MAGNETIC RESONANCE IMAGING OF LIVER LESIONS

Miljenko Marotti, Ratimira Klarić-Čustović, Ivan Krolo, Nenad Babić

Department of Diagnostic and Interventional Radiology, Sestre milosrdnice University Hospital, Zagreb, Croatia

SUMMARY — With the introduction of breath-hold techniques, magnetic resonance (MR) imaging has become an excellent diagnostic tool for the detection and characterization of benign and malignant liver lesions. Dynamic, gadolinium postcontrast studies as well tissue-specific contrast media highly improve the characterization of liver lesions. Multisection breath-hold techniques enable imaging of the entire region of interest in a single suspended respiration. MR-cholangiopancreatography allows for simultaneous analysis of biliary tree and pancreatic duct. The ability of various MR pulse sequences to display differences between normal and pathologic tissues is the basis of detection and characterization of focal and diffuse liver changes.

Cyst

Ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) have similar possibilities in detection and evaluation of cystic lesions. On MRI, simple cysts are shown as round or oval, sharply defined homogeneous lesions with very low signal intensity on T1 weighted images and homogeneous very high signal intensity on T2 weighted images. On postcontrast scans, they resemble void signal intensity (Fig. 1). Hemorrhagic cysts show an increase of signal intensity according to time of bleeding. Septa and daughter cysts in case of echinococcus are well visualized as linear structures within the cyst (Figs. 2a, b). TRUFI and HASTE breath-hold sequences show cysts as high signal intensity lesions (Fig. 2c). Occasionally abscesses have similar morphology as cysts (Fig. 3).

Hemangioma

Differentiation of hemangiomas from other focal liver lesions is of great importance, as they occur in 1% to 20% of the population. The majority of hemangiomas are asymptomatic measuring from few millimeters to 20 centimeters, and require no treatment. Sometimes (15%) they produce the symptoms of nausea, abdominal pain and vomiting due to rupture, hemorrhage or extrinsic compression of adjacent structures. Hemangiomas have a female/male ratio of 5:1, and are multiple in 50% of patients. The usual US description of hemangioma is that of a well defined, rounded, echogenic homogeneous lesion, usually less than 2 centimeters in size. Sometimes, hemangiomas on US show a hypoechoic inhomogeneous pattern, making impossible differentiation from other necrotic liver tumors.

Hemangiomas are hypodense on native CT scans, whereas on dynamic postcontrast scans they exhibit marked edge enhancement.

On MRI, hemangiomas appear as low-signal intensity lesions on T1 weighted images (Fig. 4a, 4b), whereas on T2 weighted images they display a high-intensity appearance. The areas of low-signal intensity correspond with fibrous tissue. MRI is very sensitive in
detection and differentiation of hemangiomas from other focal liver lesions, whereas on T2 weighted images with very long TR they hold high-intensity appearance, opposite to other solid and cystic lesions. Breath-hold techniques enable dynamic postcontrast studies which demonstrate hemangiomas as edge nodular enhancing lesions in the arterial phase with central hypointensity, due to large peripheral feeding vessels\(^8,10\) (Fig. 4d). Small hemangiomas (less than 2 cm) demonstrate uniform enhancement and on delayed scans they become isointense with liver parenchyma. Some large hemangiomas have a central stellate area similar to the central scar of focal nodular hyperplasia (FNH), and exhibit nodular enhancement progressing centripetally. The scar in hemangioma has low signal intensity on T2 weighted images due to fibrous tissue\(^11\). The central scar of FNH consists of rich
Focal Nodular Hyperplasia and Hepatocellular Adenoma

According to one report, CT is less sensitive in detection of FNH than US. Hepatic adenomas cannot be differentiated on the US basis from FNH. MRI has been reported to be able to detect the central scar not detect-

vascular fibrous tissue and exhibits high signal intensity on T2 weighted images. Metastases from endocrine tumors may have extremely high signal intensity and can be misdiagnosed as hemangiomas. Confirmation of hemangioma is possible after administration of SPIO particles with strong increase of signal intensity on post-contrast T1 weighted images.

Focal Nodular Hyperplasia and Hepatocellular Adenoma

According to one report, CT is less sensitive in detection of FNH than US. Hepatic adenomas cannot be differentiated on the US basis from FNH. MRI has been reported to be able to detect the central scar not detect-
able by US or CT, and can differentiate FNH from metastasis. FNH appears on MRI as an isointense or slightly hypointense lesion on T1 weighted images (Fig. 5a). On T2 weighted images, FNH is isointense with liver parenchyma with a scar of high signal intensity (Fig. 5b). The central scar appears hypointense on T1 weighted images and hyperintense on T2 weighted images due to fresh connective tissue with rich vascularity.

