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A nonlinear approach called the robust structured total least squares kalman filter (RSTLS-KF) algorithm is
proposed for solving tracking inaccuracy caused by outliers in bearings-only multi-station passive tracking. In that
regard, the robust extremal function is introduced to the weighted structured total least squares (WSTLS) location
criterion, and then the improved Danish equivalent weight function is built on the basis, which can identify outliers
automatically and reduce the weight of the polluted data. Finally, the observation equation is linearized according
to the RSTLS location result with the structured total least norm (STLN) solution. Hence location and velocity of
the target can be given by the Kalman filter. Simulation results show that tracking performance of the RSTLS-KF
is comparable or better than that of conventional algorithms. Furthermore, when outliers appear, the RSTLS-KF is
accurate and robust, whereas the conventional algorithms become distort seriously.
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Robusni algoritam praćenja mjerenjem smjera pomoću strukturiranog potpunog Kalmanovog filtra zas-
novanog na metodi najmanjih kvadrata. U ovome radu predložen je nelinearni pristup za rješavanje netočnosti
uzrokovanih netipčnim vrijednostima kod praćenja mjerenjem smjera pasivnim senzorima s više stanica. Pristup
je zasnovan na robusnom strukturiranom potpunom Kalmanovom filtru zasnovanom na metodi najmanjih kvadrata.
Pomoću predložene metode moguće je estimirati položaj i brzinu praćenog objekta. Simulacijski rezultati pokazuju
da je učinkovitost predloženog algoritma jednaka ili bolja od konvencionalnih algoritama. Nadalje, u prisustvu
netipčnih vrijednosti mjerenja, predloženi algoritam zadržava točnost i robusnost, dok konvencionalni algoritmi
pokazuju pogreške u estimaciji.

Ključne riječi: praćenje pasivnim senzorima, robusna estimacija, nelinearni sustav, ekvivalentna težinska funkcij

1 INTRODUCTION

Bearings-only tracking plays an important role in con-
trol system, navigation field, military applications, etc. [1-
3]. It is a typical nonlinear filtering problem to estimate the
location and velocity of a target only using angle measure-
ment from observation station [4-6]. It can be divided into
single-station tracking and multi-station tracking. Multi-
station tracking is widely used because more information
can be obtained to improve tracking accuracy.

Various algorithms have been proposed for the multi-
station bearings-only tracking problem. The particle filter
(PF) [7] can provide sufficient precision but it suffers from
enormous computational demands which limit its applica-
tions in practice. The extended Kalman filter (EKF) han-
dles the problem through linearizing measurement model
[8, 17]. Unfortunately, it often leads to poor accuracy and
tracking divergence. The unscented Kalman filter (UKF)
selects a set of sigma points to approximate the posterior

probability density and performs superior accuracy [9].

Actually, the nonlinear measurement model of
bearings-only tracking can be transformed into a pseudo-
linear equation without linearization errors where the co-
efficient matrix H and the observation vector Z are both
polluted by noise [10]. To make use of the correlation of er-
rors between H and Z, the constrained total least squares
(CTLS) algorithm was introduced [11-12]. [10] discussed
the structured total least squares (STLS) algorithm with the
inverse iteration method which reduced the computational
cost. The equivalence of the STLS and CTLS was also
proved [13]. According to the STLS solution, the location
and velocity of the target can be obtained by Kalman fil-
ter (KF), which is called (STLS-KF) algorithm. However,
there are also some problems in the STLS-KF algorithm.
On the one hand, the measurement data is easily polluted
by outliers in practice, especially in military application
or under other bad conditions. [14] shows that the proba-
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bility of outliers in the samples is about 1%∼10%. If we
do nothing about outliers, the tracking result will be dis-
torted seriously. On the other hand, parameter settings are
difficult and complex in inverse iteration method and the
computational cost still needs to reduce.

