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Methods of contactless electrical power transfer technologies have been surveyed and results are presented here.
In this among, the inductive based contactless electrical power transfer systems are investigated in more detail. The
principles, structures and operations of the systems as well as their methods presented in the literature are reviewed
and their applications are explored. Also, current challenges and opportunities and future trends are noted. An
effective index is proposed to compare different contactless power transfer systems describing their present statuses
and the future trends. Finally, some remarks and recommendations regarding future studies are proposed.
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Pregled stanja u podrucju bezkontaktnog prijenosa elektri¢ne energije: primjene, izazovi i trendovi. U
radu je dan prikaz razlicitih tehnologija u podrucju bezkontaktnog prijenosa elektri¢ne energije. U radu je naglasak
na indukcijom baziranim sustavima bezkontaktnog prijenosa elektri¢ne energije. Pregledom literature utvrdeni su
koncepti, strukture i nacin rada pojedinih sustava bezkonaktnog prijenosa kao i njihove primjene. Takoder, zabil-
jeZeni su trenutni izazovi, prilike i trendovi. PredloZen je efektivni indeks za vrednovanje sustava bezkontaktnog
prijenosa elektri¢ne energije s ciljem komparativne analize razli¢itih sustava opisanih trenutnim statusom i tren-
dovima. Konacno, dan je kriticki osvrt i predloZene su preporuke za buduce studije.

Kljucne rijeci: bezkontaktni prijenos elektriéne energije, indukcijom bazirani prijenos energije, rezonantni kru-

govi, bezi¢ni prijenos elektricne energije

1 INTRODUCTION

The idea of electrical power transfer without mechan-
ical contact, so-called wireless power transfer, was a hu-
man dream at early stages of the electrical power conver-
sion where Nikola Tesla took the preliminary steps at the
late nineteenth and early twentieth centuries [1-2]. It is al-
most a century that signals are transferred in long distances
via electromagnetic waves for applications such as radio,
television and communication systems. However, meth-
ods of wireless power transfer are much less developed due
to the fact that the functional limitations and design con-
siderations for power transfer systems are more demand-
ing than those of the signal transfer systems [3]. In recent
years, with the development of portable electronic equip-
ment such as notebooks and cell phones, new demands for
contactless power transfer have emerged and the research
on this kind of power transfer has attracted more attentions.

Electromagnetic radiation based power transfer in short
distances can be used to lighten fluorescent lamps with sev-
eral watts. Many products have also been developed by
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utilizing microwave power transfer methods. The process
of converting sunlight into high frequency microwaves and
transmitting them into the earth is also used [4]. The
power of microwaves can also be efficiently transferred
using lenses and reflection mirrors [5-6]. A major prob-
lem of this method is the conversion of power into usable
power by the antennas. This problem is solved by intro-
ducing rectifier antennas, Rectena, in 1963 [7]. An impor-
tant application of wireless power transfer via microwaves
was demonstrated through the space solar power program
(SPS) in late 1970s [4]. The wireless power radiation can
be used to transfer power to far destinations even up to
several tens of kilometers. However, this system is more
complex and its design and manufacturing are costly with
respect to other wireless power transfer methods.

In recent years, inspiring by the concept of mutual
induction and resonance phenomenon, inductive power
transfer systems have been attractive as a re-emerging tech-
nology. These systems are composed of electromagnetic
devices, control sub-systems and power electronics cir-
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cuits. It is known that two resonant objects with the same
resonance frequency have the most energy exchange. This
fact leads to numerous studies on the performance evalua-
tion of magnetic coupled resonators and their applications
in magnetic systems [8].

Another contactless power transfer method for feeding
moving objects is the capacitive method in which two sepa-
rated capacitor plates shape a large air gap for power jump,
referred as capacitive coupled power transfer (CCPT). Re-
cent research on different aspects of CCPT include inves-
tigating the effects of system coupling variations, intro-
ducing different analysis methods, using series compen-
sation systems for efficiency improvement and presenting
different structures for device charging [9-12]. Although,
a CCPT system has a simple concept compared with an
inductive power transfer system, its required high electric
field intensity higher than 30 kV/cm in the air results in
some practical difficulties.

