
Marcin Jamro, Dariusz Rzonca

Impact of Communication Timeouts on Meeting Functional
Requirements for IEC 61131-3 Distributed Control Systems

DOI
UDK

10.7305/automatika.2016.01.838
681.518.5:004.414.22

Original scientific paper

The control software is frequently used in various systems that perform important and responsible tasks in indus-
try. During its development, it is crucial to ensure that the solution is created in a way consistent with assumptions
and meets all functional requirements. One of important steps consists of testing particular software units, sep-
arated from the rest of system, using the off-line simulator. However, test results can be different in case of a
fully-connected system when external factors, such as communication issues, should be also taken into account.
In this paper, the authors present a concept of specification and execution of system tests, using the dedicated test
definition language, named CPTest+. It has been extended by the additional ASSERT_COM instruction, which per-
forms an assertion that is able to detect problems related to external factors, including communication. To enable
automatic and systematic testing, the dedicated metric has been proposed. It takes into account the current link
status and archived results to calculate the probability that the test case has failed due to communication problems.

Key words: Control Systems, Communication, IEC 61131-3, Requirements, Testing

Utjecaj komunikacijskih prekida na zadovoljenje funkcionalnih zahtjeva IEC 61131-3 distribuiranih sus-
tava upravljanja. Upravljački software je često korišten u sustavima koji obavljaju kritične zadatke u industriji.
Tijekom njegovog razvoja, važno je osigurati zadovoljenje svih bitnih pretpostavki i funkcionalnih zahtjeva. Jedan
od važnih koraka u razvoju navedenog softwarea je testiranje njegovih pojedinih cjelina korištenjem offline sim-
ulatora, neovisno o ostatku sustava. Me�utim, rezultati testiranja mogu se bitnije razlikovati u slučaju potpuno
povezanog sustava sa svim pripadajućim eksternim faktorima, kao što su komunikacijski problemi, koje je tako�er
potrebno uzeti u obzir. U ovom radu autori predstavljaju koncept definiranja i izvršenja testova sustava korištenjem
jezika za namjensko definiranje testova, nazvanog CPTest+. On je proširen dodatnom ASSERT_COM naredbom
koja obavlja provjeru s mogućnošću detekcije problema uzrokovanih vanjskim faktorima, npr. komunikacijom.
Kako bi se omogućilo automatsko i sistematično testiranje predložen je namjenski mjerni sustav. On uzima u obzir
trenutni status veze kao i arhivirane rezultate kako bi se odredila vjerojatnost neizvršenja testnog slučaja uslijed
komunikacijskih problema.

Ključne riječi: sustavi upravljanja, komunikacija, IEC 61131-3, zahtjevi, testiranje

1 INTRODUCTION

The control software is an important subclass of the
real-time software and is often used in industry, such as in
Programmable Logic Controllers (PLCs), Programmable
Automation Controllers (PACs), and Distributed Control
Systems (DCSs). Due to its specific requirements, it is im-
portant to prepare such a kind of software in a way that
ensures its high quality and operation in erroneous scenar-
ios, as well as decreases a number of problems that may be
found while running on the plant. As stated in [1], there are
some possibilities that could be useful for improving qual-
ity of control software, such as its modeling, standardized
implementation, and detailed testing.

The concept of using various kinds of tests for detecting

potential problems in control software is becoming more
and more popular. One of approaches is based on the idea
of unit testing [2] that checks whether small parts of im-
plementation meet requirements. Apart from unit tests, the
system should be verified using a set of integration and
system tests.

A subject of software testing is a complex and difficult
problem that may be also connected with the Test-Driven
Development (TDD) paradigm. It is based on the assump-
tion that a developer prepares tests for a particular feature
before writing the implementation code. Then, the devel-
oper works on the code until all tests are passed. The last
phase is named refactoring and allows to improve the code
quality, but it does not change the external behavior of a

Online ISSN 1848-3380, Print ISSN 0005-1144
ATKAFF 56(4), 499–507(2015)

AUTOMATIKA 56(2015) 4, 499–507 499

Impact of Communication Timeouts on Meeting Functional Requirements for IEC 61131-3 Distributed Control Systems M. Jamro, D. Rzonca

unit [3]. The TDD approach has many advantages, such
as creating code with a smaller number of functional er-
rors [4], as well as limiting amount of time necessary for
debugging [5].

