Body composition in Iranian boys with autism spectrum disorders

Hamideh Salehi¹, Mohammad Reza Aghanoori², Samieh Shahmohammadlu¹, Banafshe Hosseini¹, Sharon E. Mitchell³, Mahmud Mahmudi⁴, Kurosh Djafarian⁵

The aim of this study was to assess body composition of boys with autism and also to investigate the association of demographic factors, autism severity and drug therapy with their body composition. We recruited 85 boys aged 7-14 years by stratified random sampling in autism-specific schools in Tehran. Body composition was measured using bioelectrical impedance analysis. The study revealed that 9.4% of participants were underweight and 47.3% were suffering from overweight and obesity. The mean total body fat percentage and fat mass index were 23.46% and 4.8, respectively. A high rate of obesity was found in Iranian children and adolescents with autism. Furthermore, boys whose mothers had higher educational levels may have less chance of being within the normal weight ranges in comparison with sons of lower-educated mothers (p=0.002), while father’s educational level had no effect on the child’s body mass index. In conclusion, a high prevalence of overweight and obesity was observed in Iranian male children and adolescents suffering from autism according to their body mass index and body fat percentage.

Keywords: autistic disorder; body composition; demography; body mass index

INTRODUCTION

Autism spectrum disorders (ASDs) are complex sets of neurodevelopmental diseases that occur in very early childhood and can usually persist throughout life. Autism falls under the broad diagnostic category of Pervasive Developmental Disorders (PDD). ASD is characterized by having problems in social behavior, atypical verbal and nonverbal communication, and restricted interests that can be accompanied by repetitive behavior (1). The frequency of this disease is about 11.3 cases in 1000 people in the US population. Moreover, the male-to-female ratio is 4.3:1 in autistic cases. Empirical evidence indicates that although ASD is mostly heritable and therefore genetic human disease, environmental factors appear to play important roles in developing this abnormality (2). Many conflicting theories have proposed to clarify the environmental components associated with the disease, including nutrition, economic status, vaccination and general health care, as well as environmental pollutants and family lifestyle (3-5).

On the other hand, obesity is regarded as a nutrition/lifestyle-related disorder defined as weight or body mass index (BMI) (which is obtained by dividing weight by height square) exceeding the threshold of a criterion standard or reference value. Several growth reference charts such as Centers for Disease Control (CDC) and World Health Organization (WHO) provide comparators with the general population, which are used to determine weight status of children. CDC and WHO suggest a set of defined thresholds for classifying individual children as overweight or obese. In Iranian healthy children, the prevalence of overweight and obesity was 10.8% and 5.1%, respectively (6). The prevalence of being underweight, overweight and obese among

¹School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
²Department of Human Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
³School of Biological Sciences, Research Fellow Zoology Building Old Aberdeen United Kingdom
⁴Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
⁵Clinical Nutrition Department, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran

Correspondence to:
Dr Kurosh Djafarian, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Ghods St, Tehran, Iran, e-mail: kdjafarian@tums.ac.ir

Primljeno/Received: 8. 9. 2014., Prihvaćeno/Accepted: 23. 6. 2015.
The common side effects of antipsychotic drugs are sedation, dizziness, increased appetite, weight gain, changes in the electrocardiogram parameters, drooling, hyperprolactinemia and risk of drug-related dyskinesias (12). The WHO has delineated the risk of overweight from 85th to 97th percentile of BMI and overweight at or above 97th percentile BMI (13). The prevalence of at risk and being overweight in Chinese autistic children was 31.8% and 17.0% in 2- to 5-year-old age group, and 37.9% and 21.8% in 6- to 11-year age group, respectively (1). Similar statistics have been reported for British children suffering from ASD, with the overall prevalence of at risk of overweight of 35.7% and 19% prevalence of overweight (8).

Data indicated that during the 1960-1984 period, the mean BMI in autistic children (about 15% of whom were underweight) was lower compared to the reference population, although at the same time, some autistic children were overweight (14). This means that a wide range of weight disorders (underweight and overweight) is found in autistic children. In a study of 33 autistic males (children and adolescents), lower BMI was reported compared to standard reference value, which was attributed to their eating problems (15).