The main concern of this paper is to introduce the struc-
ture, operation modes, applications, current researches
and future trends of inductive based contactless electrical
power transfer (CEPT) systems. A schematic view of an
inductive CEPT system is illustrated in Fig. 1 showing
three system stages as:

- The electrical power is directly converted to high fre-
quency electromagnetic power,

- Electromagnetic power is transferred from a transmit-
ter to a receiver through free space,

-The received electromagnetic power is collected and
converted to the electrical power in order to be used by a
load.

Section 2 discusses the principles of the CEPT sys-
tems. In section 3 different applications of CEPT systems
are presented. Current researches and challenges associ-
ated with the CEPT systems are investigated in section 4.
The opportunities and future trends in the CEPT research
are noted in section 5 by introducing an index, referred as
“power distance index (PDI)”. Finally some concluding re-
marks and recommendations are given in section 6.

2 PRINCIPLES OF CEPT SYSTEMS

In order to attain a high efficiency in CEPT systems, the
operating frequency must be reasonably high. As a con-
sequence, a large power supply is required resulting in an
increased circulating power. This in turn, reduces the trans-
ferred power. In brief, there is a conflict between a high ef-
ficiency and a high transferred power as a major drawback
of CEPT systems. To overcome this problem, installing ca-
pacitive compensation in both primary and secondary sides
is recommended to provide resonance conditions [3]. The
power transfer capability of the CEPT system is enhanced
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Fig. 1. Basic structure of a CEPT system

by the secondary compensation and the power rating of the
source side is decreased by the primary compensation that
ensure the power transfer at unity power factor.

2.1 Non-resonance Based CEPT

Wireless non-radiation power transfer between non-
resonance objects is limited to low power (mW range) and
short-distance (in comparison to the devise dimensions)
applications because of a strong deterioration of the pro-
duced field by the sender and its leakage (radiation losses)
in the free space. The cost of this system is much less
than that of the systems based on wireless power transfer in
the far field radiation area. Some of these applications in-
clude wireless battery charger [13-15], coreless transform-
ers [16] and wireless transfer systems for moving or rotat-
ing loads [17].

There are many patents in the field of wireless bat-
tery charger. The general characteristic of these devices
are based on magnetic induction through a transmitter to a
receiver. However, there are major differences in their ge-
ometry and topology which provide more capabilities de-
pending on the application. Fig. 2 shows an example of a
charger in which an array of windings is used in a trans-
mitter for energy saving [14].

Nowadays, several wireless battery charger products
are manufactured using magnetic induction.

2.2 Resonance Based CEPT

The contactless power transfer in non-radiation meth-
ods near field areas between resonance objects was intro-
duced in 2007 [18]. It is described by the “strongly res-
onance coupled mode* theory [19]. A quantitative quasi-
static model for the power transfer in non-radiation near
field areas is also presented [8]. It is worth mentioning
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Fig. 2. An array of windings in a transmitter for energy
saving [14]

that the simulation results obtained from this model match
the experimental results with an error up to 5%. The re-
search reaches an efficiency of 40% within 2 m distance.
Non-radiation contactless power transfer between resonant
objects can be used in the case of longer distances in com-
parison with non-resonant cases. This is due to a greater
coupling coefficient of the resonant objects. Another ex-
perimental study is reported with an efficiency of up to
75% within 90 cm distance [20].

A set of equations governing “strong coupling mode”
is presented showing that the efficiency of power trans-
fer can be improved significantly using one or more res-
onators [21]. Also, a resonant magnetic coupling system is
modeled and analyzed [22-23]. More recently, compar-
ative resonance and non-resonance based magnetic cou-
pling systems applied to wireless charging are presented
that show the efficiency of the resonance based method is
much higher than non-resonance method [24-25].

3 APPLICATIONS OF CONTACTLESS ELECTRI-
CAL POWER TRANSFER

CEPT systems have advantages in some applications,
especially in the case of large air gaps in which power
reaches the moving or rotating loads. Major of CEPT ap-
plications are reviewed in this section.