In case of control software created according to the
IEC 61131-3 standard [6], a single Program Organiza-
tion Unit (POU, namely program, function block, function,
or class) can be understood as a unit for testing. There
are already some solutions that allow to create and exe-
cute tests oriented towards POUs. One of them is shown
in [7] and describes a dedicated test definition language,
named CPTest+. It has been also extended for testing per-
formance of particular POUs [1] and communication be-
tween devices in DCSs [8]. Other interesting approaches to
control software testing include the test-driven automation
concept [9], industrial automation software development
process based on tests [10], agile keyword-driven testing
method [11], and deterministic replay debugging [12].

Testing of POUs separated from environment is crucial
for creation of a well-tested solution. However, it is also
very important to check how the system behaves when all
its parts are taken into account. For this reason, the testing
team should also prepare a set of system tests. They are
often used to verify that functional requirements are met
when all system modules are prepared. Nevertheless, such
a problem is a bit different in case of DCSs. Typically,
such systems [13] consist of various devices exchanging
data through an industrial network [14]. A scale of the
system may vary. In a trivial case, mini-DCS involves a
single controller communicating with remote I/O modules
or HMI panel using a simple fieldbus [15], but large appli-
cations are fairly common. Even in mini-DCS communi-
cation errors or delays may lead to performing calculations
on invalid or out-of-date values. Unfortunately, a real error
cause may not be obvious to determine, especially during
automated test procedures.

In this paper, an attempt has been made to propose a
solution for estimating communication impact on satisfy-
ing functional requirements of control software. Require-
ments and parameters of communication are specified in
the Systems Modeling Language (SysML) [16]. The exist-
ing CPTest+ language has been enhanced to handle a new
kind of assertion, namely ASSERT_COM that deals with
communication issues during testing. Such an assertion
tries to automatically distinguish between errors in control
program implementation and these related to external fac-
tors, such as communication flaws. To achieve this goal,
the authors propose an additional function for calculating
probability that a particular test case has failed due to com-
munication problems.

The approach could be used with the CPDev engi-
neering environment1 [17] developed in the Department of

1http://cpdev.kia.prz.edu.pl/

Computer and Control Engineering at Rzeszow University
of Technology (Poland). It consists of several parts, coop-
erating together and forming the comprehensive solution
for modeling, implementation, testing, configuration, sim-
ulation, visualization, and commissioning of control soft-
ware for various controllers. The environment has a few in-
dustrial applications, for instance in ship control and mon-
itoring system developed by Praxis Automation Technol-
ogy B.V.2 from the Netherlands. CPDev could be also used
for programming softPLCs and the fast FPGA controller.

The paper is organized as follows. The second section
presents an existing concept of testing with the CPTest+
language, equipped with the modeling features using the
SysML language. In the next section, the assertion-based
extension, introducing the ASSERT_COM instruction, is
shown. The fourth section describes a way of results analy-
sis, together with explanation of the dedicated metric. The
laboratory stand and example of the approach are presented
in the fifth section.

2 TESTING CONCEPT WITH MODELING

The control software needs to satisfy various require-
ments, including functional ones. There are already some
possibilities of testing whether such requirements are met.
One of variants uses the unit testing concept to verify
whether POUs are working properly. A solution dedicated
to IEC 61131-3 projects has been described in [7]. It sup-
ports the project structure shown in Fig. 1. The control
system contains a set of resources. Each of them executes
one or more tasks. Each task contains one or more POUs,
which have various tests assigned.

Fig. 1: Assignment of CPTest+ test cases to POUs

2.1 CPTest+ Dedicated Test Definition Language

The dedicated test definition language, named
CPTest+, has been proposed to develop test cases. In the
basic version, presented in [18], the language supports a
few instructions that allow to perform various operations
related to manual testing, such as setting a value of

2http://praxis-automation.com/

500 AUTOMATIKA 56(2015) 4, 499–507

Impact of Communication Timeouts on Meeting Functional Requirements for IEC 61131-3 Distributed Control Systems M. Jamro, D. Rzonca

variable (SET, RESET, ASSIGN), holding execution of
the test case for a given period of time (WAIT), saving
additional information to the test run log (LOG), as well
as verifying whether the current value of variable is
consistent with expected, using a given operator (ASSERT
with various operators, such as EQ or LT).

