Computational Study on Mössbauer Isomer Shifts of Some Organic-neptunium (IV) Complexes

Masashi Kaneko,1 Sunao Miyashita,1 Satoru Nakashima1,2,*

1 Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
2 Natural Science Center for Basic Research and Development, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
* Corresponding author’s e-mail address: snaka@hiroshima-u.ac.jp

THIS PAPER IS DEDICATED TO DR. SVETOZAR MUSIĆ ON THE OCCASION OF HIS 70th BIRTHDAY

Abstract: Relativistic DFT calculations are applied to some organo-neptunium (IV) complexes, Cp2Npη5X (Cp = η5-C5H5, X = BH, Cl, OEtBu, Ph, nBu), in order to understand their bonding properties between Np and the ligands. We employ scalar-relativistic ZORA Hamiltonian with all-electron basis set (SARC). The calculated electron densities at Np nucleus position in the complexes at B2PLYP / SARC theory strongly correlate to the experimental Mössbauer isomer shifts of 237Np system. The result of bond overlap population analysis indicates that the bonding strength decreases in order of X = BH, Cl, OEtBu, Ph and nBu. The tendency depends on the degree of the covalent interaction between Np 5f-electron and X ligand. It is suggested that it is important to estimate the bonding contribution of 5f-orbital to understand the electronic state for organo-actinide complexes.

Keywords: actinide chemistry, Mössbauer isomer shifts, relativistic DFT approach, bond overlap population.

INTRODUCTION

ACTINIDE chemistry includes some fundamental and applicable interests. For example, the organo-actinide complexes, such as [Cp2Thη5X2] (Cp = η5-C5H5; X = alkyl, etc.), have been investigated as a candidate for the catalyst for the hydroelementation to unsaturated carbon-carbon bond.1,2 Moreover, the chemical separation of minor-actinides, including Am and Cm, from lanthanides is an important and challenging quest, leading to the disposal of high-level radioactive waste.3,4 In both fundamental and applicable cases, it is one of the most interesting tasks to understand how 5f-electron behaves toward the bonding state in actinide compounds.

Density functional theory (DFT) has been employed as a useful tool to describe the electronic states for actinide compounds.5–7 Kaltsoyannis et al. performed the relativistic DFT calculation for AnIII(Cp2) and AnIII(Cp4 (An = Th–Cm) to discuss the bonding properties of An ions by means of various population analyses.8,9 We have reported that all-electron relativistic DFT results strongly correlate to the experimental 237Np Mössbauer isomer shifts, which are quantitative parameters relative to Np ions.10 We have also suggested that the bonding types of f-electron to a metal-ligand bond, which include bonding, non-bonding and anti-bonding, correlate to their stability.11 We aim to investigate the bonding state in actinide complexes to give a new insight to the bonding behavior of 5f-electron. The present study focuses on the bonding properties of some tris-(cyclopentadienyl) neptunium (IV) complexes, Cp2Npη5X. DFT study on their electronic and bonding states had never been reported, although their experimental values of 237Np Mössbauer isomer shifts are available.12 Here we discuss the contribution of 5f-electron to the bonding interaction in these complexes by relating the calculated electron density and molecular orbital (MO) population to the 237Np Mössbauer experiments. We believe that this study contributes to understanding the bonding property in 5f-block chemistry.

COMPUTATIONAL DETAILS

Mössbauer isomer shift (δ), which is a quantitative indicator of the bonding strength of a Mössbauer element,
has a linear correlation with the electron density at a Mössbauer nucleus position (ρ_0):\(^{[13]}\)

$$\delta = a (\rho_0 - b)$$ \hspace{1cm} (1)