The contribution of this paper is to derive a new ro-
bust STLS-KF (RSTLS-KF) tracking algorithm with struc-
tured total least norm (STLN) solution. Firstly, the multi-
station bearings-only location problem is transform into
the weight STLS (WSTLS) problem, and then the ro-
bust location criterion is introduced to build equivalent
weight function which can reduce weights of outliers au-
tomatically. According to the RSTLS solution with STLN
method [15], we linearize the measurement equation and
obtain accurate and robust tracking result by means of the
Kalman filter.

The paper is organized as follows. In section 2, we
build the tracking model. In section 3, the robust STLS
criterion is introduced. Solution to the new filtering al-
gorithm called the RSTLS-KF is discussed in section 4.
section 5 yields the performance comparison of the algo-
rithms. Conclusions of the paper are drawn in section 6.
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  Fig. 1. Tracking model

2 TRACKING MODEL

As shown in Fig.1, we assume that the target is in
uniform linear motion with acceleration disturbance. The
location and velocity vector at time index k is given by
Xk = (xtk, y

t
k) and Ẋk = (ẋtk, ẏ

t
k), respectively. So

that the state vector of the target can be expressed by
Xt
k = [xtk, ẋ

t
k, y

t
k, ẏ

t
k]T . where k = 1, 2, · · · , n, n is

measurement times. m is the number of observation sta-
tions, which can be devoted as Xs

i = (xi, yi), where
i = 1, 2, · · · ,m.

The dynamics model can be written as:

Xt
k = FXt

k−1 + ΓUk−1,k, (1)

where F is the state transition matrix, Γ is noise drive ma-
trix, and U is process noise matrix. They can be given by:

F =




1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1


 , Γ =




(∆t)2

2 0
∆t 0
0 (∆t)2

2
0 ∆t


 ,

where ∆t is the sampling interval.
φik is the azimuth of ith observation station to the tar-

get at time index k. So that measurement equation can be
written as:

φ∗ik = arctan
ytk − yi
xtk − xi

. (2)

Considering the additive noise in azimuth:

φik = arctan
ytk − yi
xtk − xi

+ eik, (3)

where eik is the measurement error of azimuth and it is
generally assumed to be Gaussian distributed with zero
mean.

3 ROBUST STRUCTURED TOTAL LEAST
SQUARES PASSIVE LOCATION ALGORITHM

3.1 Location Model and the WSTLS Problem
Assume that z∗i = xi sinφ∗ik − yi cosφ∗ik is a trans-

formed quantity at time index k and then the measurement
equation (2) can be rewritten as:

Z∗ = H∗X, (4)

where

Z∗ = [z∗1 , z
∗
2 , · · · , z∗m]

T
,H∗ =




sinφ∗1k
sinφ∗2k
...
sinφ∗mk

- cosφ∗1k
-cosφ∗2k
...
-cosφ∗mk


 .

whereZ∗ is exact observation vector andH∗ is coefficient
matrix. (3) shows that Z∗ and H∗ are both polluted by
noise, that is:

Z = Z∗ + ∆Z,H = H∗ + ∆H, (5)

where ∆Z and ∆H are error matrices of observa-
tion vector and coefficient matrix, respectively. Both
∆Z and ∆H come from the measurement noise E =
[e1k, e2k, · · · , emk]

T , and they are not statistically inde-
pendent. Assume thatW=diag [w1, · · · , wm] is the weight
matrix, to make use of their relations, the passive location
can be render into the weight STLS problem [6]:





min
E∈Rm

ETWE

s.t.

{
D(E)Z = 0
ZTZ = 1

, (6)
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where D(E) = D0 + D1e1k+D2e2k+ · · ·+Dmemk,
augmented matrix of coefficient matrix and observation
vector can be expressed by D0 = D = [H,Z],
Di = 1√

wi
[G1(:, i). G2(:, i), G3(:, i)], where G1,G2

and G3 are the diagonal matrix of column elements of
H and Z. G1 = diag[cosφ1k, · · · , cosφmk], G2 =
diag[sinφ1k, · · · , sinφmk], G3 = diag[x1 cosφ1k +
y1 sinφ1k, · · · , xm cosφmk+ ym sinφmk].

