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This paper proposes an actual implementation of a well-known method [1] for spectral analysis of signals com-
posed of harmonically related sine waves. The method itself requires computations which carried out directly
according to the theoretical formulas do not yield computationally efficient implementation. Thus, utilizing matrix
factorizations and mathematical “shortcuts", several algorithms have been developed, which perform computations
efficiently and make the method suitable for large-scale applications. Implementation details are clearly explained
both theoretically and from computational point of view, and the achieved improvements have been proven by ex-
tensive simulations. Particular calculations applied will be equally efficient in all similar problems, which renders
the proposed routines into widely useful building blocks.
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Analiza harmoničkog signala s gledišta računske učinkovitosti. U članku se opisuje nekoliko računski
učinkovitih algoritama za primjenu dobro poznate i prihvaćene metode za analizu spektra signala sastavljenog
od harmoničkih valova [1]. Metoda zahtijeva proračune čija provedba izravno po formulama koje opisuju teori-
jsku pozadinu postupka vodi u računski neučinkovite algoritme, stoga se koristeći faktorizacije matrica i neke
matematičke “prečice" postupno razvijaju učinkoviti algoritmi primjenjivi i u analizama s velikim brojem uzo-
raka i sastavnica signala. Poboljšanja su jasno objašnjena i teorijski i s gledišta primjene, a dokazuju se opsežnim
simulacijama. Posebni načini izračunavanja pojedinih matematičkih izraza primjenjivi su i u drugim sličnim prob-
lemima, što ih čini zanimljivim i važnim u raznim područjima znanosti.

Ključne riječi: analiza signala, algoritam, složenost algoritma

1 INTRODUCTION

Estimation of sine wave parameters form noisy sam-
ples, as a basic step in many system identification or sig-
nal processing applications, has been in the focus of re-
search interest during the past few decades. Since, under
assumption of Gaussian noise, maximum likelihood (ML)
principle [2] leads to nonlinear least squares (LS) problem,
most of algorithms for computing ML estimates are itera-
tive search routines in their nature [3–5]. As such, they are
usually two-stage procedures, the first stage being a coarse
initial estimation that provides seed values for the second
stage, which iteratively approaches maximum likelihood
solution.

It turns out that the critical parameter is frequency be-
cause once frequency is known, the subsequent calculation
of amplitude and phase is straightforward. Although it is
well known that ML estimator of frequency is given by the
location of the peak of a periodogram [6], due to iterative
procedures the computational effort is prohibitive in many

instances. This motivated development of various alter-
native solutions, usually based on a kind of linearization
of the problem [1, 7–14]. The improvement in processing
speed, compared to “classical” ML algorithms, can be sig-
nificant, but it is often the case that the gain is not as much
obtained by theoretical results themselves as much by ex-
ploiting specific mathematical techniques in an actual al-
gorithm implementation.

In this paper we consider one of methods belonging to
this “alternative” group [1], and investigate several algo-
rithms that arise from its theoretical foundation, with the
final aim to achieve as fast as possible calculations (pro-
gram execution). As we show shortly, the proposed algo-
rithms notably outperform the one following directly from
the theory, which we call Algorithm 1. Specifically, the
complexity of initial algorithm isO(N2h), where N is the
number of samples and h is the number of signal com-
ponents, while all improved variants are O(Nh2), which
can be significant difference when h � N . Mathemat-
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ical “shortcuts” used are clearly explained both theoreti-
cally and from computational point of view, as well as are
extensive simulations and their results. Particular calcula-
tions applied in tested algorithms will be equally efficient
in all similar problems, like for instance in recent appli-
cations [15, 16], which renders these routines into widely
useful building blocks.

2 PROBLEM STATEMENT AND SOLUTIONS
2.1 Review of theoretical background of the estima-

tion procedure
As explained in [1], the method under consideration es-

timates parameters of a multi-tone signal, but it simplifies
the problem introducing the constraint that all signal com-
ponents are harmonically related (i.e., their frequencies are
integer multiples of fundamental frequency). Thus, the sig-
nal model is

s(nTs) =
h∑

k=−h

Akexp(jknω0Ts), (1)

A−k = A∗
k, n = 0, 1, . . . , N − 1,

where Ts is the sampling period, A0 is DC offset, Ak are
complex harmonic amplitudes (k = 1, 2, . . . , h), and ω0 =
2πf0 is fundamental frequency.

