
compared to the ADMA-G reference device. Data of a raw
GPS data is also shown to demonstrate the quality of the
signals used as correction in our system.

4.1 Normal operation mode

The first test was made to show the filtering of the
Kalman algorithm during the normal operating mode. Ini-
tialization and alignment were already completed. The test
was made with a 20-Hz GPS receiver.

Figure 7 shows the position filtering during the 30-
second test. The plus signs represent the initial positions.
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Gyro data

ADMA-G data

Raw GPS data

Fig. 7. Position filtering during a short test period

The raw position from the GPS sensor jumps by 20 m in
the middle of the test, but our algorithm (Gyro data) man-
ages to keep the output trajectory smooth. The second ex-
ample in Fig. 8 shows some velocity filtering, which was
made during a 3-second test. It is clear that the velocities
of the ADMA-G and the Gyro are almost the same, while
the GPS velocity has a lot of noise and error.

Welocity comparison

19.5
191 4
18.5 1
181 q
=175 1
5
i=]
2 o7t 4
16.5 q
16 1
Raw GPS
155 — ADMAG |4
— 1o
15 1 1 1 1 1
125 13 135 14 145 15 155

time

Fig. 8. Velocity filtering during a short test period

4.2 Smoothing algorithm

The novel smoothing algorithm was tested several
times during the development. The improvements made
using this algorithm can be demonstrated with a turn sec-
tion of a road, as shown in Fig. 9. The raw GPS data can
clearly be seen to have only a 1-Hz update rate, as the curve
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is not smooth. The orange (Gyro system) and violet (ref-
erence system) curves are completely overlapped, with the
largest difference of 0.12 m between the positions. This
is why an orange curve is practically not seen on this fig-
ure. The blue and yellow curves show examples of over-
and under-sized change factors for latitude and longitude,
respectively. When the proposed smoothing algorithm was
used, the accuracy of the system improved greatly. The er-
rors were decreased by a factor 10 (2 m error without and
0.2 m error with smoothing algorithm).

4.3 Alignment

In this paragraph an example of an improvement us-
ing the alignment method and the pre-alignment correction
will be presented. In this test the GPS module was rotated
by 30 degrees around y -axis and 10 degrees around x -
axis of the body coordinate system. An alignment algo-
rithm discovered the orientation of the device with typical
accuracy of less than 2° for all the angles (roll, pitch and
jaw), often even under 1°. Better accuracy is limited by the
noise and drift of the inertial signals.

A graphical representation is shown in Fig. 10. It is
evident that the aligned Gyro and ADMA-G outputs are
similar. The maximum difference between them is only
0.3 m, except for the start of the measurement, where the
ADMA-G output is absent (15 seconds) due to the lack
of visible satellites. However, the aligned Gyro’s better
GPS receiver (for low signal environments) provides suf-
ficient data. The unaligned Gyro, on the other hand, does
not manage to provide an accurate output, despite the GPS
corrections.

Another advantage of the alignment algorithm is a short
time needed for initialization of the system. Most existing
methods need one minute at least to start the measurement
while our method reduces that time to a few seconds at
most cases. This means an improvement by factor 20 or
even more.

The tests have shown that even though the covariance
vector often changes (the number of visible satellites was
typically between 5 and 8) and its change is abrupt (see
Section 3.3), this does not have any significant or notice-
able effect on the stability of the Gyro system.

5 CONCLUSION

During the development of the Gyro test system (hard-
ware and software) we experienced many different chal-
lenges. We succeeded in our initial goal to develop a sys-
tem that would require the minimum possible initialization
procedure. With the help of the measurement software im-
plemented we managed to almost eliminate the standard
initialization procedure. The user of our system, which is
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Fig. 9. Visual representation and evaluation of smoothing algorithm

still under development, will be able to start the test proce-
dure almost immediately. Our newly developed alignment
procedure is also a step forward in terms of reducing the
user’s work. The device can be optionally mounted on the
surface of the vehicle and its orientation is discovered with
the error of less than 2° of roll/pitch/jaw angles.

The novel smoothing method with no backward calcu-
lation proved to be simple but effective. Moreover it re-
quires no extra load on the processor, which will be useful
for further development. The position accuracy improved
from around 2 m without using a smoothing method to less
than 0.20 m during tests.

The next revisions of the test device will focus on opti-
mization of the algorithm calculation. Special care will be
taken to determine other sensor errors using the described

AUTOMATIKA 56(2015) 2, 120-131

alignment procedure. Our main goal for the future is an
even more robust device with a battery and processor in-
side the Gyro test device. The aim will also be to improve
the software algorithm to achieve better results with the
same level of accuracy for the GPS and inertial sensor.
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