3.2 The robust STLS Algorithm

The WSTLS algorithm will be accurate and consistent
when azimuth noise are Gaussian exactly. However, the
azimuth is easily polluted by outliers in practice. At that
time, the WSTLS result will be far away from the real
value. Hence, we introduce the pollution distribution [16]:

Gd = (1− ε)Fd + εQd, (7)

where Fd is the dominated distribution, Qd is the interfer-
ence distribution and ε represents the pollution rate which
is the rate of the polluted data in all the measurement data.
In order to obtain accurate and robust result, both of Fd
and Qd should be considered.

The residuals of location estimation X̂ is:

S = HX̂ −Z = [h1k, · · · ,hmk]
T
X̂ − [z1, ..., zm]

T
,

(8)
where the residual vector S = [s1, s2, · · · , sm]T contains
the errors both in H and Z. Consequently, the extremal
function of (6) can be written as:

n∑

i=1

wiρ(∆hi1,∆hi2,∆zi) = min . (9)

where ρ (·) is score function which is generally convex and
symmetrical. Make the derivative of (9) toX , the extremal
function can be obtained by:

n∑

i=1

wiψ =

n∑

i=1

wi[
∂(∆hi1)

∂X
ψ1(∆hi1)+

∂(∆hi2)

∂X
ψ2(∆hi2) +

∂(∆zi)

∂X
ψ3(∆zi)] = 0.

(10)

where ψ (·) is the derivative of ρ (·). Substituting
(∆hi1)2 + (∆hi2)2 + (∆zi)

2 for ρ(∆hi1,∆hi2,∆zi) in
(10), the derivative is:

n∑

i=1

wi[
∂(∆hi1)

∂X
∆hi1 +

∂(∆hi2)

∂X
∆hi2 +

∂(∆zi)

∂X
∆zi] = 0.

(11)
In order to reduce the effect of outliers, we make ψ

function bounded and non-negative, and then the effect of
outliers will also be bounded. Accordingly, when Wb =

diag(wb1, · · ·wbm), ψ1(∆hi1) = ∆hi1wbi, ψ2(∆hi2) =
∆hi2wbi, ψ3(∆zi) = ∆ziwbi, (10) can be stated as:

n∑

i=1

wi[
∂(∆hi1)

∂X
∆hi1 +

∂(∆hi2)

∂X
∆hi2 +

∂(∆zi)

∂X
∆zi] = 0.

(12)
where wi = wiwbi. The only difference of (12) and
(11) is the weight matrix, and (12) will equivalent to the
WSTLS problem if ρ(∆hi1,∆hi2,∆zi) = (∆hi1)2 +
(∆hi2)2 + (∆zi)

2. Substituting equivalent weight matrix
W = diag [w1, · · · , wm] for W in (6), the robust STLS
(RSTLS) criterion can be given by:





min
E∈Rn

ETWE

s.t.

{
D(E)Z = 0
ZTZ = 1

, (13)

where D(E) = D0 + D1e1k+D2e2k+ · · ·+Dmemk,
Di = 1√

wi
[G1(:, i),G2(:, i),G3(:, i)], i = 1, 2, · · · ,m.

That is, we convert the RSTLS problem to design of
equivalent weight function W . It generally consists of
two parts: the division of measurement data and the cor-
responding weight of each interval.

Two piecewise weight method divides the measure-
ment data into normal data and abnormal data and then
the weights of abnormal data will be reduced, such as Hu-
ber method and Danish method [14, 18]. On the other
hand, three piecewise weight method such as the Institute
of Geodesy and Geophysics III (IGGIII) method [14] fur-
ther divides abnormal data into available data and harmful
data. It is assumed that the available data are polluted by
small outliers whose weights should be reduced, and the
harmful data are polluted by large outliers whose weights
should be taken to zero.

