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This paper presents an optimization of photovoltaic water pumping system (PWPS) considering the reliability
criteria and economic aspects. In this way loss of load probability (LLP) asreliability criteria and life cycle cost
(LCC) as economic criteria are used to simulate the performance of the PWPS. The sizing of a photovoltaic pumping
system means the sizing of the photovoltaic module numbers and water tank storage capacity in terms of storage
days. In the proposed algorithm, an external archive of non-dominated solution is kept which is updated during
iteration. In addition, for preserving the diversity in the archive of Pareto solutions, the crowding distance operator
is used. This attribute gives more flexibility to the planner for choosing the best final scheme among the obtained
solutions. Of course in order to decision making, a fuzzy based NSGAIImethod is applied in this paper to select
the favored solution among non-dominated solutions.

Key words: Solar Energy, Photovoltaic Pumping Water, Loss of Load Probability, LifeCycle Cost, Fuzzy Based
NSGAII

Nova računalna metoda za tehno-ekonomsku analizu sustava fotonaponom napajane vodene pumpe bazi-
rano na neizrazitoj logici. U radu je predstavljen optimizacijski problem upravljanja sustavom fotonaponom
napajane vodene pumpe (FNVP) koji uzima u obzir kriterij pouzdanostii ekonomski aspekt. Tako su vjerojat-
nost gubitka snage kao kriterij pouzdanosti i cijena životnog ciklusa kao ekonomski kriterij odabrani za simulaciju
rada FNVP sustava. Dimenzioniranje FNVP sustava svodi se na dimenzioniranje broja fotonaponskih modula i
kapaciteta spremnika vode u smislu dana opskrbe vodom. U predloženom algoritmu, nedominantna (Pareto op-
timalna) rješenja se pohranjuju u eksternu bazu i ažuriraju u svakoj iteraciji. Dodatno, za ǒcuvanje raznolikosti
baze Pareto rješenja koristi secrowding distanceoperator. Ta karakteristika daje veću fleksibilnost projektantu u
odabiru najboljih parametara sustava me�u dobivenim rješenjima. S ciljem odabira jedinstvenog rješenja u skupu
nedominantnih rješenja u radu je korišten genetski algoritam sortiranja nedominantnih rješenja.

Klju čne riječi: energija sunca, fotonaponom napajana vodena pumpa, vjerojatnost gubitka snage, cijena životnog
ciklusa, NSGAII baziran na neizrazitoj logici

1 INTRODUCTION

The water availability and accessibility are two main
factors in the development of rural and remote areas in de-
veloping countries which generally composed by numer-
ous villages and farmers.

Due to decrease the rain fall in many arid zones, ground
water seems to be the only alternative to this dilemma,
so the utilization of water pumping systems will become
the only solution for lifting water from the ground. The
widely utilization of water pump system for irrigation ap-
plications and on the other hand with attention of scarcity
of fossil resources used in traditional water pumping sys-
tems and with attention to prices’ rise and their undesirable

environmental impacts, it seems emergency to replace this
with new energy sources. A recently proposed solution to
this problem is the use of renewable energy sources (RES)
including solar energy [1-2], wind energy [3], biomass
sources [4] and hybrid forms of energy [5-6] to power wa-
ter pumping systems.

Iran is blessed with much solar energy resources and
so encouraged to be utilized for water pumping. Thus,
the photovoltaic water pumping systems (PWPSs) are very
appropriate to use because of the availability of solar en-
ergy and water in the no deep underground sheet. Wa-
ter pumping systems and renewable energy resources opti-
mization has been investigated by many researchers. Wade
and Short in [7] presented the optimization of a linear actu-
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ator to use in a solar powered water pump. They presented
both development of a new solar powered water pump and
the optimization design process used in the creation of the
pump. In another research, authors presented a method
for estimating the loss-of-load probability (LLP) of a pho-
tovoltaic water pumping system [8]. The study has been
carried out for constant profile, using a tank with a two day
autonomy capacity and two pumping heads applied to a
centrifugal pump [9-10]. The economical aspects have not
been considered in their researches. Mathematic models
of photovoltaic motor pump systems has been derived and
analyzed by [11]. The performances are calculated using
the measured meteorological data of different sites located
in Sahara and coastline regions of Algeria.