3.1 Biomedical applications

In some cases, it is essential that electronic devices
to be implanted within the patient’s body. Feeding these
systems can be provided by internal batteries and external
sources. In later cases wires may be uncomfortable for
patients with movement limitations and sometimes may
cause serious infections. Also, batteries have disadvan-
tages such as being heavy, massive and costly, containing
harmful toxic substances and requiring surgery for imple-
mentation [26-27]. Many studies have been carried out to
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Fig. 3. A coupled contactless power supply for an artificial
heart

utilize CEPT technology in these cases. Some develop-
ments can be mentioned as follows: power transfer for
the pressure display, neural simulation devise, tempera-
ture measurement, heart rate regulatory systems [28-30]
and wireless feeding endoscopy capsule for diagnosing the
path of human intestine [31]. Recently, power transfer is
provided by resonance based methods with power elec-
tronic tools [32-35].

Fig. 3 illustrates a typical contactless power supply
configuration for an artificial heart. The primary coil is
placed outside a patient’s body. The secondary coil is
implanted under the skin, facing the primary coil. Typi-
cally, the coupling coefficient of such a system is within
the range of 0.1- 0.3 and the distance between the external
and internal coils is less than 3 cm [36].

3.2 Household Apparatuses

Household tools without electrical connections have
more flexibility and controllability in addition to a better
appearance. Examples of these instruments include cof-
fee machines, shaving machines, electrical toothbrushes,
etc. Inherent insulation between supply and human body
increases the safety of applicants. Charging laptop com-
puters [37-38], mobile batteries [39-40] and other electri-
cal devises [41] without the use of wires show the conve-
nience and attractiveness of this technology. Fig. 4 shows,
as an example, a schematic view of a wireless power trans-
fer system supplying a television [42].

3.3 Rotating Applications

In applications such as radar and wind turbines, it is
required to transfer power through rotating interfaces. In
these cases, utilization of wires is impossible because of
the continuous rotation which may twist and pull the wires
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Fig. 4. Wireless power transfer used to supply a TV [42]

and cause fault in the systems. Hence, brushes are used
which increase losses and maintenance cost [43]. As a so-
lution, CEPT is used to transfer the power to rotary loads
[44]. Also, electrical connections are not suitable for sup-
plying professional tools such as drill machines in harsh
conditions [45] and magnetics micromachine [46]. Simi-
larly, using contactless power transfer is useful where the
explosion hazards exist like in mines.

3.4 Electric Vehicles

Electric vehicles (EVs) for long distance travels need
massive batteries with long periods of charging. Contact-
less power transfer is a suitable solution for recharging the
EV batteries and reducing their weight and size. In recent
years, the idea of using a coupling system for providing
propulsion power to electric vehicles has gained increased
attention [47-51, 106]. A power electronic power transfer
system for charging an electric vehicle is depicted in Fig.
5 [52]. Recently a wireless charging system has been pre-
sented for vehicle charging in motion as shown in Fig. 6
[107].

3.5 Transportation Systems

Power transfer to moving objects often is regarded as
an essential limitation for rapid transports. Therefore, re-
placing permanent connections such as stretching cables,
brushes and pantographs seems necessary especially at
high speeds. Also, the use of contactless power trans-
fer systems is more useful considering economic and re-
liability aspects of a system [53-55]. A transport system
with a low air gap (10mm) and a high power (2.5 MW)
characteristic is presented with the frequency of 18 kHz
[56]. An inductive power transfer to a monorail system
[57] and a CEPT system for a linear machine [58] are also
proposed. A new technology is employed for high speed
Maglev trains in Switzerland metro [59].
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Fig. 6. In motion wireless charging system for electric ve-
hicle application “used with permission of ORNL” [107]

4 CURRENT CHALLENGES

The research on CEPT systems has increasingly been
considered in the last decade. Many researches have been
carried out in different centers and institutes dealing with
power electronic convertors and related control concepts,
topologies and structures and also resonance and frequency
issues. These researches cover several applications in-
cluding extra high speed transportation systems, medical
and low power applications and electric power transfer for
greater distances than the dimensions of primary and sec-
ondary systems. These studies are categorized as follows:

4.1 Architectures and Structures

A long distance between the primary and secondary
coils in contactless transfer systems increases the magne-
tizing current and the leakage magnetic flux, thus deteri-
orating the system efficiency. The initial solution for this
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problem is a modification of the topology and the structure
of power transfer systems. It is notable that the configu-
ration and the structure of power transfer systems are usu-
ally determined by their applications. Also, the air gap and
the power transfer rate are important factors for determin-
ing the system configuration and structure. Selecting an
appropriate structure leads to an optimum transfer of mag-
netic flux from the primary to the secondary coils of the
system. Many researches have been tried to select appro-
priate topologies and structures for CEPT systems, some
of them are reviewed in this section.