It is worth mentioning that the CPTest+ language can
be expanded to support some features specific to a partic-
ular test type, such as communication performance tests
[19] or POU-oriented performance tests [1]. What is more,
CPTest+ can be used to develop not only unit tests, but also
integration and system ones, as shown in the following part
of this paper.

2.2 SysML-based Modeling

To provide engineers with a convenient way of devel-
oping and maintaining control system projects that use the
IEC 61131-3 languages, that is beneficial to propose a
suitable modeling approach. It could support the Model-
Driven Development (MDD) concept [20], which focuses
on the model as the most important artifact in the develop-
ment process. Stored model data could be used to gener-
ate implementation or its parts in an automatic way. Such
an approach has several applications in various software
development domains, including real-time embedded sys-
tems [21].

In this paper, the authors present a part of the model-
ing methodology that allows to design POUs and tests, as
well as assign tests to particular POUs. The concept uses
the SysML language [16], which is an extension to Unified
Modeling Language (UML) [22], and provides engineers
with nine diagram types for presentation of structure, be-
havior, and requirements. The modeling approach is based
on the preliminary version described in [23].

Each POU is shown on a separate Block Definition Di-
agram (BDD), located in the POUs package. A single POU
is represented as a block marked with two stereotypes. The
first represents the POU type and can be chosen from the
following: �program�, �functionBlock�, �function�, and
�class�. The second stereotype indicates a language that
will be used for implementation. It can be set as �st�
(Structured Text), �il� (Instruction List), �fbd� (Function
Block Diagram), �ld� (Ladder Diagram), or �sfc� (Se-
quential Function Chart). A name of the block is used as
a name of the POU. Each block may also contain a set of
proxy ports that represent inputs or outputs, depending on
a port direction.

In the example from Fig. 2, the SENSOR function block
is defined. It contains four inputs (ENABLED of the BOOL
type, as well as VALUE, MIN_VALUE, and MAX_VALUE
of REAL) and the STATE output (of INT). To clarify con-
structions placed on diagrams, the comment is added.

Fig. 2: Modeling of the SENSOR function block

Fig. 3: Modeling of POU functional requirements

The presented part of the modeling methodology does
not define tests nor their assignment to particular POUs.
For this reason, the approach supports specification of
functional requirements for a given POU on the Require-
ment Diagram (REQ), as shown in Fig. 3. It has many
similarities with the overall approach to modeling func-

AUTOMATIKA 56(2015) 4, 499–507 501

Impact of Communication Timeouts on Meeting Functional Requirements for IEC 61131-3 Distributed Control Systems M. Jamro, D. Rzonca

tional and nonfunctional requirements, described in details
in [24]. For the purpose of convenient modeling of vari-
ous test kinds, three stereotypes are defined. They are spe-
cialization of �testcase� and are named �unitTest�, �inte-
grationTest�, and �systemTest�. The first indicates a unit
test, the second – integration, while the other – a system
one. The REQ diagram contains the main �functionalRe-
quirement� element that represents a general functional re-
quirement for a given POU. It has a unique identifier (id),
a description (text), as well as allocation to a particu-
lar POU (allocatedTo compartment). This block can
be connected with other �functionalRequirement� blocks
by the containment relationship. Each of them should also
contain a unique identifier and a description, however, as-
signment to a POU is unnecessary, because it is provided
by the parent requirement. Tests are created to verify
whether requirements are satisfied. Thus, �unitTest�, �in-
tegrationTest�, or �systemTest� elements are placed on the
diagram. They are connected with suitable requirements
by �verify� relationships. Each test is parameterized by a
name and a kind. For instance, the Textual kind indi-
cates that CPTest+ is used for test implementation.

As an example, the REQ diagram from Fig. 3 spec-
ifies requirements for the ALARM_SYSTEM program.
The diagram contains the general requirement, named
ALARM_SYSTEM_OPERATION, with three subrequire-
ments. They present functional requirements for the
program in three scenarios – (1) when all motion sen-
sors are disabled, (2) when all sensors are enabled, and
(3) when only some sensors are enabled. Such re-
quirements are verified using five tests – a system one
for the first (AS_DISABLED_WARNING), three unit for
the second (AS_ENABLED_0A, AS_ENABLED_1A, and
AS_ENABLED_MA), as well as an integration one for the
other (AS_CAUTION_WARNING). All of them will be cre-
ated in the CPTest+ test definition language, as specified by
a value of the kind property.