where a and b are fitting parameters. ρ_0 can be obtained by a quantum chemical calculation at all-electron level, because core electrons, such as 1s^2 and 2p^2 electrons, need to be included to get the electron density at the nucleus. The estimation of a linear correlation between the experimental δ and the calculated ρ_0 enables us to evaluate the performance of a computational method. Model compounds for this study are listed in Table 1 with the SARC basis sets optimized for contraction (SARC) basis sets optimized for angulating (SARC) and ZORA reproduced the 3n Np ion and ligands by hand-hardly affect the comparison among Np complexes. Spin orbit coupling was neglected. Segmented all-electron relativistically contracted (SARC) basis sets optimized for ZORA Hamiltonian were assigned to Np element\(^{[23,24]}\) and the other atoms.\(^{[24]}\) Geometry optimizations and standard vibrational modes calculations were carried out at ZORA-BP86 level of theory with SV-ZORA plus one polarization function. ZORA-BP86 with SV-ZORA reproduced the experimental geometries for Eu and Np complexes.\(^{[10]}\) Single-point calculations were performed at ZORA-B2PLYP level of theory with TZV-ZORA plus one polarization function. ZORA-B2PLYP with TZV-ZORA reproduced the experimental Mössbauer isomer shifts for \(^{151}\)Eu and \(^{237}\)Np.\(^{[20]}\) The accuracy of self-consistent-field (SCF) calculation was achieved under the same condition with our previous work.\(^{[10,11]}\) We set the ground state of Np complexes to spin quartet and obtained their electronic states by unrestricted Kohn-Sham equation. The resolution of the identity (RI) approximation, Split-Ri-J\(^{[25]}\) or RIJCOSX,\(^{[26]}\) was employed into all SCF calculations for pure-DFT or hybrid-DFT procedure, respectively. The molecular geometries and the topologies of molecular spinor orbitals were visualized three-dimensionally by using VESTA ver. 3.3.0 program.\(^{[27]}\) Density of states (DOS) and overlap population analyses were carried out in order to evaluate the bonding nature between Np ion and ligands by Mulliken’s procedure.\(^{[28]}\)

RESULTS AND DISCUSSION

Equilibrium Structures of Cp$_3$NpIVX

All equilibrium structures by geometrical optimization were obtained in local minima, where all normal vibrational modes have positive frequencies. As shown in Figure 1, their structures have three η^5-Cp ligands, which are arranged with the approximately C_3 symmetry. Table 2 shows that the calculated Np–C(Cp) lengths are 2.76–2.78 Å for all systems. It was indicated that the coordination environments consisting of Np and three Cp ligands are almost the same for all Cp$_3$NpX geometries. For X = Cl, OtfBu

<table>
<thead>
<tr>
<th>Model compounds</th>
<th>δ_{obs}^{m+} / mms$^{-1}$(^{(4)})</th>
<th>Reference compounds(^{(5)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cp$_3$NpIV(BH$_4$)</td>
<td>14.5 ± 4(^{(1)}) [Ref. 12]</td>
<td>Cp$_3$UIV[HBBN]IV(^{(3)}) [Ref. 15]</td>
</tr>
<tr>
<td>Cp$_3$NpIVCl</td>
<td>14 ± 10 [Ref. 14]</td>
<td>Cp$_3$UIVCl [Ref. 16]</td>
</tr>
<tr>
<td>Cp$_3$NpIV([OtfBu])</td>
<td>8.6 ± 3 [Ref. 12]</td>
<td>Cp$_3$NpIV([OtfBu]) [Ref. 17]</td>
</tr>
<tr>
<td>Cp$_3$NpIV(Ph)</td>
<td>4.2 ± 2.8(^{(6)}) [Ref. 12]</td>
<td>Cp$_3$UIV([nBu]) [Ref. 18]</td>
</tr>
<tr>
<td>Cp$_3$NpIV([nBu])</td>
<td>2.7 ± 0.7 [Ref. 12]</td>
<td>Cp$_3$UIV([nBu]) [Ref. 18]</td>
</tr>
</tbody>
</table>