In the RSTLS location, ifwi is zero or close to it, equiv-
alent weight matrix W will become singular and then the
RSTLS result will be inaccurate. Thus we build nonzero
weight function. i.e., Danish weight function:

wi =





wi |s̃i| < r0

wi · exp

[
1−

(
|s̃i|
r0

)2
]
|s̃i| ≥ r0

. (14)

Actually, the influence of outliers to location is limited
because azimuth is bounded, so we also bound the value
of weight to avoid W being close to singular. Therefore,
improved Danish weight function is given by:

wi =





wi |s̃i| < r0

wi · exp

[
1−

(
|s̃i|
r0

)2
]
r0 ≤ |s̃i| < r1

wi · exp

[
1−

(
r1
r0

)2
]
|s̃i| ≥ r1

, (15)
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where s̃i is standard residual. r0 and r1 are related to the
sensitivity of the weight function to outliers. In general, r0

tunes both accuracy and robustness of the algorithm. Ap-
propriate r0 is related to the true pollution distribution and
the confidence coefficient of s̃i. If less prior information
can be utilized, the experience value r0 ∈ [1.5, 2] is avail-
able, which can also make the result robust [14].

[6] has presented the location mean square error for the
WSTLS algorithm, and it is expressed as:

PWSTLS = σ2
[
HT (HXW

−1HT
X)−1H

]−1
. (16)

Therefore, the location mean square error of the RSTLS
algorithm can be shown as:

PRSTLS = σ2
[
HT (HXW

−1
HT
X)−1H

]−1

. (17)

where σ2 represents measurement covariance.

4 THE RSTLS-KF PROBLEM AND SOLUTION

According to the RSTLS location result, the observa-
tion equation can be linearized without linearization error,
that is:

X̂RSTLS,k = GkX
t
k +Nk, (18)

where Gk =

[
1 0 0 0
0 0 1 0

]T
, Nk is the estimation error

vector of the RSTLS location algorithm, and its covariance
matrix is given by (17). Therefore, the RSTLS-KF solution
can be described as follows:




X̂t
k,k−1 = FX̂t

k−1

Pk,k−1 = FPk−1F
T +Qk−1

Kk = Pk,k−1G
T
k

[
GkPk,k−1G

T
k + PRSTLS,k

]−1

X̂t
k = X̂t

k,k−1 +Kk

[
X̂RSTLS,k − X̂k,k−1

]

Pk = [I −KkGk]Pk,k−1

.

(19)

There is an important practical issue which is called
wraparound problem of KF based method in bearings-only
tracking. The azimuth measurements are in the interval
[0, 2π), but when two or more measurements are obtained
and be operated (addition, average, etc.), the result may out
of the bound which may cause degradation performance of
the RSTLS-KF. Hence, we must keep the operation in the
interval and the track estimates will more accurate.

Now, we discuss the solution of the RSTLS algorithm
with STLN method. Defining a matrix C ∈ Rm×q such
that:

Cα = ErX (20)

whereEr ∈ Rm×2 is an error matrix to be determined and
α ∈ Rq×1 represents the corresponding elements ofEr. q

is the number of different such element. In bearings-only
location model, q = 2m. The construction of C is carried
out according to the following rule:

If αl is the (i, j)th element ofEr, then cj is the (i, l)th

element of C, where i = 1, · · · ,m, j = 1, 2 and l =
1, · · · , q.

Thus, the solution of the RSTLS problem with the
STLN method can be given as follow.

1) Initialization:
Input H , Z, and tolerance εs.Set equivalent weight

matrix W STLN = diag(w1, w1, · · · , wm, wm) = I2m,
Er=O, and α= 0.

2) Calculate residuals S = HX̂k,k−1 − Z, and then
normalize them, and calculate equivalent weight wi ac-
cording to (15).