Memari et al. report on 8.7% of underweight, 50.4% of normal weight, 13.3% of overweight, 11.5% of obesity and 15.9% of severe obesity in autistic children aged 7-14 (16). Recent studies suggest that BMI is not an appropriate index for determination of obesity, as it does not distinguish between body fat and non-body fat; therefore, muscular children may be considered as obese (17). Since fatness is defined as increased body fat, it would be better to employ objective methods such as bioelectrical impedance analysis (BIA), magnetic resonance imaging (MRI) or dual x-ray densitometry (DXA). BIA is often used in large sample populations. Cross-sectional studies indicated that BIA could significantly determine whole body fluids, fat mass (FM), fat free mass (FFM), body fat percentage (BF%), and also their changes over a set period of time (18). BIA is also more applicable as it can determine not only the amount of fat but also its distribution, which is regarded as a cardiovascular risk factor, in adults and children, and may also be predictive of obstructive sleep apnea (OSA) severity in obese children (17, 19). Furthermore, BIA is a very precise method for measuring body fat in comparison with BMI, hence we applied this method to measure fatness among autistic children and adolescents in the present study.

MATERIAL AND METHODS

Subjects

We conducted a stratified randomized survey in which 85 autistic boys aged 7-14 years were recruited from four autism-specific schools in Tehran, in 2012. Because of the lower prevalence of autism in girls compared to boys, and the lack of sufficient female sample, according to the study criteria, gender separation was not possible. The Autism Diagnostic Interviews (ADi-R) (20) were completed by a professional doctoral level psychiatrist in order to diagnose the children with autism based on the DSM-IV-TR criteria. ASD subjects who were mentally retarded were excluded from the study. The study was approved by the Ethics Committee of the Tehran University of Medical Sciences with the following identification: 91-02-27-17958 and written consent forms were obtained from the children’s parents or caretakers.

Measurement of height and body composition

The height was measured using standard stadiometer and body composition, fat mass (FM) and fat free mass (FFM) were assayed using the Body Composition Analyzer, TANITA BC-418 (TANITA, Japan). In order to limit the hydration influence on BIA results, the children were instructed to remain hydrated and asked not to have any exercise for at least 12 hours before the measurement. This procedure required the autistic patients to stand on the analyzer and hold a pair of handgrips, one in each hand. The validation of this method against DXA has been reported previously (21). The amount of body fat related to morbidity for boys was considered at 20%-25% as a criterion diagnosis of obesity in children (22, 23). BMI was calculated as weight (kg)/height² (m²). Age and sex-specific percentiles (the WHO criteria) were used to categorize obese (≥97th percentile for BMI), overweight (85th ≤ BMI <97th percentile), healthy (3rd < BMI < 85th), and finally underweight boys (≤3rd percentile).
Family information

Parents/caregivers were surveyed for family sociodemographic information such as education, and drugs taken by the child. The level of education was classified as high – doctoral degree (PhD or physician); medium – bachelor (BSc) or Master (MSc) degree; low – high school or associate degree; and very low – illiterate and under high school.

Evaluating autism severity

Parents were requested to fill in the Autism Treatment Evaluation Checklist (ATEC) in order to provide description of autism symptoms in children. The ATEC accurately evaluates the autistic symptoms in total and specific subscales, i.e. Speech and Language (ATEC I), Sociability (ATEC II), Cognitive and Sensory Awareness (ATEC III) and Health-Physical-Behavior (ATEC IV) (24). The severity of the disorder is diagnosed by a higher score (ranges from 0 to 180). According to an autism research institute report, the ATEC is a reliable instrument with a satisfactory internal consistency (25), and its validity and reliability are approved in Iranian culture (16).

Statistics

We calculated descriptive statistics such as mean and standard deviation for quantitative variables and abundance for qualitative variables. We also used χ²-test to analyze the relationship between educational level and weight. Pearson correlation was applied to determine the correlation among ATEC, FMI, BMI-for-age weight status categories and FM%. One-way ANOVA was employed to compare means among all groups (p value <0.05 was set as significant). All analyses were performed using the SPSS software (version 18) for Windows (SPSS Inc., Chicago, IL, USA).

RESULTS

A total of 85 male children and adolescents were included in this study; the mean values and standard deviations of variables are shown in Table 1. Based on the WHO classification of BMI for age, 9.4% of children and adolescents were underweight, 43.5% were normal, 24.7% were overweight, and 22.4% were obese. There was no significant association of BMI percentile and age (p=0.796). The results of BIA indicated that 29% of boys had FM over 25 percents of their body weight. This percentage rose to 49% by considering the 20% as a cutoff point for obesity and overweight.