With information available on the solar irradiation,
pump and characteristics of photovoltaic arrays, the best
pump and photovoltaic could be selected for the applica-
tion, therefore the aim of this research is to studying the
possible application of solar energy to support electrical
power needed by water pump systems in remote-rural of
Iran.

This paper deals with a multi-objective optimization
problem with conflicting objectives aims that try to find the
best compromise tradeoffs among the feasible solutions in
the search space. Of course in order to decision making, a
fuzzy based method is applied in this paper to select the fa-
vored solution among non-dominated solutions. Through
fuzzy set theory, a linear membership function assigned for
each objective function. Due to nature of this optimization
problem the non-dominated sorting genetic algorithm (NS-
GAII) has been implemented.

2 PHOTOVOLTAIC WATER PUMPING SYSTEM –
PWPS

Figure 1 shows the topology of solar energy powered
water pump used for irrigation and drinking purposes for
rural communities of south area of Iran.

The presented system is consisted of an array consists
of photovoltaic panels, An inverter DC/AC, a pump unit,
whose characteristics depend on those of the water source
and a structure for supporting the PV array.

3 MATHEMATICAL MODEL OF PV

Output electric power from the photovoltaic generator
is given by the following equation [12]:

Ppv = ηpvApvIr, (1)

Where ηpv is the power conversion efficiency of the
module (power output from system divided by power in-
put from sun);Apv(m

2)is the surface area of PV panels;
Ir(W/m2)is the solar radiance.

Fig. 1. Block diagram of a stand-alone photovoltaic water
pumping system

For sizing optimization procedure, effective area of
photovoltaic generator (Apv) is defined as decision vari-
able ifApv is measured inm2, Ppv is numerically equal to
peak power rating of the array.

Fig. 2. Hourly values of meteorological parameters-solar
irradiation on titled plane

4 PUMPING SUBSYSTEMS MODEL

In this paper, a mathematical model which directly
links the output water flow rateQ versus the input op-
erating electric powerPa and total headh is used. This
model is based on the analysis of the experimental results
of two types of pumping subsystems [13]. This model is
presented as follows:

Pa(Q, h) = a(h)Q3 + b(h)Q2 + c(h)Q+ d(h), (2)
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wherea(h), b(h), c(h)andd(h) depend on total head and
can be described by the following equations:

a(h) = a0 + a1h+ a2h
2 + a3h

3 (3)

b(h) = b0 + b1h+ b2h
2 + b3h

3 (4)

c(h) = c0 + c1h+ c2h
2 + c3h

3 (5)

d(h) = d0 + d1h+ d2h
2 + d3h

3 (6)

5 WATER STORAGE TANK MODEL

Water storage tank is sized to meet the load demand
during non-availability period of renewable energy source,
commonly referred to as days of autonomy. Depending
on the photovoltaic cells production and the load require-
ments, the state of charge (SOC) of water storage tank can
be calculated from the following equations [14]:

Water storage tank charging,

SOC(t) = SOC(t−1)+

[
EWT (t)−

EL(t)

ηconv

]
ηtank (7)

Water storage tank discharging,

SOC(t) = SOC(t−1)−
[
EL(t)

EL(t)
ηconv − EWT (t)

]
ηtank,

(8)
whereSOC(t)andSOC(t -1)are the states of charge of wa-
ter storage tank(Wh) at the timet and t-1,respectively;
EWT (t) is the total energy generated by PV arrays (Wh);
EL(t) is the energy hydraulic demand at the timet (Wh);
ηconv andηtank are the conversion efficiency and charge
efficiency of water storage tank, respectively.

ηtank is taken equal to 1. Also theηconv in this study
is considered as a constant parameter and is taken equal to
0.95.

