QUALITY QUANTIFICATION MODEL OF BASIC RAW MATERIALS

Received – Primljeno: 2015-10-14
Accepted – Prihvaćeno: 2016-03-03
Preliminary Note – Prethodno priopćenje

Basic raw materials belong to the key input sources in the production of pig iron. The properties of basic raw materials can be evaluated using a variety of criteria. The essential ones include the physical and chemical properties. Current competitive pressures, however, force the producers of iron more and more often to include cost and logistic criteria into the decision-making process. In this area, however, they are facing a problem of how to convert a variety of vastly different parameters into one evaluation indicator in order to compare the available raw materials. This article deals with the analysis of a model created to evaluate the basic raw materials, which was designed as part of the research.

Key words: metallurgy, iron, raw materials, basic additives, costs

INTRODUCTION

Blast-furnace charge consists of metalliferous materials, slag formers and fuel. Blast-furnace charge materials should be characterized by a balance of their properties, low share of fine-grained particles, narrow range of grain sizes and sufficient mechanical strength. The flux materials, which usually have basic character, represent an important input raw material. Their importance is even higher, because metallurgical enterprises in Central Europe mainly use acidic ore raw materials from Ukraine and Russia [1]. This is due to their prices, availability, but also low logistics costs (e.g. compared to ores from Australia and Brazil) [2].

Fluxes facilitate the formation of blast-furnace slag with optimal chemical composition and optimal technological properties. The final slag should have such a chemical composition and physical properties to be capable of desulphurization of iron as much as possible, to ensure a perfect reduction of iron and a high degree of manganese reduction and, last but not least, to have an adequate viscosity. This kind of slag then typically contains between 0,4 % - 0,9 % of FeO [3]. The most commonly used basic additives include compounds based on CaO and MgO. These are usually additives including dolomitic limestone or dolomite. These additives also significantly affect not only the technology of iron production, but especially the cost of the whole process and therefore the final price of metal [4].

The selection of a suitable supplier of materials can fundamentally affect the economic indicators of production. Dolomitic limestone was chosen for the evaluation of the quality of basic raw materials, since it belongs to materials frequently used in the Czech Republic [5, 6].

This article analyzes the developed evaluation model as prepared in the conditions of company Ostrava Mining, Inc., which is among the major suppliers of basic raw materials for Czech metallurgical companies. The created model uses mathematical tools to quantify all the relevant indicators.

QUALITY EVALUATION OF BASIC RAW MATERIALS

A number of different criteria can be used to evaluate the basic raw material (dolomitic limestone).

The primary ones will always be the criteria having impact on the iron production process itself and its technology. In the last ten years in the production of pig iron, however, the importance of the parameters affecting the final price of the produced metal has been increasing significantly. This is due to high competitive pressure. The decision-making process more and more often takes into account parameters such as the price of raw materials, logistics services, payment terms or the possibility of operational contracts. The former classification of key parameters of basic raw materials has recently seen dramatic changes. In general, the relevant parameters of the evaluation of the basic raw materials can be classified into the following areas [7]:

- Chemical properties (content of free bases, the amount of impurities)
- Physical properties (moisture, lumpiness, strength)
- Logistic aspects, supplier (transport, amount of raw materials in stock)
- Price and payment aspects (price, maturity)
In terms of the chemical properties, the content of free bases can be considered as dominant. From this perspective, the quality of basic additives can be quantified precisely by the amount of allocated free bases, which can be assessed by means of equation (1).

\[
W = W_{\text{CaO}} + W_{\text{MgO}} - B(W_{\text{SiO}_2} + W_{\text{Al}_2\text{O}_3})
\]

(1)

Where \(W_{\text{CaO}} \), \(W_{\text{MgO}} \), \(W_{\text{SiO}_2} \), \(W_{\text{Al}_2\text{O}_3} \) express the parts by weight of these oxides in fluxes in percentages of weight [8]. \(B \) is basicity, and basicity is also a key property of slag, which can be expressed in the form of relations (2), (3).

\[
B_1 = \frac{W_{\text{CaO}}}{W_{\text{SiO}_2}}
\]

(2)

\[
B_2 = \frac{W_{\text{CaO}} + W_{\text{MgO}}}{W_{\text{SiO}_2} + W_{\text{Al}_2\text{O}_3}}
\]

(3)

In this case, \(B_1 \) and \(B_2 \) are the values of slag basicity, and \(W \) is the weight fraction of the given component in slag. The alkalinity or basicity can therefore be essentially defined as the ratio of the basic and acidic components of oxides. From the physical properties, lumpiness (granulometry of the raw material) can be regarded as a significant aspect. Optimal lumpiness of fluxes for the blast-furnace process is 20 - 40 mm, and below 3 mm for the sintering process [9]. These parameters will naturally affect the technological side of the process. Apart from the chemical and physical parameters, the evaluation can also incorporate the aspects related to the supply conditions (logistics, price parameters) [9]. These features can significantly affect the cost of the entire process and therefore the final price of the produced metal. For the evaluation of a specific basic raw material, it is advisable to simultaneously evaluate all the monitored parameters. Each raw material poses a problem, because we can monitor only a series of isolated parameters [10]. The issue is how to make a complex evaluation of all the properties which are measured in completely different units (%, mm, t). A synthesis of all vastly different parameters is possible by means of mathematical methods of multi-criteria decision-making. These methods were also applied during the analysis of the basic raw materials quality.