3) Repeat

(a) minimize
∆x,∆α

∥∥∥∥
[

C H +Er
W STLN O

](
∆α
∆X

)
+

(
−S

W STLNα

)∥∥∥∥
2

(b) SetX = X + ∆X , α = α+ ∆α

(c) Construct Er from α, and C fromX .
Until (‖∆X‖ , ‖∆α‖ ≤ εs).
The Newton’s method can be used to deal with

step3(a). From the above discussion, we know that the ex-
act and robust location result can be obtained in the RSTLS
solution, which guarantees the accuracy and stability of the
Kalman filter. Compared with the inverse iteration method,
the STLN method is simple and direct which reduces the
calculation in bearings-only tracking problem.

5 SIMULATION

As shown in Fig.1, the target is in uniform linear mo-
tion and origin state isXt

0 = [0, 8, 50, 10]
T . Measurement

times is 60, and interval t is 1 second. L is the number of
Monte-Carlo runs, here L = 200. The root mean squares
error (RMSE) in location at time index k is defined as:

RMSEk =

√√√√ 1

L

L∑

i=1

(x̂ik − xik)2+(ŷik − yik)2. (21)

In theory, the larger the number of observation stations is,
the more accurate the filter would be. Moreover, the bad
effect of single outlier will be reduced accordingly. How-
ever, the number of stations is generally limited in prac-
tical applications. Measurement delay is another problem
which can affect the accuracy of the multi-station tracking.
In this paper, we focus on the robust performance of algo-
rithms, and thus measurement delay problem is neglected
and fixed number of observation stations m = 4 is set.
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The motion of the target is subject to a process noise
scalar of w = 10−4, and the measurement noise follows
Gaussian distribution with mean value 0, standard devi-
ation σ = 0.6◦. Process noise and measurement noise
are independent and identically distributed. Set r0= 1.5,
r1= 6.

For fair comparison, the algorithms are set as the same
initial conditions. The initial location is estimated by the
least squares method at the beginning of tracking and the
estimate velocity follows v̂ ∼ N(v, σ2

v), where v is the
true velocity, σv = 10m/s.

Simulation experiment 1: No outliers in measurement
data. The RMSEs of algorithms are shown in Fig.2.

 

  Fig. 2. The RMSEs when no outliers exist

As shown in Fig.2, when no outliers in measurement
data, all algorithms are close to convergence. Towards the
end of the simulation time, the RSTLS-KF and STLS-KF
obviously outperform the EKF and MGEKF algorithms.
This is because there are no linearization error in the
RSTLS-KF and STLS-KF and the RSTLS and STLS lo-
cation result is reliable. The computational complexity of
the RSTLS-KF algorithm is a bit higher than that of the
STLS-KF algorithm due to equivalent weight calculation.

Simulation experiment 2: There are some outliers in
the measurement data of one of stations. Continuous out-
liers appear from 41s to 45s, whose intensities are 5 . Large
outlier appears at 50s, whose intensity is 50. Simulation
results are shown in Fig.3.

As shown in Fig.3, when measurement data is polluted
by outliers, the performance of the EKF, MGEKF, and
STLS-KF algorithms are degraded significantly, whereas
the result of the RSTLS-KF algorithm is still close to
the true value. When continuous small outliers appear
(41∼45s), the RSTLS-KF algorithm is still robust but the
curve of the other algorithms become incredible. When
large outlier appears (50s), the RSTLS-KF algorithm is

 

Fig. 3. The RMSEs when there are some outliers

hardly affected, however, the result of the other algorithms
are distorted seriously.

6 CONCLUSION

We have proposed an efficient method called the
RSTLS-KF algorithm for solving nonlinear problem and
inaccuracy caused by outliers in bearings-only tracking.
The main new features of this algorithm are that it lin-
earizes the measurement equation without linearization er-
ror and has better tracking performance over traditional al-
gorithms. Furthermore, it can identify the outliers auto-
matically according to improved Danish weight function
we presented and reduce the weight of the polluted data
effectively. Simulation results show that the RSTLS-KF is
convergent and stable whether outliers exist. Of course, to
calculate the equivalent weight function increases the com-
putational complexity, which will be addressed in future
work by developing fast versions of the RSTLS-KF.
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