At any timet, the charged quantity of the water storage
tank is subject to the following constraints:

SOC(t) ≤ SOCmax (9)

0 ≤ SOC(t) (10)

6 OBJECTIVE FUNCTIONS FORMULATION

Two objective functions have been considered for the
PWPS optimization problem as follows:

1. Reliability requirements: minimizing loss of load
probability (LLP)

2. Cost considerations: minimizing Life Cycle Cost
(LCC)

6.1 Reliability requirements: minimizing loss of load
probability

In this work, we adopted the load losses probability
method to the solar energy pumping systems with a simi-
larity between the electrochemical storage batteries and the
water storage in tanks. Thus, theLLP is defined as the ratio
between the water deficit and the total requirement of wa-
ter. The sizing of a solar energy pumping system means the
sizing of the PV arrays and the water tank. This way, the
PV modules capacity,CA is defined as the ratio between
the volume of pumped waterQv and the average daily con-
sumption of waterDav. The capacity of storage,CS is
the ratio between the useful capacity of the tank,CUT and
the average daily consumption of water. The equations are
given by [12]:

CA =
Qv

Dav
(11)

CS =
CUT

Dav
(12)

With

Qv = EpvEsubAG
Hinc(0)

2.72hCUT
(13)

whereEpv andAG are, respectively, the efficiency and the
area of the photovoltaic array,Esub is the subsystem ef-
ficiency,Hinc(0) is the average of the daily global solar
radiation received on the photovoltaic array.

The PV array efficiency,Epv is the ratio between the
operating electrical power and the solar power received on
the total surface of the PV modules.

Esub is the pumping subsystem efficiency and is de-
fined as the ratio between the hydraulic power of the pump
and the operating electrical power of the subsystem.

If the tank is completely full at the end of the dayj,
then its state of filling,STF (j), is equal to 1. Otherwise at
the end of the dayj, the filling state of the tank is given by
the following relationship [12]:

SFT (j) = min {SFT (j − 1) + . . .

. . .+ EpvEsubAG
Hinc(j)

2.72hCUT
; 1

}
(14)

With
0 ≤ SFT (j) ≤ 1 (15)

In the case, where the stocked and pumped water is
inferior to the water requirement, the volume of lacking
water is accounted at the end of the dayj.

SFT (j) ≥ (
1

CS
) ⇒ Qlac(j) = 0 (16)

SFT (j) < (
1

CS
) ⇒ Qlac(j) = (1− SFT (j))DavCS

(17)
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In (16) and (17)Qlac(j) is the volume of lacking water in
the dayj. TheLLP corresponding to the solar energy water
pumping system is given by:

LLP =

∑
j Qlac(j)

NjDav
(18)

whereNj is the number of operating days.

So the first objective function that must be minimized
is determined as follows:

f1 = min

(∑
j Qlac(j)

NjDav

)
. (19)

6.2 Cost considerations: minimizing Life Cycle Cost

Life cycle cost of a pumping system can be calculated
using the following equation:

LCC = Cinv + Cmaint + Cremp (20)

Financial expenses (Cinv) a system include the initial
capital expenditure, design and installation of system. This
cost is still considered payment occurring in the initial year
of installing the system or by annuities. The maintenance
costs (Cmaint), is the sum of all costs annually scheduled.
The replacement costs (Crempl) is the sum of all costs of
replacing equipment provided during the life cycle of the
system occurs only in specific years.

6.2.1 Initial costs

The financial costs (Cinv) of a system include the initial
capital expenditure for equipment, design and installation
of the system.

6.2.2 Maintenance costs

Maintenance costs also some recurrent costs, are usu-
ally specified as a percentage of the cost of initial capital.

All costs are subject to an annual inflation rate (e0) and
a discount rate (d). Maintenance costs are expressed as
follows:

Cmaint = M0

(
1 + e0
d− e0

)[
1−

(
1 + e0
1 + d

)nv]
(21)

Cmaint = M0N if d = e0 (22)

M0 is the operating and maintenance cost during the
first year,nv is the life of pumping system.

Table 1. The costs and life time aspect for the system com-
ponents

Component P.V DC
motor

Water
tank

Conv.