With unknown signal parameters arranged
in vector Ψ = [ΘT, f0]T, where Θ =
[A0, real(A1), . . . , real(Ah), imag(A1), . . . , imag(Ah)]T,
their estimates are obtained as solution of nonlinear least
squares problem

ΨNLS = arg min
Ψ

KNLS(Ψ) (2)

where cost function KNLS(Ψ) is

KNLS(Ψ) =

N−1∑

n=0

(
sm(nTs)−

h∑

k=−h

Akexp(jknω0Ts)
)2
.

(3)
For known f0, the cost function (3) is linear in Θ and

this motivates a two stage estimation. The first stage is esti-
mation of frequency, whereby nonlinear least square prob-
lem (2) in Ψ (2h+ 2 parameters) is reduced to a nonlinear
least square estimation of a single parameter, frequency f0.
It is shown in [1] that the cost function in single parameter
f0 is

KNLS(f0) = [P(f0)Sm]T[P(f0)Sm], (4)

where P(f0) = IN −H(f0)H(f0)+, H(f0) ∈MN,2h+1,
with entries defined by

(H(f0))i,k+1 =





1, k = 0,
2 cos((i− 1)kω0Ts),

k = 1, . . . , h,
−2 sin((i− 1)(k − h)ω0Ts),

k = h+ 1, . . . , 2h.

(5)

and Sm = [sm(0), sm(Ts), . . . , sm((N − 1)Ts)]
T.

Here IN is anN×N identity matrix H(f0)+ is Moore-
Penrose pseuodoinverse of H(f0) given by

H(f0)+ =
(
H(f0)TH(f0)

)−1

H(f0)T. (6)

Minimization of the cost function (4) is obtained by
Gauss-Newton method. Each iteration step has the form

[J(f0)TJ(f0)]∆f0 = −J(f0)T [P(f0)Sm], (7)

with J(f0) ∈ RN , defined by

J(f0) = −
(

P(f0)
∂H(f0)

∂f0
H(f0)+

+
(
P(f0)

∂H(f0)

∂f0
H(f0)+

)T)
Sm,

(8)

and ∂H(f0)/∂f0 ∈MN,2h+1, with entries

(
∂H(f0)

∂f0

)

i+1,k+1

=





0, k = 0,
−4πikTs sin(ikω0Ts),

k = 1, . . . , h,
−4πi(k − h)Ts cos(i(k − h)ω0Ts),

k = h+ 1, . . . , 2h.
(9)

Once f0 is found, the second stage is estimation of Θ, but
with f0 known this is an ordinary linear LS problem with
2h+ 1 unknowns whose solution is

ΘLS = H(f0)+Sm. (10)

Hence, the explained estimation method is an iterative
routine summarized in Algorithm 1.

Algorithm 1 Initial algorithm
1: f0 = initial (starting) estimate of fundamental fre-

quency.
2: repeat
3: By Gauss-Newton method (7) find better estimate

fnew0 of f0.
4: f0 = fnew0

5: until f0 is "good enough"
6: Calculate vector ΘLS for given f0 using (10).

The complexity of a single iteration of Algorithm 1
is determined by the step 3. Direct computation accord-
ing to (4) – (9) is not the best approach because it im-
plies computation of matrix P(f0) ∈ MN,N , and this re-
quires matrix multiplication of H(f0) ∈ MN,2h+1 and
H(f0)+ ∈ M2h+1,N , which is O(N2h) (for Oh nota-
tion see, for example, [17]). In this paper we utilize a few
mathematical “shortcuts” jointly with well-known matrix
factorizations to achieve better computational efficiency.
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2.2 Algorithms

Theoretical foundation in section 2.1 offers several pos-
sibilities for actual algorithm design and now we explain
few of them that will be compared. For the sake of brevity,
in all formulas we omit parameter f0 from vectors and ma-
trices (i.e. we write P, instead P(f0), etc.).