3 ASSERTION-BASED EXTENSION

For testing impact of communication timeouts on meet-
ing functional requirements, the CPTest+ language has
been extended with the ASSERT_COM instruction, which
operation is presented in Alg. 1. Its main aim is to extend
the "classic" assertion by checking whether incorrect re-
sults are caused by functional errors in POU implementa-
tion or by external problems, such as with communication.

At the beginning (line 1 in Alg. 1), the instruction
checks whether the "classic" assertion is satisfied, i.e., the
actual value is consistent with the expected one. It takes
into account the operator, such as equality (EQ), inequal-
ity (NEQ), as well as relations (LT, LTE, GT, GTE). Such
an instruction also supports two special operators related to

Algorithm 1 Operation of the ASSERT_COM instruction

Input: condition is a boolean expression associated with
the assertion

1. if condition = true then
2. continue execution of the test {the "classic" asser-

tion is met}
3. else
4. create a local copy of values of all variables
5. if an error in the communication is found then
6. get a cycle time for the current task
7. repeat
8. create a local copy of values of all variables
9. hold test execution for the cycle time

10. until the "classic" assertion is met or the maxi-
mum waiting time elapsed

11. else
12. fail the test due to functional problems
13. end if
14. end if

logical values, namely ISTRUE and ISFALSE. These two
operators check whether the value is equal to TRUE and
FALSE, respectively. Regarding the overall concept for
all operators, the actual and expected values are combined
into the expression, using the operator. The exemplary ex-
pression is NUMBER > 2, where the actual value is a
value of the NUMBER variable, the operator is the "greater"
relation (GT), and the expected value is equal to 2. If the
"classic" assertion is satisfied, the test proceeds to the fol-
lowing instruction or till the end.

Behavior of the ASSERT_COM instruction differs sig-
nificantly from ASSERT when the "classic" assertion is
failed. In such a scenario, the mechanism creates a local
copy of values of all variables (line 4). Such data are stored
in the special form and are associated with the test run log.
They can be later used for analysis and debugging.

Then, the system checks whether any error is found
in communication, by reading a value of the special in-
dicator from the controller (line 5). It provides informa-
tion whether a problem could be caused by communication
problems, such as a necessity of retransmission.

If the ASSERT_COM instruction discovers that the cur-
rent error may be caused by communication problems, a
few actions are executed in the loop (lines 7–10). It can
be stopped only if the "classic" assertion is met or when
the maximum waiting time elapsed. In each iteration, the
system creates a local copy of values of all variables, as
well as waits the cycle time. Such a construction allows
to check whether the "classic" assertion can be passed in
one of the closest cycles. In such a situation, it is possi-
ble that the result is affected by communication problems.

502 AUTOMATIKA 56(2015) 4, 499–507

Impact of Communication Timeouts on Meeting Functional Requirements for IEC 61131-3 Distributed Control Systems M. Jamro, D. Rzonca

Of course, during the consecutive checks, the system un-
der test is still running. Thus, passing the assertion in one
of the following cycles could be caused not only by the
proper communication, but also by behavior of the control
program. For this reason, the ASSERT_COM instruction is
not suitable for all test scenarios.

Calling the ASSERT_COM instruction in the test is very
similar to using ASSERT, because only a name of the in-
struction differs, while parameters remain the same. The
code of an exemplary system test is shown as follows:

01: SET READ_TEMPERATURE
02: WAIT 1 C
03: ASSERT_COM NEQ S1_VALUE 0
04: ASSERT_COM NEQ S2_VALUE 0
05: ASSERT_COM NEQ S3_VALUE 0
06: WAIT 1 C
07: ASSERT_COM EQ S1_STATE 3
08: ASSERT_COM EQ S2_STATE 2
09: ASSERT_COM EQ S3_STATE 1