Unit price
(DA/W)

280 200 35000 45

Maintenance
cost in the
first year %

3 %
of
price

3 % of
price

1 % of
price

1 % of
price

Life time
(year)

25 10 25 10

Real interest
rate

8 – – –

Inflation
Rate

4 – – –

6.2.3 Replacement costs

The replacement cost of each component of the system
is given by the following equation [15-16].

Cremp = Cu

n∑

j=1

(
1 + e1
1 + d

)((nvj)/(n+1))

(23)

WhereCu is the unit cost of component replacement,e1 is
the inflation rate cost of replacement components,n is the
number of replacing on the life cycle.

The following unit price, maintenance cost and lifetime
of each component (PV arrays, motor pump set, water stor-
age tank and converter) in this study are assumed as listed
in Table 1.

Therefore the second objective function is considered
as follows:

f2 = min {Cinv + Cmaint + Cremp} . (24)

Because of implementation of DC motor in this re-
search, the DC/DC boost converter is used and the eco-
nomic parameters of this component is listed in Table 1
and in order to investigate the effect of long term additional
cost of DC/DC converter the maintenance cost in the first
year % and life time (year) are considered in this optimiza-
tion and simulation and therefore the tank water capacity
versus number of storage days is investigated as output re-
sult in Table 6.

7 PRINCIPLES OF MULTI-OBJECTIVE OPTI-
MIZATION

Multi-objective optimization problems with conflicting
objectives may not hold just one solution, and in the most
cases there is a number of solutions without an absolute
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preference amongst them. Hence, a multi-objective opti-
mization problem with conflicting objectives aims to find
the best compromise trade-offs among the feasible solu-
tions in the search space. These kinds of solutions are
known as non-dominated solutions or Pareto solutions.

The set of non-dominated solutions or Pareto solutions,
construct the Pareto front or front of non-dominated solu-
tions. This set provides a number of options for decision
makers to choose the best option with regard to the other
quantitative or qualitative parameters. In general, a multi-
objective optimization problem can be formulized as fol-
lows:

min
x∈Xnx

f(x) =
{

f1(x) f2(x) , ..., fM(x)
}

(25)

g(x) ≤ 0 , h(x) = 0 (26)

whereg(x) ≤ 0 , h(x) = 0 , are the sets of the problem
constraints that determine the boundaries of the feasible
solution space innXdimensional search space, andf(x) is
an M dimensional vector of objective values. A map be-
tween decision variables ofx ∈ XNx and objective space
of f ∈ FM is determined by objective functions.

8 NSGAII ALGORITHM WITH STORAGE TANK

The computational algorithm of NSGA-II is used to ad-
dress the PWPS problem through the following steps:

Step 1Initialization. In this step a population is gener-
ated randomly in the search space as initial solutions of the
algorithm.

Step 2objective evaluations. For each individual of the
population, the values of objective functions are evaluated
in this section.

Step 3 Non-dominated sorting. The NSGA-II algo-
rithm sorts a population into distinctive non-dominated
levels (fronts). Initially, it achieves the Pareto optimalset
of the present population (RANK = 1), then it disregards
temporarily these solutions and search again the Pareto op-
timal set among the residual individuals of the population
(RANK = 2). This procedure is repeated until all fronts are
recognized and allocated to all individuals. This attribute
is one of the two features that illustrate the fitness of the
solutions. The second feature is crowding distance.

Step 4Crowding distance. After completing the non-
dominated sorting, the crowding distance is applied to sort
the individuals in the same front.

In order to estimate the density of solutions neighbor-
ing the ith individual in each non-dominated set, the av-
erage normalized distances of the two adjacent neighbors
for each objective function are calculated and summed all
together, as follows [17]:

CD(Xi) =
m∑

j=1

∣∣∣∣∣
fj(Xi+1)− fj(Xi−1)

fmax
j − fmin

j

∣∣∣∣∣ . (27)

Where CD(Xi)is the overall crowding distance of
solution Xi, m is the number of objective functions,
fj(Xi+1), fj(Xi−1)arejthobjective function values of the
two nearest neighbors of theith individual,fmax

j , fmin
j are

the maximum and minimum values ofjthobjective func-
tion.