The elements of matrices H and
∂H

∂f0
have the form

α sin(rω0Ts) or α cos(rω0Ts), where α ∈ R and r =
0, 1, . . . , (N − 1)h, so the first speed-up possibility is to
calculate sin(rω0Ts) and cos(rω0Ts) using standard three-
term recurrence relation for sine and cosine [18]:

Ur = 2 cos(ω0Ts)Ur−1 − Ur−2, r = 2, 3, . . . . (11)

For U0 = 1 and U1 = cos(ω0Ts) , we obtain the se-
quence (11) is Ur = cos(rω0Ts), and for U0 = 0 and
U1 = sin(ω0Ts), the sequence is Ur = sin(rω0Ts).

Next, we observe that vector J in (8), whose calculation
implies several matrix-matrix products, can be represented
as the sum of two vectors, J1 and J2,

J = −P
∂H

∂f0
H+Sm

︸ ︷︷ ︸
J1

−
(

P
∂H

∂f0
H+

)T

Sm

︸ ︷︷ ︸
J2

. (12)

Such form, computed from right to the left, replaces all
matrix-matrix products in (8) by products of matrices and
vectors only. Because single (n × m) · (m × p) matrix-
matrix product requires more calculations than a few (n×
m) · (m× 1) matrix-vector products, this will speed up the
computation. Furthermore, by definition of P, vector J1

becomes

J1 = P
∂H

∂f0
H+Sm = (IN −HH+)

∂H

∂f0
H+Sm

=
∂H

∂f0

(
H+Sm

)
−H

(
H+
(∂H

∂f0

(
H+Sm

)))
.(13)

Similarly, recalling that P is symmetric matrix, vector J2

becomes

J2 = (H+)T
(∂H

∂f0

)T
PTSm = (H+)T

(∂H

∂f0

)T
PSm

= (H+)T
(∂H

∂f0

)T (
Sm −H

(
H+Sm

))
. (14)

In both (13) and (14), parenthesis are used to empha-
size that all calculation necessary for a step of Gauss-
Newton iteration (7) can be performed as matrix-vector
product only. Having (12)–(14) in mind, we are able to
write the first algorithm for actual calculation of Gauss-
Newton iteration (7). We shall name it AlgorithmMPI,

Algorithm 2 AlgorithmMPI

1: Form matrices H and
∂H

∂f0
according to (5) and

(9), calculating sin(rω0Ts) and cos(rω0Ts), r =
0, . . . , (N − 1)h as in (11).

2: Calculate matrix H+.
3: X1 = H+Sm,

X2 = ∂H
∂f0

X1,
X3 = H+X2,
J1 = X2 −HX3.

4: X4 = Sm −HX1,
X5 = ∂H

∂f0

T
X4,

J2 = (H+)TX5.
5: J = −J1 − J2.
6: calculate new approximation fnew0 of fundamental fre-

quency fnew0 = f0 −
JTX4

JTJ
.

since its most distinctive property is computation of and di-
rect calculations with Moore-Penrose pseuodoinverse H+.
For clarity, in the pseudo-codes that follow we introduce
vectors Xi that are just auxiliary vectors used to form
matrix-vector product and to make calculations neater.

In AlgorithmMPI the most time consuming operation is
calculation of H+. Moreover, it can occasionally even be
numerically unstable, and to improve numerical stability
in [1] it is recommended to apply singular value decompo-
sition (SVD) [19].

Algorithm 3 AlgorithmSVD
1: The same as in Algorithm MPI.
2: Calculate “economy size” singular value decomposi-

tion of H, H = UΣVT.
3: X0 = UTSm,

X1 = V(Σ−1X0),
X2 = ∂H

∂f0
X1,

X3 = UTX2,
J1 = X2 −UX3.

4: X4 = Sm −UX1,
X5 = ∂H

∂f0

T
X4,

J2 = U(Σ−1(VTX5)).
5: The same as in AlgorithmMPI.
6: The same as in AlgorithmMPI.

However, SVD and other decompositions can be uti-
lized not only to obtain H+, but also in subsequent calcu-
lations as well. Decomposed according to SVD, matrix H
can be written as H = UΣVT, where U ∈MN,2h+1 with
orthonormal columns, and Σ,V ∈M2h+1; Σ is diagonal
matrix and V is orthogonal (“economy size” singular value
decomposition in MATLAB). Then H+ = VΣ−1UT, but
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more important, we have convenient expression HH+ =
UUT so we can write AlgorithmSVD.