A coaxial CEPT structure based on long fixed primary
and movable secondary systems as a power supply for Ma-
glev applications is proposed and analyzed. A 3D FEM
analysis of the structure is illustrated in Fig. 7 [61]. A
prototype of a multi-phase pick-up coil suited for captur-
ing both vertical and horizontal components of a magnetic
field around any inductive power transfer (IPT) track is
proposed for vehicle applications [62-63]. Also, a motion
system consisting of a contactless planar actuator with six
degree of freedom (6-DOF) is presented [64]. To provide
contactless power to a moving vehicle, a long fixed pri-
mary winding inductively coupled to a moving secondary
winding is presented [65]. A configuration consisting of
a C-shape and an I-shape cores are also proposed for bat-
tery charging purpose [66]. Effects of core structures and
coil arrangements on improving transformer coupling co-
efficient, size and weight of CEPT systems are discussed
[67]. Poly-phase inductive power transfer systems are pro-
posed for increasing the tolerance of roadway-based vehic-
ular systems to the lateral movement of pickup coils [68-
70].

A single-layer winding array structure with cylindri-
cal ferrite cores is presented for planar contactless battery
charging systems [71]. Also, two rectangular-shape con-
tactless power supply system are presented with a high
coupling coefficient for a large air gap [72-73]. A Circular
magnetic structure and a polarized coupler topology are
proposed providing a wide charge zone for pads [74-75].
The charging platform including several pot type cores
with an array structure and a square planar spiral structure
are proposed [76]. A three-coil inductive power transfer
link is introduced to improve the efficiency for implantable
devices [77].

4.2 Frequency and Resonance Issues

Operating frequency is an important factor in power
transfer systems. A higher frequency of power signal
causes a higher overall efficiency of the system. Gener-
ating high frequency power signals is difficult due to semi-
conductor restrictions. Also, the radiation loss may cause
some problems in the high frequency operation of the sys-
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Fig. 7. 3D FEM analysis of a CEPT structure for Maglev
application [61]

tem. Magnetizing current and leakage fluxes are also re-
lated to frequency.

Compensators such as capacitors in the system pri-
mary and secondary improve the efficiency of the system.
Compensating capacitors also improve the power factor
by reducing the magnetizing current. Also, the utiliza-
tion of appropriate capacitors in primary and secondary
systems creates a resonance circuit with the winding in-
ductance [108]. A magnetic coupled resonator includes at
least two resonance circuits that can exchange their energy
in the same resonance frequencies while not affecting the
non-resonance objects surrounding them. In fact, a res-
onance tunnel is established between the resonance coils
[8]. Many efforts have been done to enhance the perfor-
mance of CEPT systems by resonance phenomenon and
adequate operating frequency. A resonance frequency of
134 kHz with an E class converter provides 69 W contact-
less power transfer to a load with 74% efficiency [78]. A
series loaded series resonant (SLSR) converter with a mag-
netic link provides maximum efficiency based on a reso-
nance frequency of 90 kHz [79]. Wireless power transfer
via magnetic resonant coupling is experimentally demon-
strated in a system with a large source coil and either one
or two small receivers with 8.3 MHz resonant frequency
[80]. The modeling and experimental evaluation of a cou-
pled magnetic resonance are presented with a high distance
between the receiver and the transmitter and the resonance
frequency more than 10 MHz [81-83]. A variable coupling
technique for achieving a high efficiency in a resonance
coupled wireless power transfer system at every air gap
length is achieved by adjusting the resonance frequency
[84-85]. An equivalent circuit model is employed to ana-
lyze a CEPT system with resonance frequency of 3.7 MHz
[86]. Relay resonators are spaced between the transmitter
coil and the receiver coil for maximizing power efficiency
and increasing the overall transfer distance between the
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power source and the load [87]. It is shown that, in CEPT
systems, antiparallel resonant loops can provide improved
efficiency [88]. The mixed-resonant coupling model is
proposed for a wireless power transfer system improving
the efficiency for long distances [89]. It is demonstrated
that using a magneto-plated wire instead of copper wire at
frequency of 12 MHz reduces skin effect as well as AC re-
sistance and increases the efficiency up to 7.9% in a wire-
less power transfer system with transfer distance of 10 mm
[90]. Overall efficiency and coupling coefficients of differ-
ent compensated structures are modeled and analyzed for
a long primary track in maglev applications [91]. Also, an
algorithm to obtain optimum resonance frequency in terms
of CEPT system parameters is proposed [92].