Step 5Selection. The binary tournament based selec-
tion carried out between two randomly chosen individuals
from the population.

Step 6Cross-over.
Step 7Mutation
The above procedure except Step 1 is repeated for the

maximum number of iterations. Fig.3 shows the NSGAII
algorithm’s flowchart.

In order to decision making, a fuzzy based method is
applied in this paper to select the favored solution among
non-dominated solutions. Through fuzzy set theory, a lin-
ear membership function assigned for each objective func-
tion Eq. (28) and (29) are used respectively, for normal-
izing monotonically decreasing and increasing objective
functions [18].

µk
i =

fmax
i − fk

i

fmax
i − fmin

i

(28)

µk
i =

fk
i − fmin

i

fmax
i − fmin

i

(29)

fmax
i , fmin

i are the maximum and minimum values ofith
objective function.

Mathematically, none of the solutions in the trade-off
region has a priority with respect to other solutions. Due
to the subjective imprecise nature of the decision maker’s
judgment, a fuzzy satisfying method is applied here to
select the preferred solution among non-dominated solu-
tions. Through fuzzy set theory, each objective function is
presented with a linear membership function.

If the objective function is monotonically decreasing,
Eq. (28) is used for normalizing vice versa if the objective
function is monotonically increasing Eq. (29) is applied.

The normalized membership function of the kth non-
dominated solution is defined as follows:

µk =

∑m
i=1 µ

k
i∑Np

k=1

∑m
i=1 µ

k
i

, (30)

whereNp is number of non-dominated solutions andm is
number of objective functions.

The solution with the maximum membership value is
selected as the best compromising solution.

Of course in order to decision making, a fuzzy based
method is applied in this paper to select the favored solu-
tion among non-dominated solutions. Through fuzzy set
theory, a linear membership function assigned for each ob-
jective function.
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9 SIMULATION AND RESULTS

The technical characteristics of the PV modules and
motor pump are listed in Tables 2 and 3. The load profile
is assumed to be constant with a total daily requirement of
56 m3 of water

Table 2. Specifications of the photovoltaic array used in
this study

Voc [V] Isc [A] Vmx[V] Imax[A] Pmax
[W]

21.7 3.4 17.4 3.16 55

Since solar energy, derives from the sun, is available
only during the day and varies as the sun follows its daily
and yearly cycles, as well as being affected by cloud cover.
The solar power is assumed to be constant during the time

Table 3. Specifications of the motor pump used in this study
Motor Rated

power (W)
Range
Voltage
(V)

Maximum
Current (A)

DC 400 0-48 13

step (1 hour in this study). Table 4 lists the parameters of
the NSGA-II algorithm.

Table 4. Parameters of the NSGA-II algorithm
Max_Iter Population

Size
Crossover
Rate

Mutation
Rate

250 50 0.8 0.4

In order to better evaluate the quality of the obtained
non-dominated solutions, 2-D figures of non-dominated
solutions for specified objective have been presented in
Figs. 4 and 5 for head of pumping14 m (for low depth
area) and for40 m (for high depth area) respectively.

Table 5 represents some of non-dominated solutions,
and Table 6 shows the photovoltaic water pumping system
capacities in terms of small photovoltaic module numbers
and water storage tank capacity versus number of storage
days in those solutions. The obtained non-dominated so-
lutions allow the system operator to practice their personal
preference in selecting any one of them for implementa-
tion.

Table 5 shows some of the obtained non-dominated so-
lutions between 25 non-dominated solutions. The obtained
non-dominated solutions allow the system operators to use
their personal preference in selecting any one of them for
implementation. Table 6 shows the related variables for
the obtained solutions. The optimum values of the non-
dominated solutions for each objective function have been

Fig. 3. Flow chart of the NSGAII algorithm

Fig. 4. Pareto front, 2-D representation of non-dominated
solutions for LLP and LEC for head of pumping= 14m
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Table 5. Some of the non-dominated solutions for the
PWPS optimization problem

Fuzzy
Ranking

Loss of load
probability

Life Cycle
Cost ($)