The above test should be run in the laboratory with a
configured testing environment, where sensors can read
proper temperature values – too high by the first sen-
sor, accurate by the second, and too low for the other.
It is assumed that values read from physical sensors
are stored to S1_VALUE, S2_VALUE, and S3_VALUE
global variables, while calculated states are stored to
S1_STATE, S2_STATE, and S3_STATE. The test case
checks whether values are read correctly from sensors
within one cycle (line 2) after setting a value of the
READ_TEMPERATURE global variable (line 1). The test
assumes that the additional monitoring program zeros val-
ues of global variables representing temperature values ob-
tained from sensors, if READ_TEMPERATURE is equal to
FALSE. With the usage of the presented test, it is possible
to detect situations when values are not read correctly from
sensors within a given cycle time (lines 3–5), what could
have an impact on the system future operations by using
out-of-date values, such as in lines 7–9.

4 RESULTS ANALYSIS

During execution of tests equipped with at least one
ASSERT_COM instruction, a lot of data are obtained and
stored. It is especially well visible in case of complex
projects, where operations are performed on hundreds or
even thousands of variables. For this reason, the authors
propose a mechanism of analyzing gathered results, which
uses data associated with the test run log to present values
of variables as charts (Fig. 4). They may contain indica-
tors representing a moment when the "classic" assertion is
failed, passed, or when the timeout occurred.

Fig. 4: Using data from the test run log for results analysis

The generated charts can be used to manually check
whether the problem with passing functional requirement
is caused by an external factor, such as a communication
problem. However, such a solution can be cumbersome
and does not support an idea of automated testing. Thus,
the authors propose a dedicated function that informs an
engineer about a probability that the error is related to com-
munication problem. It takes values from range [0; 1] and
can be calculated as:

mci (plst, c) =

0 if plst ∈ [0; 0.1ψ]
δ if plst ∈ (0.1ψ; 0.9ψ) ∧ c ∈ [1; γ]
0 if plst ∈ (0.1ψ; 0.9ψ) ∧ c ∈ (γ;∞)
1 if plst ∈ [0.9ψ;ψ]

δ = β +
(α− β)(c− 1)

γ − 1

The γ parameter is a number of cycles taken into account
to check whether the problem is caused by communica-
tion issues, while plst indicates how many tests from ψ last
have been passed, since the last change in implementation
of POUs involved in the given test. Parameters α and β
are minimum and maximum values of mci, respectively,
when plst ∈ (0.1ψ; 0.9ψ). The c (cycles) parameter rep-
resents a number of cycles in the current test run that were
necessary to pass functional requirements. Of course, pa-
rameters α, β ∈ [0; 1], α < β, γ ∈ N+, ψ ∈ N+, while
arguments plst ∈ N, plst 6 ψ, and c ∈ N+.

At the beginning, it has been assumed that the prob-
ability of causing problems by communication decreases
linearly with increasing number of necessary cycles. How-
ever, other functions for δ may be considered, as well.
Thus, modeling of the non-linear change is also possible,
such as according to the modified formula:

δ = β +
(α− β)(c− 1)n

(γ − 1)n

The additional parameter n may be set as a value from
[1;∞). Thus, previous simplified equation may be seen as
a special case where n = 1.

In case of the exemplary application, the authors pro-
pose to use the following values for parameters: α = 0.1,
β = 0.9, ψ = 10. Thus, if the test has been passed in
at least 9 of the last 10 runs, it is highly possible that the

AUTOMATIKA 56(2015) 4, 499–507 503

Impact of Communication Timeouts on Meeting Functional Requirements for IEC 61131-3 Distributed Control Systems M. Jamro, D. Rzonca

 0

 0.2

 0.4

 0.6

 0.8

 2 4 6 8 10 12 14

m
ci

cycles

n = 1
n = 3
n = 5

Fig. 5: Value of the mci for plst ∈ (0.1ψ; 0.9ψ), α = 0.1,
β = 0.9, γ = 10, ψ = 10.

problem is related to external factors, such as communica-
tion. It is an acceptable assumption, because tests should
be prepared in a way to be repeatable and isolated from the
system environment. Otherwise, it is more possible that
the problem is caused by implementation. The authors as-
sume that with increasing number of cycles, the probability
of causing problems by communication decreases. Such an
assumption is visible in the equation, as well as in the chart
shown in Fig. 5.