We expressed body composition data as FMI and fat free mass index (FFMI) as adjusted for variability in height (HT):

FMI = FM/(HT)² (equation 1)

FFMI = FFM/(HT)² (equation 2)

Table 1. Descriptive information from participants (N=85)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>10.19</td>
<td>1.88</td>
<td>14.6</td>
<td>7.1</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>37.48</td>
<td>12.12</td>
<td>80.6</td>
<td>20.3</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>138.56</td>
<td>11.41</td>
<td>168</td>
<td>110</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>19.14</td>
<td>4.23</td>
<td>30</td>
<td>11.3</td>
</tr>
<tr>
<td>FMI (kg/m²)</td>
<td>4.8</td>
<td>2.74</td>
<td>10.43</td>
<td>0.65</td>
</tr>
<tr>
<td>FM%</td>
<td>23.46</td>
<td>8.16</td>
<td>39.6</td>
<td>5.9</td>
</tr>
<tr>
<td>FFM (kg)</td>
<td>28.02</td>
<td>7.29</td>
<td>58.3</td>
<td>16.6</td>
</tr>
<tr>
<td>FFMI (kg/m²)</td>
<td>14.36</td>
<td>2.01</td>
<td>20.66</td>
<td>10.16</td>
</tr>
<tr>
<td>Right leg (FM%)</td>
<td>28.92</td>
<td>7.25</td>
<td>48.6</td>
<td>11.3</td>
</tr>
<tr>
<td>Left leg (FM%)</td>
<td>29.16</td>
<td>7.17</td>
<td>49.7</td>
<td>11.7</td>
</tr>
<tr>
<td>Right Arm (FM%)</td>
<td>32.33</td>
<td>7.23</td>
<td>48.4</td>
<td>7.1</td>
</tr>
<tr>
<td>Left Arm (FM%)</td>
<td>32.88</td>
<td>7.42</td>
<td>51.4</td>
<td>12.5</td>
</tr>
<tr>
<td>Trunk (FM%)</td>
<td>17.46</td>
<td>6.86</td>
<td>35.7</td>
<td>3</td>
</tr>
<tr>
<td>ATEC I (speech)</td>
<td>9.71</td>
<td>5.44</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>ATEC II (sociability)</td>
<td>12.34</td>
<td>6.19</td>
<td>32</td>
<td>4</td>
</tr>
<tr>
<td>ATEC III (cognitive-sensory awareness)</td>
<td>16.7</td>
<td>5.76</td>
<td>31</td>
<td>3</td>
</tr>
<tr>
<td>ATEC IV (physical, health, behavior)</td>
<td>20.44</td>
<td>9.27</td>
<td>48</td>
<td>5</td>
</tr>
<tr>
<td>ATEC total</td>
<td>59.06</td>
<td>19.85</td>
<td>116</td>
<td>24</td>
</tr>
</tbody>
</table>

BMI = body mass index; FMI = fat mass index; FM = fat mass; FFMI = fat free mass index; ATEC = autism treatment evaluation checklist

Table 2. Effect of parental education on body mass index of autistic children

<table>
<thead>
<tr>
<th>Maternal education degree</th>
<th>Underweight</th>
<th>Normal weight</th>
<th>Overweight</th>
<th>Obese</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD, BSc and MSc</td>
<td>16.1</td>
<td>22.6</td>
<td>41.9</td>
<td>194</td>
<td>0.002</td>
</tr>
<tr>
<td>Diploma – High school</td>
<td>3.8</td>
<td>56.6</td>
<td>15.1</td>
<td>24.5</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Weight status in children based on parental (maternal) education