\(<^{(4)}\) Relative values to NpAl, at 4.2 K with experimental errors.
\(<^{(5)}\) Single crystal X-ray structures employed in creating the starting coordinates of model compounds.
\(<^{(6)}\) Experimental value of MeCp$_3$NpIV(BH$_4$)$_2$ complex.
and nBu complexes, it was found that the calculated values of Np–C(Cp) and Np–X lengths are consistent with the experimental values. The obtained structure of X = BH₄ has three bridging hydrogens (H_{bridge}) and one terminal hydrogen (H_{terminal}) of BH₄⁻ ligand, as shown in Figure 1a. Table 3a shows the selected IR frequencies obtained by the normal vibrational mode calculation without any scaling factors. The calculated IR frequencies of C–H (Cp) wagging and B–H stretching vibrations reproduced the corresponding experimental vibrations. The calculation for X = Ph complex shows that Ph⁻ ligand has σ-type coordination property (Figure 1d). The calculated IR frequencies for X = Ph complex are shown in Table 3b. It was confirmed by the vector analysis of normal vibration modes that the vibrational frequencies of 1200–1300 and 1400–1600 cm⁻¹ are assigned to the vibrations attributed to Ph⁻ ligand, being consistent with the corresponding experimental frequencies²⁹ (Table 3b). Because stretching vibration frequency of aromatic C=C bond is in this region, Ph⁻ ligand in complex remains to have an aromaticity. These results support the above assumption that Ph⁻ ligand has a η¹-coordination mode.

Correlation Between ρ₀^calc and δ_{Np}^exp

We performed the calculation of ρ₀ at Np nucleus position for the optimized Cp₃NpX structures at ZORA-B2PLYP /...
Table 3. Comparison in IR frequencies (cm\(^{-1}\)) between calculation and experiment for complexes with X = BH\(_4\) (a) and X = Ph (b)

<table>
<thead>
<tr>
<th></th>
<th>Calc.(^{(a)})</th>
<th>Exp. [Ref.19]</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) X = BH(_4)</td>
<td>CpNp(BH(_4))</td>
<td>CpUI(BH(_4))</td>
<td></td>
</tr>
<tr>
<td>800, 828</td>
<td>797, 825</td>
<td></td>
<td>C-H(Cp) in-plane wagging</td>
</tr>
<tr>
<td>1014</td>
<td>1020</td>
<td></td>
<td>C-H(Cp) out-of-plane wagging</td>
</tr>
<tr>
<td>2226, 2225</td>
<td>2160, 2220, 2295</td>
<td></td>
<td>B-H(_\text{Np}(\text{BH}(_4))) stretching</td>
</tr>
<tr>
<td>2551</td>
<td>2480</td>
<td></td>
<td>B-H(_\text{Np}(\text{BH}(_4))) stretching</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Calc.(^{(a)})</th>
<th>Exp. [Ref.29]</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b) X = Ph</td>
<td>CpNp(Ph)</td>
<td>CpUI(C(_\text{F}(_2))</td>
<td></td>
</tr>
<tr>
<td>770</td>
<td>739</td>
<td></td>
<td>C-H(Cp) in-plane wagging</td>
</tr>
<tr>
<td>1008</td>
<td>945</td>
<td></td>
<td>C-H(Cp) out-of-plane wagging</td>
</tr>
<tr>
<td>1178, 1272</td>
<td>1248, 1315</td>
<td></td>
<td>C-H(Ph) or C-F(C(_\text{F}(_2)) in-plane wagging</td>
</tr>
<tr>
<td>1400, 1443, 1574</td>
<td>1415, 1540, 1628</td>
<td></td>
<td>C(C(Ph) stretching</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Calculated frequencies at ZORA-BP86 / SARC theory without any scaling factors.