Another possibility is to use QR factorization [19] of
matrix H. By QR factorization, matrix H is written
as H = QR where Q ∈ MN,2h+1 with orthonormal
columns, and R ∈ M2h+1 is upper triangular (“economy
size” QR factorization in MATLAB). Having Q and R, it
follows that H+ = R−1QT and HH+ = QQT so we
arrive to AlgorithmQR.

Algorithm 4 AlgorithmQR
1: The same as in AlgorithmMPI.
2: Evaluate “economy size” QR factorization of H, H =

QR.
3: X0 = QTSm,

X1 = R−1X0,
X2 = ∂H

∂f0
X1,

X3 = QTX2,
J1 = X2 −QX3

4: X4 = Sm −QX0,
X5 = ∂H

∂f0

T
X4,

X6 = (R−1)TX5,
J2 = QX6.

5: The same as in AlgorithmMPI.
6: The same as in AlgorithmMPI.

Of course, instead evaluating an expression of the form
y = R−1x, we can rather solve equation Ry = x, which
is significantly faster because matrix R is upper triangular.

Even better approach is to avoid direct evaluation of
expression of the form y = H+x = (HTH)−1HTx;
rather, we can solve linear system (HTH)y = HTx. In
this approach, we first calculate symmetric matrix Hp =
HTH ∈ M2h+1 and then make Cholesky decomposition
of Hp, Hp = UTU, where U is upper triangular matrix.
This leads to AlgorithmChol.

In step 4 of AlgorithmChol we make use of the fact
that HTH is symmetric matrix, which yields (H+)T =
((HTH)−1HT)T = H((HTH)−1)T = H(HTH)−1.
Also, as in AlgorithmQR, we exploit triangular structure
of matrix U.

An alternative is to obtain Cholesky decomposition of
matrix Hp by QR factorization of matrix H. Namely,
let H = QR is QR decomposition of matrix H. From
Hp = HTH = RTQTQR = RTR and from the unique-
ness of Cholesky decomposition it follows that matrix U
in AlgorithmChol is equal to R. Hence, we can use the
same procedure (AlgorithmChol) but with step 2 modified
in a way that we evaluate QR decomposition of matrix H
and in the subsequent steps we use R instead U. In what
follows, we call this variant of computations Algorithm-
CholQR.

Algorithm 5 AlgorithmChol
1: The same as in AlgorithmMPI.
2: Calculate matrix Hp = HTH and Cholesky decom-

position of Hp = UTU.
3: X0 = HTSm,

X1 = U−1(U−TX0),
X2 = ∂H

∂f0
X1,

X3a = HTX2,
X3 = U−1(U−TX3a),
J1 = X2 −HX3.

4: X4 = Sm −HX1,
X5 = ∂H

∂f0

T
X4,

J2 = H(U−1(U−TX5)).
5: The same as in AlgorithmMPI.
6: The same as in AlgorithmMPI.

However, if H has full rank, then matrix Hp is sym-
metric and positive definite, which indicated the usage
of another decomposition [19], namely LU factorization
Hp = L1U1. Because of the same "structure" of Cholesky
decomposition and LU factorization, we can use LU fac-
torization within the "template" of AlgorithmChol by sim-
ply replacing matricies U and UT with U1 and L1, respec-
tively. Detailed analysis reveals that there is no notable
difference in performance of these two variants so, for con-
ciseness, in the paper we report and comment results with
LU factorization only, calling this routine AlgorithmLU.

3 SIMULATIONS AND ANALYSES

3.1 The design of experiment

Since, in this work, precision and absolute control over
every single calculation step are of primary importance, all
simulations used were programmed in FORTRAN, with all
matrix computations performed by double precision LA-
PACK routines. This should ensure highest objectivity and
reliability of reported results, as well as easy traceability.
Specifically, QR decomposition is evaluated by using LA-
PACK routine dgeqrf, which does not form matrix Q
explicitly, and for multiplications with Q routine dormqr
is used.