<table>
<thead>
<tr>
<th>Maternal education degree</th>
<th>Underweight</th>
<th>Normal weight</th>
<th>Overweight</th>
<th>Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>BSc and MSc</td>
<td>14.3</td>
<td>25</td>
<td>42.9</td>
<td>17.9</td>
</tr>
<tr>
<td>High school or associate degree</td>
<td>4.7</td>
<td>58.1</td>
<td>14</td>
<td>23.3</td>
</tr>
<tr>
<td>Illiterate and under high school</td>
<td>9.1</td>
<td>45.5</td>
<td>18.2</td>
<td>27.3</td>
</tr>
<tr>
<td>% of maternal education</td>
<td>9.5</td>
<td>44</td>
<td>23.8</td>
<td>22.6</td>
</tr>
</tbody>
</table>

p values are from Pearson χ²-tests
We divided the children and adolescents into three age groups. Group 1 consisted of 31 subjects (<9-year-old); group 2 consisted of 25 subjects (9-11 years old); and group 3 consisted of 29 subjects (11-year-old). There were no significant differences among the three age groups in terms of FM% (F=0.673, p=0.513) and FMI (F=0.113, p=0.893). Group 1 children and adolescents were more likely to have lower FFMI compared to those in group 3 (F=3.29, p=0.04) (Table 4).

A significant difference (p=0.002) was found regarding the maternal educational level and BMI-for-age as well as weight status categories of children and adolescents (Table 2). The children and adolescents of mothers with lower educational levels (including high school or associate degree, illiterate and under high school) were more likely to have normal body weight compared to those whose mothers achieved higher educational levels including BSc or MSc degree as well as PhD and physicians; a higher risk of overweight was also observed in sons of these mothers (Table 2). There were no significant differences in the children’s ATEC scores according to the maternal educational levels (F=1.104, p=0.296) and paternal education levels (F=1.857, p=0.177).

No significant correlations were found for ATEC and other quantitative variables including age (r=0.042, p=0.704), weight (r=0.051, p=0.644), height (r=0.150, p=0.891), BMI percentile (r=0.059, p=0.595), FMI (r=0.032, p=0.773), FFMI (r=0.062, p=0.544) and FM% (r=0.033, p=0.769) among the groups of subjects.

Most children and adolescents were prescribed medication, 38% of them taking a single drug, 25% taking two kinds of drugs, and 23% taking no drug. Risperidone and Ritalin as antipsychotic drugs were the most commonly taken medications. Moreover, 65% of boys were taking antipsychotic drugs, 25% central nervous system stimulants (analeptics) and 12% antiepileptic drugs. No significant differences were found between the subjects taking antipsychotic drugs and those taking no drugs according to age (F=0.104, p=0.748), weight (F=0.158, p=0.692), height (F=0.038, p=0.846), BMI percentiles (F=0.390, p=0.534), FM% (F=0.243, p=0.623), FMI (F=0.268, p=0.606) and FFMI (F=0.138, p=0.711).

DISCUSSION

Determining childhood obesity and overweight is difficult as the available methods assessing obesity and overweight in pediatric population have been challenging. Based on BMI, results of this study indicated that more than 47% of subjects were obese. A similar finding (49%) was obtained for obesity and overweight when we used BMI over 20% as a cutoff point. Since BMI cannot differentiate FM from FFM, it is not a reliable index to measure body fat (26). Furthermore, high BMI levels neither represent high fat percentages nor abnormal fat distributions, but we measured BMI to compare it with fat mass. The mean body fat mass can be reliably used to determine obesity and overweight (27). Autistic children and adolescents are known to be at risk of being overweight as well as having a high percentage of body fat, which are probably due to the intake of pharmaceuticals such as risperidone (10).

To our knowledge, Memari et al. were the first to report on body weight status of Iranian children with autism (16). In addition, we have reported body composition as well as BMI percentiles in autistic children. Some studies suggest that the prevalence of obesity is 2-3 times higher in autistic children compared to their healthy counterparts (1, 28).

Although previous data have indicated a high prevalence of obesity and overweight in Iranian children (13.6% in girls and 9.3% in boys) (18), one study demonstrated that healthy Iranian children were actually more underweight (13.9%) rather than overweight (8.82%) or obese (4.5%) (29). Xiong has reported a higher prevalence of overweight and obesity in autistic children in comparison with healthy ones (1), while Curtin showed a lower prevalence of overweight and obesity in autistic children (8). Many studies have revealed that more than 30% of autism patients are suffering from obesity. Several studies have reported a higher BMI level in healthy teenagers compared to the autistic cases (14, 30). Hence, the findings of the studies regarding the worldwide prevalence of obesity and overweight in autistic children are inconclusive. However, it is revealed that overweight and obesity rates have upward trends in the populations of both healthy and autistic children (1, 8, 28, 31). In the present study, higher rates of obese as well as overweight autistic children were found in comparison with the statistics from other related studies.