In the early phase, FNH shows strong enhancement of the parenchymal part of the lesion compared to normal liver parenchyma, while the central scar remains unenhanced (Fig. 5c). In the delayed phase, the parenchymal part of the lesion becomes isointense with the liver, while the central scar shows increase in signal intensity. This biphasic enhancement pattern is specific for FNH. On T2 weighted images, the parenchymal part of the lesion is isointense with the liver, while the central scar exhibits high signal intensity. Hepatocellular adenoma may have slightly hypointense (Fig. 6a) or increased signal intensity on T1 weighted images due to the high glycogen content. Hemorrhage within adenoma shows high signal intensity on T1 as well as on T2 weighted images. The hypervascular nature of hepatocellular adenoma shows early enhancement after administration of contrast...
media with rapid washout (Fig. 6b). Delayed postcontrast image demonstrates isointensity of the lesion with liver parenchyma (Fig. 6c).

Hepatocellular Carcinoma

US and CT are equally accurate in the detection of hepatocellular carcinoma. Ultrasound appearance of hepatocellular carcinoma is variable. Small lesions are usually hypoechoic. Larger lesions have increased echogenicity. Intraluminal vessel tumor invasion is readily recognized by US. Diffuse form of hepatocellular carcinoma is very difficult to demonstrate with CT despite the application of contrast media.

MRI usually differentiates hepatocellular carcinomas from other liver lesions due to the presence of tumor capsule, intratumoral septa, daughter nodules, central scarring and tumor thrombi in portal or hepatic veins. Hepatocellular carcinoma is predominantly supplied by the hepatic artery, which results in early arterial contrast enhancement. On T1 weighted images, hepatocellular carcinoma shows various signal intensities, from hypo-to iso- or hyperintense values. On T2 weighted images, most of them (80%) show high signal intensity compared with liver parenchyma (Fig. 7b). Well differentiated tumors exhibit high signal intensity on T1 weighted images and isointensity on T2 weighted images. Poorly differentiated hepatocellular carcinoma demonstrates low signal intensity on T1 weighted images and hyperintensity on T2 weighted images. Poorly differentiated tumors demonstrate infiltrative characteristics, whereas well differentiated tumors show only expansive pattern. Enhancement of hepatocellular carcinoma on postcontrast images depends on the degree of differentiation. Generally, there is a peak of enhancement in the early arterial phase, whereas some of well differentiated tumors show the lack of peak enhancement during the early arterial phase (Fig. 7c). Detection of tumor capsule with MRI is important for differential diagnosis, as it has been seldom found in metastases or cholangiocarcinoma and very often in hepato-
tocellular carcinoma. The capsule has low-signal intensity on T1 weighted images (Fig. 7c). Intravascular spread of hepatocellular carcinoma is an important staging and prognostic sign. MRI is capable of differentiating tumor thrombus from other thrombotic masses by demonstrating the increase of signal intensity of the thrombus on arterial postcontrast scans. Enhancement is identical to enhancement of the main tumor39-41. Detection and differentiation of hepatocellular carcinoma from other liver tumors is improved with hepatobiliary contrast media42.

MRI breath-hold sequences have shown similar sensitivity and specificity as spiral CT in the detection and characterization of hepatocellular carcinoma as well as in differentiation from macroregenerative nodules42,43. Meticulous search for liver metastases is needed because they are frequently associated with hepatocellular carcinoma and their finding is of major importance for therapy planning.
Cholangiocellular Carcinoma

Cholangiocarcinoma or peripheral cholangiocarcinoma is the second most common primary liver neoplasm after hepatocellular carcinoma. On T1 weighted images cholangiocarcinoma is mostly hypointense, and on T2 weighted images it may be of isointense or hyperintense signal intensity. On T2 weighted images, a central scar due to fibrous tissue is often present. The lesion has lobulated margins and absence of capsule. On postcontrast scans with GD-DTPA, there is slight rim enhancement (Fig. 8), less than in hemangiomas, with moderate progressive fill-in. Dilatation of the peripheral bile ducts is seen in 20%–68% of cases (Fig. 8).