4.3 Power Electronics and Control

Control methods are investigated in many researches.
Power electronic topology and the method of creating
power signals, in addition to resonance convertor issues
are investigated. A 3 kW power electronic resonant con-
verter is presented with IGBT switches and FPGA con-
trol for a rotatable transformer application [93]. A reso-
nant converter with zero-current switching (ZCS) is pre-
sented to decrease switching losses [94-95]. Also, a power
electronic control located in the pickup side to tune reso-
nance circuit is designed [96]. Unity power factor pickup is
developed using a series—parallel-tuned LCL circuit [97].
A 1.2-kW series ac-processing pickup topology is built
which can control the output power over a wide range of
loads [98]. In some cases, power conditioners for primary
side are proposed [99]. Current sourced bi-directional
power interfaces are applied to CEPT systems by parallel
capacitor compensation with controlled rectifiers on both
sides of a system [100-102]. A direct ac-ac converter is
suggested for CEPT systems which can generate a 30 kHz
current directly from a 50Hz power supply [103]. A con-
trol method based on quantum modulation is presented for
a resonant converter topology [104].

5 OPPORTUNITIES & TRENDS

Concurrently with using electrical power, Tesla dealt
with wireless electrical power transfer in the late nine-
teenth century. However, his dreams remained impracti-
cal. In the late twentieth century, with the development
of portable electronic devices, once more, applications
of contactless power transfer systems gained momentum.
Also, extra high speed transportation encourages the high
voltages contactless power transfer.

Here, in order to compare and examine the process of
technological growth in this field, an index is defined as
the product of transferred power and distance; referred as
power distance index (PDI), PDI = P, x D. 1t is in-
troduced due to the fact that in a CEPT system, as the
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distance increases the power transfer becomes more dif-
ficult. Nowadays, lower powers are transferred in higher
distances and high powers can be transferred in short dis-
tances. Researchers hope that future progresses provide the
opportunity of transferring high powers in long distance at
a suitable efficiency. Therefore, previous developments are
classified by using PDI.

The higher the PDI figure represents the more advanced
the technology. In Fig. 8, the examined studies are catego-
rized and their PDIs are shown in terms of the transfer effi-
ciency. According to this figure, for applications in which
the PDI is required to be high, the contactless power trans-
fer is more challenging. The dream of Tesla can be fulfilled
by high values of the index at the long time ahead. As far
as different applications are concerned, between 1995 and
2005, the value of PDI was in the range of 0.1 Wm for
cellphone charging to several kWm for various industrial
applications. Considering the conducted research on this
issue, the value of PDI has increased in the first decade of
the new millennium [18].

Although the eventual dream of all applicants is to
reach higher PDI values with higher efficiencies, the as-
sociated costs limit the development trends in special di-
rections. It is seen that PDI values for some applications
including industrial, commercial and biomedical is rela-
tively constant and near future trend in these applications
is to enhance the efficiency at reasonable prices. Automo-
tive applications such as EV charging currently have high
efficiency and the future trend is to approach high PDI val-
ues. In high speed trains where the cost is less restricted,
increasing both PDI and efficiency will be considered in
the future. The trend for each technology is shown by an
arrow in Fig. 8.