Normalized
membership
function

1 0.00826 4730490.74 0.0124843
2 0.00686 4811901.59 0.0124253
3 0.00735 4837330.83 0.0124025
4 0.00563 3951902.29 0.0123903
5 0.01832 4476129.72 0.0123746
6 0.01102 4678214.63 0.0123532
7 0.00982 3999628.14 0.0123354
8 0.01303 4194904.08 0.0123212
9 0.00948 4391033.79 0.0123187
10 0.01410 4133029.32 0.0122959
11 0.00781 4076129.72 0.0122830
12 0.01212 4265987.44 0.0122423
13 0.02121 4470429.82 0.0122262
14 0.01257 4208318.11 0.0122128
15 0.02232 3522473.67 0.0122094
16 0.01234 3250515.16 0.0121938
17 0.03232 3607850.21 0.0121876
18 0.04220 3407850.21 0.0121524
19 0.02232 3565987.44 0.0121398
20 0.03410 3770429.82 0.0121295
21 0.03632 3630490.74 0.0121134
22 0.04262 3511901.59 0.0120953
23 0.05131 3551902.29 0.0120938
24 0.05541 3476129.72 0.0120876
25 0.06232 3378214.63 0.0120624

highlighted in Table 5. However with considering two
conflicting objective function the best compromising solu-
tion is the solution with the maximum membership value.
The best compromising solution with fuzzy ranking 1 is
highlighted in the first row of Table 5. The corresponding
normalized membership function is 0.0124843 and related
loss of load probability is 0.00826 and life cycle cost ($) is
4730490.74. As seen in Table 6 for the best compromising
solution with fuzzy ranking 1 which is highlighted in the
first row of Tab.5. The corresponding normalized member-
ship function is 0.0124843 and related loss of load proba-
bility is 0.00826 and life cycle cost ($) is 4730490.74 and
related number of photovoltaic module is 2 and number of
storage days is 6.

10 CONCLUSION

In this paper, the photovoltaic water pumping optimiza-
tion with optimal sizing of photovoltaic arrays capacity and
water tank storage days is investigated. The decision vari-
ables of the PWPS problem are discrete so that this opti-
mization problem is the combination of discrete variables.
The objectives of this problem are loss of load probability
(LLP) and life cycle cost (LCC) minimization, so that this
problem has been considered as multi -objective optimiza-
tion problem.

In the proposed algorithm, an external archive of non-
dominated solution is kept which is updated during itera-
tion. In order to decision making, a fuzzy based method is
applied in this paper to select the favored solution among
non-dominated solutions. This attribute gives more flex-
ibility to the planner for choosing the best final scheme
among the obtained solutions. However with considering
two conflicting objective function the best compromising
solution is the solution with the maximum membership
value

Table 6. Related decision variables for obtained non-
dominated solutions

Fuzzy
Ranking

Number of photo-
voltaic module

Number of
storage days

1 2.000 6.000
2 2.000 5.000
3 3.000 8.000
4 3.000 6.000
5 3.000 7.000
6 3.000 8.000
7 4.000 9.000
8 4.000 8.000
9 4.000 7.000
10 4.000 6.000
11 5.000 8.000
12 5.000 6.000
13 3.000 7.000
14 3.000 6.000
15 2.000 5.000
16 2.000 6.000
17 4.000 5.000
18 5.000 6.000
19 4.000 3.000
20 3.000 6.000
21 4.000 6.000
22 4.000 8.000
23 3.000 6.000
24 3.000 6.000
25 4.000 8.000

AUTOMATIKA 56(2015) 2, 132–139 138



New Computing Method for Techno-Economic Analysis of the Photovoltaic Water Pumping System Using Fuzzy based Approach M. Mohammadi

REFERENCES
[1] Bouzidi B., 2011.Viability of solar or wind for water pump-

ing systems in the Algerian Sahara regions- case study
Adrar. Renewable and Sustainable Energy Reviews 15,
4436-4442.

[2] Pytlinski JT., 1978. Solar energy installations for pumping
irrigation water. Solar Energy 21, 255-262.