It has been suggested that the ideal method for assessing body fat in children would be a local standard, as the ethnicity has an influence on body composition. Due to the lack of such a standard in Iranian population, we used 95%FM cutoff values defined for obesity in western populations (22, 23). McCarthy et al. regarded 85 and 95 percentiles of body fat as overweight and obesity (27, 32). Kurtoglu et al. report...
low body fat mean in Turkish boys aged 7-13 (27) and Nakao et al. also report such results in Japanese boys aged 6-11 (33). In their study of body fat percentage in children, Eto et al. showed FMI to be more sensitive than BMI for such weight classifications (34). In fact, FMI identified high body fat percentage in children who had normal BMI (33). Our study found a high mean for FMI (4.8 kg/m²) in Iranian autistic children, while the value of 2.8-3.6 kg/m² for normal children has been reported from the Nakao study (33).

No association was found between autism severity (ATEC IV score) and other measured variables in the current study. Similar to the results of Xiong, but against that of Memari's study, no correlation was found between ATEC and weight in the present study (35).

It has been well documented that children living in a family with lower level of education have higher BMI level (36, 37). Lamerz's study, the prevalence of obesity was three times higher in children whose mothers were non-well-educated compared to the children of high-educated mothers. Parental level of education may affect food selections, physical activity and consequently children's weight (36, 38). This is more obvious when the mother of children eats healthy and keeps checking the quality and quantity of food intake (36, 38). In contrast to our findings, the results of a study conducted in 2000 showed that children of well-educated mothers were more likely to have normal weight in comparison with children of non-well-educated mothers (37).

Suggestively, to prevent obesity in children from low-level societies, designing a qualified education system and providing facilities could be appropriate actions to control weight abnormalities amongst them (38). Additionally, pharmaceutical drugs (such as risperidone and olanzapine) ought to be carefully prescribed by physicians due to their adverse effects, especially on children's weight (39).

CONCLUSION

We found the prevalence of obesity (22.4) and overweight among Iranian boys and adolescents with autism to be higher as compared to normal children (13.6) in Iran. BIA as a valid tool can be used to determine their body composition. However, further studies are needed to address the determining reference percentiles for measuring body fat mass in Iranian children and adolescents using BIA method. Moreover, maternal education may be associated with body weight status in autistic children. We also suggest that other principal factors in developing obesity in autistic children, particularly low level of physical activity, over-eating patterns, as well as lacking close relationships with their friends and parents' awareness should be studied. Besides, the correlation regarding severity of the disease (using Childhood Autism Rating Scale (CARS), ATEC and other tests) and weight/BMI status (including underweight, normal, overweight and obese) should be taken into account in future studies.

ACKNOWLEDGMENTS

This work was granted by Tehran University of Medical Sciences. The authors wish to acknowledge the contribution of the autistic children and adolescents and their family to the present study.

REFERENCES

SAŽETAK

Tjelesni sastav u iranskih dječaka s poremećajima autističnog spektra

Cilj ovog istraživanja bio je procijeniti tjelesni sastav dječaka s autizmom te ispitati povezanost demografskih čimbenika, težine autizma te lijekova s njihovim tjelesnim sastavom. Ispitivanje je obuhvatio 85 dječaka u dobi od 7 do 14 godina slučajno odabranih u teheranskim školama za autističnu djecu. Tjelesni sastav mjerjen je analizom bioelektrične impedancije. Rezultati istraživanja su pokazali da 9,4% ispitanika ima nedovoljnu masu, dok njih 47,3% ima prekomjernu masu ili su pretili. Srednji postotak ukupne tjelesne masti bio je 23,46%, a indeks tjelesne masti 4,8. U iranske djece i adolescenata s autizmom utvrđena je visoka stopa pretilosti. Nadalje, za dječake čije majke imaju višu razinu obrazovanja manja je vjerojatnost da će biti unutar normalnih granica za masu u usporedbu sa sinovima majki s nižom razinom obrazovanja (p=0,002), dok obrazovanje očeva nema učinka na djetetov indeks tjelesne mase. Prema indeksu tjelesne mase i postotku tjelesne masti, visoka je učestalost prekomjerne tjelesne mase i pretilosti među iranskim djecom i adolescentima muškog spola koji boluju od autizma.

Ključne riječi: autistični spektar; tjelesni sastav; demografija; indeks tjelesne mase