Table 4. Calculated \(\rho_0\) and \(\delta_{\text{Np}}\) values, which were obtained by fitting parameters \(\alpha, b\) (Eq. 1), at ZORA-B2PLYP / SARC theory with experimental \(\delta_{\text{Np}}\) values

<table>
<thead>
<tr>
<th></th>
<th>(\delta_{\text{Np}}) / mms(^{-1})</th>
<th>(\rho_0) / a.u.(^{-3})</th>
<th>Mean absolute deviation values obtained as the standard deviation between (\delta_{\text{Np}}) and (\delta_{\text{Np}}) values.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH(_4)</td>
<td>14.5(40)</td>
<td>31180638.890</td>
<td>14.63</td>
</tr>
<tr>
<td>Cl</td>
<td>14(10)</td>
<td>31180644.139</td>
<td>12.20</td>
</tr>
<tr>
<td>O(_3)Bu</td>
<td>8.6(30)</td>
<td>31180647.573</td>
<td>10.61</td>
</tr>
<tr>
<td>Ph</td>
<td>4.2(28)</td>
<td>31180662.004</td>
<td>3.94</td>
</tr>
<tr>
<td>nBu</td>
<td>2.7(7)</td>
<td>31180664.857</td>
<td>2.62</td>
</tr>
</tbody>
</table>

Correlation coefficient \((\rho)\)

\(\rho / \text{a.u.}^{-3}\)

\(= -0.968\)

\(b / \text{a.u.}^{-3}\)

\(= 0.462\)

\(= 13180670.529\)

\(= 0.86\)

\(\Delta R / R\) value. However, it should be noted that this calculation includes some limitations as pointed out by Filatov and coworkers.\(^{[31]}\) This is because Equation (2) derived by non-relativistic treatment is employed and the finite nucleus effect is not considered for \(\rho_0\) values obtained by the present ZORA-DFT calculation.

Population Analyses for Cp\(_3\)NpX Complexes

The negative linear correlation between \(\rho_0\) and \(\delta_{\text{Np}}\) values means that the core electrons, mainly including 1\(s\) and 2\(s\) electrons, are more shielded by the valence electrons with the increase in \(\delta_{\text{Np}}\), leading to smaller \(\rho_0\). We have already reported that the valence \(f\)-electron density relates to the

\[
(\Delta R/R) = \alpha (5e_0E_r) / (3Ze^2cR^2)
\]

where \(e_0\), \(c\) and \(R\) are dielectric constant, elementary charge and the speed of light, respectively. \(Z\) and \(E_r\) mean the atomic number and the \(\gamma\)-ray transition energy of Mössbauer nucleus, respectively. We also calculated \(\Delta R/R\) value by using Equation (2), in which an approximate value of \(R\) as 1.2 \(A^{1/2}\) fm (\(A\): the mass number of Mössbauer nucleus) is introduced, resulting in \(-2.44 \times 10^{-4}\). This value correlates to the experimental value \((\Delta cR^2/\langle cR^2\rangle = -3.5 \times 10^{-4}\)) since \(\Delta cR^2/\langle cR^2\rangle\) value is approximately double of

Figure 2. Plot of calculated \(\rho_0\) (\(\rho_0\)) versus experimental \(\delta_{\text{Np}}\) (\(\delta_{\text{Np}}\)) for Cp\(_3\)NpX complexes at ZORA-B2PLYP / SARC theory.
tendency in δ_{Np} values.[10] Although the correlation with s-orbital population and the tendency in the Np-ligand lengths are interesting points, any correlation and tendency were not observed. In this section, we focus on the relationship between f-orbital population and δ_{Np} values. The result of the visualization of the molecular orbitals, where the valence f-electron of Np atom distributes, shows the observation of the bond overlapping between 5f-orbital of Np and ligands. Figure 3 exhibits the topological description of the selected MOs for complexes with $X = BH_4$ and nBu. Complex with $X = BH_4$ has the large overlapping between Np f-orbital and BH$_4^-$ ligand (Figure 3a). On the other hand, complex with $X = nBu$ has the smaller overlapping compared to complex with $X = BH_4$ and also has anti-bonding overlap character, as seen in 106α, 107α and 108α MOs (Figure 3b). It was also found that complex with $X = Cl$ has the same bonding nature to that with $X = BH_4$, while complexes with $X = OtBu$ and Ph have the same character to that with $X = nBu$. It might be indicated that the bonding strength between f-orbital of Np atom and ligands for complexes with $X = BH_4$ and Cl is stronger than those of the other complexes.