In some applications such as commercial, industrial,
biomedical and high speed trains, the distance is specified
and efficiency improvement is the main concern. Recent
investigations focus on increasing PDI, while maintaining
the efficiency at high levels as in Fig. 8 [18, 20]. The de-
velopment process of CEPT technology is depicted in Fig.
9 for a wide time span. It is observed that the idea of power
transfer started by a big dream. Then, in the first decade of
the twenty-first century, it was steadily improved.

Using relationships of the CPT presented in [105] and
three-dimensional finite element method, the efficiency
and PDI as functions of air gap to coil diameter (L/D)
are calculated for different frequencies as shown in Fig.
10. The sender coil diameter is kept constant in simula-
tions. The air gap is then varies and the receiver coil diam-
eter is tuned to have a maximum efficiency. It is observed
that higher efficiencies are achieved in higher frequencies.
Also, the efficiency decreases as the L/D ratio increases. It
is predicted that researches will tend to gain a higher effi-
ciency in a larger L/D ratio indicated as zone 1 in Fig. 10.

372



A Review of Contactless Electrical Power Transfer: Applications, Challenges and Future Trends

S. Hasanzadeh, S. Vaez-Zadeh

The normalized PDI significantly reduces in regions with
L/D lower than 0.5 and higher than 1.75 indicated as zone
2 and zone 3 respectively. Future investigations will try to
fill these gaps using advanced methods such as orientation
of flux path from primary to secondary, advance materials
for receiver and sender sub-systems, using materials with
a high permeability and a low conductivity in transmission
region, etc.

In near future, the market of electric vehicles will boom
considering the high cost of fossil energies, attention to en-
vironmental protection and production of more electrical
power using the nuclear power. Then, the requirement for
applying contactless power transfer systems will be more
evident in order to supply accessible and reliable charging
systems in shortest time periods. In addition, development
of new technologies in building and building management
systems (BMS) increases the need for contactless power
transfer technologies with the capability of simultaneous
power and command control. It seems that CEPT systems
can contribute to social life style and building manage-
ment methods. Along with the growth of technology, rapid
growth of power transfer networks towards smart grids
whether in terms of network control in initial stages or in
terms of changing the structure of networks, at least at the
distribution level (cordless distribution network), are pre-
dictable. Moreover, it can be predicted that, in the not-so-
distant future, technology development may make it possi-
ble to reach Tesla’s dream in “contactless power transfer”
in long distances.

6 CONCLUSIONS AND RECOMMENDATIONS

This review successfully compiled survey results of
recent studies carried out on contactless power transfer
technologies, emphasizing their importance and necessity
along with the corresponding methods and characteristics
of related systems. It is also aimed at comparing the ad-
vantages of the systems and some of their implementa-
tion strategies. Different applications of the systems are
pointed out including rotating devices, medical implants,
battery chargers of electric vehicles and rapid transit sys-
tems, household apparatus, etc.

An effective index (PDI) is proposed to compare differ-
ent contactless power transfer systems and to describe their
present statuses and the future trends. The development of
CEPT systems has many challenges in its theoretical as-
pects, technical implementations and social and economic
studies. The desirable performance of a contactless trans-
fer system essentially depends on its power electronics and
control sub-sections. Theoretical problems are comprised
of power electronics, electromagnetics and control studies.
In addition, there are many technical limitations in the de-
sign of CEPT systems. The maximum voltage and current
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and switching frequency of the power semiconductors are
among the main restrictions of the systems.

Although, it is now more than two decades that the
price of semiconductors has decreased, the installation cost
of CEPT systems is still much more than that of conven-
tional supplies. The maximum efficiency of CEPT systems
is significantly less than that of the common conductive
power transfer systems. Also, it is essential that a practical
design of CEPT systems is compatible with environmen-
tal and electromagnetic interference (EMI) considerations.
Regarding previous studies and researches, the following
questions have not been answered yet and are expected to
be addressed in near future:

1- Is the available theoretical framework for analyzing
and evaluating electromagnetic systems sufficiently capa-
ble of handling the contactless transfer of electrical power
or it needs improvements?

2- Do the CEPT characteristics beyond those of usual
electromagnetic systems, e.g. electrical machines and
transformers- contain specific phenomena and conditions?

Much work is needed to answer these questions.
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