[3] Smulders PT., Jongh J., 1994. Wind water pumping status,
prospects and barriers. Renewable Energy 5, 587-594.

[4] Ramadhas AS., Jayaraj S., Muraleedharan C., 2006. Power
generation using coir-pith and wood derived producer gas
in diesel engines. Fuel Processing Technology 87, 849-853.

[5] Kamel K., Dahl C., 2005. The economics of hybrid power
systems for sustainable desert agriculture in Egypt. Energy
30, 1271-1281.

[6] Kaldellis J.K., Zafirakis D., 2012. Optimum sizing of stand-
alone wind photovoltaic hybrid systems for reprehensive
wind and solar potential cases of the Greek territory. Jour-
nal of Wind Engineering and Industrial Aerodynamics 10,
169-178.

[7] Wade N.S. and Short T.D., 2012. Optimization of a linear
actuator for use in a solar powered water pump. Solar En-
ergy 86, 867-876.

[8] Hadj Arab A., Chenlo F., Benghanem M., 2004. Loss-of-
load probability of photovoltaic water pumping systems.
Solar Energy 76, 713-723.

[9] Morgan, T.R., Marshall, R.H., Brinkworth, B.J., 1997.
ARES- a re?ned simulation program for the sizing and op-
timisation of autonomous hybrid energy systems. Solar En-
ergy 59, 205-215.

[10] Muselli, M., Notton, G., Louche, A., 1999. Design of hy-
brid photovoltaic power generator, with optimization of en-
ergy management. Solar Energy 65, 143-157.

[11] Hamidat A. and Benyoucef B., 2008. Mathematic models of
photovoltaic motor-pump systems. Renewable Energy 33,
933-942.

[12] Hamidat, A., Benyoucef, B.,2009, Systematic procedures
for sizing photovoltaic pumping system, using water tank
storage. Energy Policy, 37, 1489–1501.

[13] Hamidat, A., Benyoucef, B., Boukadoum, M., 2007. New
Approach to Determine the Performances of the Photo-
voltaic Pumping System. Revue des Energies Renouve-
lables ICRESD-07 Tlemcen. 101-107.

[14] Yahia Bakelli, Amar Hadj Arab, Boubekeur, 2011. Optimal
sizing of photovoltaic pumping system with water tank stor-
age using LPSP concept. Solar Energy 85. 288-294.

[15] Rajendra Prasad A., Natarajan E., 2006. Optimization of
integrated PV/wind power generation systems with battery
storage. Energy 31, 1943-1954.

[16] Nguyen Q.K., 2007. Alternatives to grid extension for rural
electri?cation: decentralized renewable energy technologies
in Vietnam. Energy Policy 35, 2579–2589.

[17] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002.
Fast and elitist multi-objective genetic algorithm: NSGA-II.
IEEE Trans actions on Evolutionary Computation 6, 182-
197.

[18] Zangeneh A., Jadid S. and Rahimi-Kian A., 2011. A fuzzy
environmental-technical economic model for distributed
generation planning. Energy 36, 3437-3445.

M. Mohammadi was born in Arak, Iran. He re-
ceived the B.Sc. degree in electrical engineering
from Power and Water University of Technology
(PWUT), Tehran, Iran, in 2005 and M.Sc. degree
in the department of Power Electrical Engineer-
ing, Shahed University, Tehran, Iran in 2007 and
Ph.D. degree in the department of Power Electri-
cal Engineering, Sciences and Research Univer-
sity, Tehran, Iran, 2011. Now he is Assistant Pro-
fessor of Borujerd Branch, Islamic Azad Univer-

sity, Borujerd ,Iran. His areas of interests are renewable energies, power
market, and optimization, economic analysis in power system, power sys-
tem planning and distribution network management.

AUTHORS’ ADDRESSES

Mohammad Mohammadi, Ph.D.
Department of Electrical Engineering,
Borujerd Branch, Islamic Azad University,
Borujerd, Iran,
email: Mohamadi.m.@iaub.ac.ir

Received: 2013-09-20
Accepted: 2013-12-30

139 AUTOMATIKA 56(2015) 2, 132–139