In order to understand this difference from the viewpoint of f-orbital bonding, we performed the bond overlap population (BOP) analysis between Np and X-donor atoms in valence MOs. BOP analysis enables us to evaluate the bonding type and strength of the focusing bond overlap. The value of BOP was estimated by the following equation:[28]

$$n^{kl} = 2S_{i\mu}c_i^l c_i^k = 2\Sigma_{\nu o} S_{i\mu o} c_i^l c_i^k$$ \hspace{1cm} (3)

where n^{kl} is overlap population between φ^l and φ^k atomic orbitals in i-th MO. $S_{i\mu}$ and c_i show the overlap integral between φ^l and φ^k atomic orbitals and the MO coefficient of each AO in i-th MO, respectively. Since atomic orbitals are described as linear combination of basis function, $S_{i\mu}$ is evaluated by the sum of products $S_{i\mu o}$, which is the overlap integral between χ_{o}^l and χ_{o}^k basis functions belonging to φ^l and φ^k, respectively, c_i^l and c_i^k, which are the MO coefficients of each basis function in i-th MO. Figure 4 shows the partial density of states (PDOS) of Np 5f-electron and the BOP as the solid line and the broken line, respectively, for Cp$_2$NpX complexes. There exits about 90% of the valence three 5f electrons in the orbital energy region from -12 to -10 eV for all complexes (Figure 4). Focused on the contribution of BOP in this region, complexes with $X = BH_4$ and Cl have more positive BOP contribution, that is, larger bond contribution compared to the others. Comparing complexes among $X = OtBu$, Ph and nBu, complex with $X = nBu$ has the largest anti-bonding contribution among them. The integral value of BOP in this region decreases in order of $X = BH_4$ (0.262), Cl (0.199), OtBu (0.134), Ph (0.039) and nBu (0.031), correlating to the tendency in the decrease of δ_{Np} value. This result implies that the larger covalent interaction of the Np-X bond leads to the larger δ_{Np} value, resulting in the smaller ρ_0 and vice versa. This tendency can be understood by considering the shielding effect of f-electron. For example, in the case of strong bonding interaction such as $X = BH_4$ or Cl, the increase of the electron density of f-orbital by the strong donation of X ligand leads to the large shielding to core electrons, resulting in the small ρ_0. Through the above discussion, we indicate that the bonding strength between f-electron of Np and X atom correlates to the experimental 237Np Mössbauer isomer shifts for Cp$_2$NpX complexes.
actinide compounds leads to the rigorous understanding of their stability and reactivity. Moreover, the participation or nonparticipation of f-electron to the covalent interaction was discussed.\cite{11} We believe that this study gives a new insight for the basic and applied actinide chemistries.

REFERENCES

CONCLUSION

We discussed the electronic and bonding states of Cp_3NpX ($X = \text{BH}_4, \text{Cl, OTBu, Ph, nBu}$) complexes by means of all-electron relativistic DFT calculation. The validity of the optimized geometries of these compounds was confirmed by comparing them with the previously published X-ray structures. The electron densities at Np nucleus position (ρ_0) calculated by ZORA-B2PLYP / SARC theory strongly correlated to the experimental Cp_3Np Mössbauer isomer shifts (δ_{Np}). The calculated $\Delta\rho/R$ value obtained by the linear regression analysis between the calculated ρ_0 and the experimental δ_{Np} values reproduced the negative sign of the experimental value. Finally, the result of the bond overlap population between Np atom and X ligand might suggest that the covalency of Cp_3NpX complexes depends on the contribution of 5f-electron to Np-X bond. The fundamental discussion, such as the bonding nature, for...