Metastases

Patients with liver metastases who undergo surgical resection of the secondary deposits have improved long-term survival rates compared to similar patients who do not undergo resection. Preoperative diagnostic imaging evaluation of metastases should be performed to detect the number, size, segmental location and relationship to hepatic vasculature. Recent advances in CT, US and MRI have improved detection of liver neoplasms. CT is the established method for detection and evaluation of secondary liver deposits. According to recent studies, MRI has become an important diagnostic technique for detection of focal liver lesions. Liver tumor nodules are detected at small size and in most cases the lesions can be characterized with high reliability. In spite of the newer imaging methods available, US is a sensitive and accurate modality for the identification, localization and characterization of focal hepatic abnormalities. Because of the absence of irradiation exposure, easy use and low cost, US plays a major role in hepatic imaging.

Patients with malignant disease considered for hepatic resection should have accurate preoperative imaging evaluation, because the number and distribution of lesions de-
terminates therapeutic approach. Clinical studies have shown improved survival rates after resection of primary and metastasis lesions65-66. There is only a few studies dealing with the sensitivity and specificity of low-field MRI compared with CT41. On breath-hold T1 weighted sequences, metastases demonstrate low signal intensity with rim enhancement on postcontrast studies (Fig. 9a, b, c). Metastases show signal hyperintensity compared to liver parenchyma on T2 weighted images on MRI. Most metastases have regular borders and homogeneous signal intensity, as shown by Brown et al. One study demonstrated the ability and advantages of detection of liver metastasis disease with low-field MR imaging versus contrast enhanced CT43. The result is comparable to conclusions of three comparative studies, stating that an intermediate field strength MR imaging is superior to contrast enhanced CT in the detection of hepatic metastases67-68. In contrast, some authors claim that contrast enhanced CT is superior in the detection of hepatic metastases because of better resolution and lower susceptibility to artifacts69. The study performed on low-field magnet has shown that T1 weighted sequence detected 51% and CT 63% of the liver lesions demonstrated by T2 weighted sequence47. T2 weighted images on spin-echo sequence have shown identical sensitivity in the detection of liver metastases as inversion recovery technique. CT demonstrated 92% of the lesions detected by inversion recovery technique.

Diffuse Liver Disease

Hepatomegaly is present when a length of 15.5 cm is found in the midclavicular line69. Values under 13 cm are within the normal range. Values between 13 and 15.5 cm are indeterminate70. Fatty infiltration of the liver is present in various pathologic conditions such as obesity, alcohol abuse, cirrhosis, diabetes mellitus, trauma, toxic substances, metabolic disease and others71. Fatty infiltration of the liver produces increased ultrasonic echogenicity. CT is a method which accurately detects fatty liver infiltration with liver densities under 40 Hounsfield units. Spin-echo MRI using usual imaging techniques is not capable to detect fatty liver72. With the introduction of breath-hold in phase and out-of-phase sequences MRI is capable of demonstrating fatty liver deposit. There is a loss of signal on the out-of-phase sequence compared to in-phase sequence (Fig. 10a, b). Hemochromatosis is readily demonstrated by CT and MRI. On CT, hemochromatosis appears as a diffuse increase in densities up to 95 Hounsfield units. MR spin-echo T1 weighted image shows extremely low signal intensity of liver parenchyma in hemochromatosis (Fig. 11).

Liver Cirrhosis

US, CT and MRI have no single specific echosono-graphic, CT density or MRI signal alteration in liver cir-
rhosis. US echogenicity, CT densities and MR signal intensities are mostly heterogeneous. The diagnosis is achieved according to specific morphologic liver changes and ascites (Fig. 12).

References

19. MAHFOUZ AE, HAMM B, TAUPIZ M, et al. Hypervascular liver lesions: differentiation of focal nodular hyperplasia from ma-
44. WHITNEY WS, HERFKENS RJ, JEFFREY RB, et al. Dynamic breath-hold multiphasic noncontrast enhanced MR imaging with gadolinium enhancement for differentiating hepatic hemangiomas from malignancies at 1.5 T. Radiology 1993;189:1607-70.

60. LENCIONI R, DONATI F, CIONI D, PAOLICCI A, CI- CORELLI A, BARTOLOZZI C. Detection of colorectal liver metastases: prospective comparison of unenhanced and ferumoxide-enhanced magnetic resonance imaging at 1.5 T, dual-phase spiral CT, and spiral CT during arterial portography. MAGMA 1998;7:76-87.

62. SEXTON CC, ZEMAN RA. Correlation of computed tomography, sonography and gross anatomy of the liver. AJR Am J Roentgenol 1983;141:711.