EXPERIMENTAL PART

The evaluation of the suppliers of basic raw materials can take advantage of a number of criteria. It is very beneficial to use a system based on multi-dimensional evaluation enabling to take into account more relevant properties in order to find a suitable option. A model for the evaluation of the basic raw materials was created within company Ostrava Mining, Inc. during the execution of the research project (2015). This model is based on the evaluation of the following areas: physical - chemical, logistics, cost (Table 1, 2).

Two evaluation criteria have been proposed for each of these areas, based on the conducted research. They can be summarized into the following points:

A. Physical - chemical
 - Criterion 1 – Basicity / %
 - Criterion 2 – Lumpiness / %

B. Logistics
 - Criterion 3 – Quantity offered within the scope of the consignment / t
 - Criterion 4 – Warehouse replenishment cycle / days

Table 1 The criteria values of the compared basic raw materials

<table>
<thead>
<tr>
<th>No.</th>
<th>Criteria</th>
<th>S1 Czech Republic</th>
<th>S2 Poland</th>
<th>S3 Ukraine</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>Basicity / %</td>
<td>3.8</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>K2</td>
<td>Lumpiness / %</td>
<td>94</td>
<td>82</td>
<td>97</td>
</tr>
<tr>
<td>K3</td>
<td>Consignment / t</td>
<td>2 000</td>
<td>1 500</td>
<td>1 800</td>
</tr>
<tr>
<td>K4</td>
<td>Replenishment / days</td>
<td>30</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>K5</td>
<td>Price / $</td>
<td>19.3</td>
<td>20.5</td>
<td>22.5</td>
</tr>
<tr>
<td>K6</td>
<td>Maturity / days</td>
<td>45</td>
<td>60</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 2 Analysis of the supplied basic raw material (dolomitic limestone)

<table>
<thead>
<tr>
<th>No.</th>
<th>Criteria</th>
<th>(v_i)</th>
<th>(x_i^1)</th>
<th>(x_i^2)</th>
<th>(d_i) of individual suppliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>Basicity / %</td>
<td>0.200</td>
<td>4.2</td>
<td>3.3</td>
<td>0.039</td>
</tr>
<tr>
<td>K2</td>
<td>Lumpiness / %</td>
<td>0.200</td>
<td>97</td>
<td>82</td>
<td>0.008</td>
</tr>
<tr>
<td>K3</td>
<td>Consignment / t</td>
<td>0.150</td>
<td>2 000</td>
<td>1 500</td>
<td>0</td>
</tr>
<tr>
<td>K4</td>
<td>Replenishment / days</td>
<td>0.150</td>
<td>30</td>
<td>90</td>
<td>0.150</td>
</tr>
<tr>
<td>K5</td>
<td>Price / $</td>
<td>0.200</td>
<td>19.3</td>
<td>22.5</td>
<td>0</td>
</tr>
<tr>
<td>K6</td>
<td>Maturity / days</td>
<td>0.100</td>
<td>60</td>
<td>30</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>Sum</td>
<td></td>
<td>0.072</td>
<td>0.728</td>
<td>0.333</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td>0.268</td>
<td>0.853</td>
<td>0.577</td>
</tr>
</tbody>
</table>

Sequence

1. 3. 2.
RESULTS AND DISCUSSIONS

The evaluated basic raw materials were assessed from the point of view of six criteria, representing three areas (physical and chemical properties, logistics, cost). The applied mathematical methods were used to determine the following order (Table 2):

1. Supplier S1 - Czech Republic (0.268)
2. Supplier S2 - Poland (0.853)
3. Supplier S3 - Ukraine (0.577)

The values in brackets represent the distances from an optimal (imaginary) option. The order determined on the basis of this model is interesting in terms of many aspects. The supplier of dolomitic limestone from Ukraine took the second place, although it had the best values in physical and chemical parameters. If the evaluation had been based solely on similar indicators, it would have been the best solution. The solutions would have been optimal only in terms of the physical and chemical properties. Current demands related to the manufacturing costs, however, require you to take into account additional parameters and criteria as well. The overall top-rated basic raw material was from a supplier in the Czech Republic (S1). This was affected especially by the fact that it achieved the best value in the area of logistics criteria and price. The price conditions were also the reason why the supplier of dolomitic limestone from Ukraine took the second place. The worst evaluation (third place) was recorded in case of basic raw material from Poland (S2). This raw material (supplier) had the best cost parameters of all the entities, but considerably worse physical and chemical and logistics parameters. This aspect clearly shows the benefits of the designed evaluation, which allows you to quantify a number of vastly different criteria. If the evaluation of the
basic raw materials had been conducted using only one isolated criterion, it wouldn’t have been possible to find the optimal solution. A synthesis of all partial criteria enables us to provide a global view of the quality of the specified basic raw material. This evaluation system can also be easily transformed into a percentage result form. In this case, the determined distances from an imaginary option will be converted to percentages. The determined values of each basic raw material will be compared and evaluated again.

Acknowledgement

The work was supported by the specific university research of Ministry of Education, Youth and Sports of the Czech Republic No. SP2015/36 Creation of competitive analysis system for industrial companies.

REFERENCES

Note: The responsible translator for English language is Petr Jaroš (English Language Tutor at the College of Tourism and Foreign Trade, Goodwill - VOS, Frydek-Mistek, the Czech Republic). Revised by John Vlcek (Literacy Tutor at West Suffolk College, Bury St Edmunds, England)