The aim is to determine the computational complex-
ity of the aforementioned algorithms with respect to the
sample size and number of signal components, rather than
to compare convergence and final results (which are the
same, anyway). Therefore, we measure execution times of
these routines (using FORTRAN secnds function) while
changing the appropriate parameters. For our purpose, it
is sufficient to have signal composed of at most DC + four
components (h = 1 . . . 4) and to vary sample size in the
range n = 25 . . . 210.
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Because we also wish to determine the components of
the total execution time, we construct regression model
(explained shortly) and measure execution times of a sin-
gle iteration, then the time needed for two iterations etc. up
to eight iterations. Of course, measurement of time needed
for just a few iterations would be practically impossible be-
cause it would be too short, so we measure rep consecutive
executions of the same algorithm with the same preset sim-
ulation parameters and obtain the estimate of time needed
for single execution as the quotient (total time)/rep. Hence,
the general simulation structure is shown in Algorithm 6.

Algorithm 6 The general simulation structure.
1: for number of signal components h = 1 to 4 do
2: for sample size n = 26 to 210 do
3: for number of iterations q = 1 to 8 do
4: for i = 1 to rep do
5: TMPI(q,n,h) = execution time of q itera-

tions of AlgorithmMPI with given h and n
6: TSVD(q,n,h) = . . . AlgorithmSVD
7: TQR(q,n,h) = . . . AlgorithmQR
8: TLU(q,n,h) = . . . AlgorithmLU
9: TChol(q,n,h) = . . . AlgorithmChol

10: TCholQR(q,n,h) = . . . AlgorithmCholQr
11: end for
12: q iterations take TALG/rep time
13: end for
14: end for
15: end for

Once we acquire execution times, two main problems
are to be dealt with. First of all, we need to distinguish
the time spent on memory management (housekeeping)
jobs [20] and the time effectively spent on routines un-
der consideration. The housekeeping jobs entirely depend
on operating system, computer hardware and translation
of program code (compiler properties), so it is not possi-
ble to put them under control. Secondly, but related to the
first problem, execution times measured on different sys-
tems (hardware) or in different program environments (let
us say, Matlab, C++ etc.) would be quite misleading be-
cause of different low level memory management, thread
servicing and other processor tasks that are out of our con-
trol and are not observable.

To overcome the second problem, we actually compare
ratios of execution times, not their measured values. How-
ever, we firstly have to separate housekeeping and usefully
spent time, and the solution we apply emanates from a
number of preliminary simulations and analysis. In short,
it turns out that the total execution time of an algorithm,
as a function of number of iterations and with n and h as
parameters, can be faithfully modeled linearly as

TAlg(q;n, h) = αAlg(n, h) + βAlg(n, h) · q, (15)

Fig. 1. Plot of total execution time for AlgorithmLU, for
N = 28 and h = 2, as a function of number of iterations.
This is a typical result because all other tested algorithms
show the same behavior.

where αAlg(n, h) is housekeeping contribution for given
n and h, and βAlg(n, h) is time usefully spent on calcula-
tions required by a single iteration of the algorithm Alg. A
visual support to a linear model is figure 1, which shows a
typical simulation result. Correlation coefficients are typi-
cally over 0,99.

The linear model is also intuitively most acceptable be-
cause housekeeping jobs are in our case mostly related to
memory allocation and as such are practically independent
on the repetitions of the job that follows, while usefully
spent time is, in contrast, directly proportional to the num-
ber of iterations. Thus, we are interested in ratios of model
parameters β for different algorithms because although ex-
ecution time of the same algorithm will vary in different
environments, mutual relationships among different algo-
rithms (ratios of β) should remain approximately the same.

3.2 Analysis of results

The time we measure depends on two parameters n and
h, so we should naturally plot three-dimensional graph to
present results of all simulations at once. However, plot
of execution times for the six compared algorithms would
consist of six close, partly interlaced surfaces and the com-
plete graph would be hardly readable. Therefore, in order
to simplify and make analysis clearer, we provide only typ-
ical results with one variable fixed. For convenience, at the
end we show three-dimensional plot in the whole domain
(all pairs (n, h)), but for a single algorithm.

The algorithm based on LU factorization has confirmed
itself as the best solution in all instances, so we plot results
for all other algorithms with respect to (in ratio with) the
results of AlgorithmLU. Figure 2 shows the ratios of exe-
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Fig. 2. Ratios of execution times of all algorithms and the
time of AlgorithmLU, with the number of signal compo-
nents fixed to h = 4.

cution times with the number of signal components fixed
to h = 4.

The differences among compared algorithms are no-
table. AlgorithmLU and AlgorithmChol can be consid-
ered equaly fast and they set the lower limit. In the second
level are AlgorithmMPI and AlgorithmCholQR, which are
about 60% slower than AlgorithmLU (and Algorithm-
Chol). The AlgorithmQR is just a little slower than Al-
gorithmMPI, but the one utilizing AlgorithmSVD is con-
vincingly the slowest, slower than AlgorithmLU three to
five times. Recalling that SVD based computations are nu-
merically the most stable among all compared ones [19],
these results can be interpreted as an obvious confirmation
of inherent trade-off between speed and numerical stability
of computations.

However, a valuable observation accessible from
Figure 2 is indication of limiting performances. Clearly,
as the sample size grows, changes in performances for
each algorithm get smaller, that is, plots tend to become
horizontal lines. Theoretically, all these algorithms have
equal worst-case complexity, specifically O(Nh2) (see
[21]), which is better than complexity of Algorithm 1 (for
N � h). In AlgorithmMPI, AlgorithmLU and Algo-
rithmChol the complexity is determined by multiplication
Hp = HTH, while for AlgorithmQR and Algorithm-
CholQR it follows from QR factorization, and from SVD
decomposition for AlgorithmSVD. However, their asymp-
totic [17] limits Θ are not the same and AlgorithmLU will
be the fastest for all sample sizes as long as h� N . In the
figure this fact is reflected by different end-points of lines.

Final confirmation of AlgorithmLU (and Algorithm-
Chol) based algorithm as the best choice regardless of n

Fig. 3. Ratios of execution times of all algorithms and the
time of AlgorithmLU, with sample size fixed to n = 28.

and h is in Figure 3.

We see that mutual relationships with fixed sample size
are identical to those with fixed number of signal compo-
nents, which confirms AlgorithmLU as the best solution in
all setups in this experiment.

As a concluding result, let us consider Figure 4, which
shows execution time of AlgorithmLU for all simulated
pairs of sample size and number of signal components.
The graph has been constructed by taking the shortest time
(for n = 25 and h = 1) as a reference and plotting ratios
of all other measurements, for particular pairs (n, h), with
respect to the referential time. In other words, Figure 4 is
plot of ratios βLU (n, h)/βLU (25, 1).

Fig. 4. Execution time of AlgorithmLU as a function
of sample size n and number of signal components h.
The graph is a plot of ratio of time for particular pair
(n, h) to the shortest measured time, i.e., plot of ratios
βLU (n, h)/βLU (25, 1).
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Not surprisingly, the growth of sample size and the
number of signal components quickly increase computa-
tion time, but it is interesting to notice precisely the gen-
eral form of execution time dependence on sample size and
its dependence on signal complexity. In Figure 4 we see
that the dependence of execution time on the sample size
is approximately linear, and on the number of signal com-
ponents dependence is quadratic, though this is somewhat
harder to see in the figure because number of components
is maximally four. This can be theoretically proven in a
more involved numerical analysis [19].

4 CONCLUSION

In this paper it has been shown, on example of theo-
retically clear and commonly accepted estimation method,
that firm theoretical foundation does not necessarily im-
ply single and obvious algorithm for actual computations.
The algorithm that strictly follows the theory (Algorithm
1) is gradually improved and eventually we arrive to sev-
eral algorithms that notably outperform the Algorithm 1.
All these improved algorithms are significantly faster than
Algorithm 1 and no one of them can be declared abso-
lutely the best because there is a trade-off between com-
putational speed and numerical stability “inherited” from
underlying matrix factorizations. Thus, the analyses in this
paper can be a useful source during fine-tuning of an ap-
plication by choosing the algorithm optimal with respect to
the particular problem. Moreover, mathematical shortcuts
like performing several matrix-vector products instead of a
matrix-matrix product and specific usage of matrix decom-
positions can be applied in other similar problems, empha-
sizing the importance of deliberate algorithm design and
providing useful guidelines.
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