By using the dedicated metric, the concept of measur-
ing impact of communication timeouts on meeting require-
ments can be integrated with the automated testing mecha-
nism. The result of tests, using the ASSERT_COM instruc-
tion, can take one out of three verdicts:

• passed, if the „classic” assertion is met,

• failed, if mci < 0.5, i.e., there is probably an error in
implementation,

• undecidable, if mci > 0.5, i.e., there is probably an
error in communication.

As shown above, the approach requires to introduce a
new verdict, namely undecidable. It is important from the
perspective of this paper, because results obtained with ex-
ternal problems (such as communication) cannot be used
as a reliable source of information regarding the system
correctness and robustness. Nevertheless, it also does not
mean that the implementation is incorrect, thus using the
failed verdict instead is unsuitable in this scenario.

5 LABORATORY STAND
To check the practical usefulness of the described ap-

proach, the authors have built the simple laboratory stand.
This exemplary application is shown in Fig. 6.

Fig. 6: Laboratory stand

The prototype laboratory stand consists of the PC with
the CPDev engineering environment and the CPTest appli-
cation, the SMC controller equipped with SM4 and SM5
external I/O modules3, as well as the Bytronic Sorter Unit
(BSU)4. The BSU may function as a sorting machine,
where black and white beads should be appropriately sep-
arated to two hoppers, or alternatively to produce different
patterns in the zig-zag track from the beads consecutively
dispensed from the hoppers.

In the current example, the latter case is used. Dispens-
ing the beads from the hoppers is controlled by two gates
(one for each hopper), opened and closed by appropriate
solenoids, connected to the binary outputs module (SM4).
The gate should be open only for a short period of time to
ensure that only one bead has fallen. The infrared beam
sensor connected to the binary input module (SM5) is used
as a feedback to confirm that the bead has been success-
fully dispensed.

A part of requirements for the pattern generator, cre-

3http://www.lumel.com.pl/en/
4http://bytronic.net/html/sr.html

504 AUTOMATIKA 56(2015) 4, 499–507

Impact of Communication Timeouts on Meeting Functional Requirements for IEC 61131-3 Distributed Control Systems M. Jamro, D. Rzonca

Fig. 7: Modeling of requirements for the exemplary system

ated in the SysML graphical modeling language, is pre-
sented in Fig. 7. The diagram defines five require-
ments organized in a three-level hierarchy, as well as the
PG_ONE_BEAD_AFTER_OPEN test. Such a test verifies
the PG_PASS_BEAD requirement and is explained in the
following part of this section. To simplify the example,
other requirements do not have any test cases assigned.

Such a system is very small and simple, however, it
could be used to show a real test scenario where the pro-
posed testing approach is applicable. Absence of signal
from the bead sensor may be caused by numerous reasons,
both functional and non-functional ones. It could be trig-
gered by an error in the program code (such as opening the
gate for too short) or external reasons (such as an empty
hopper or a communication error between the SMC con-
troller and one of the I/O modules). Automatic distinguish-
ment between those cases is very helpful, especially dur-
ing the regression testing. Thus, the following test in the
CPTest+ dedicated test definition language could be used:

01: SET PASS_ONE_BALL
02: LOG ONE BALL MODE ON
03: WAIT 500 MS
04: RESET PASS_ONE_BALL
05: LOG ONE BALL MODE OFF
06: ASSERT_COM ISTRUE IS_BEAD_SEEN

Fig. 8: Results presented in the CPTest tool

The test checks whether the first gate is open for not
too short period of time to pass a bead. The presented test
case starts with setting a value of the PASS_ONE_BALL
global variable to TRUE (line 1). It is handled by the con-
trol software and indicates that the gate should be open
for a suitable period of time just to pass one bead. Such
a process requires to communicate twice with the binary
outputs module – first to open the gate, and after a few
tens of milliseconds once again to close it. Then, infor-
mation about the current status is stored in the test run
log (line 2), and the test execution is held for 500 mil-
liseconds (line 3). Of course, when the test execution is
held, the control software still runs to pass the bead. The
PASS_ONE_BALL variable is reset after 500 milliseconds
(line 4) and another message is logged (line 5). At the end,
the ASSERT_COM instruction is applied to check whether
a bead has been discovered by the bead sensor. The global
variable IS_BEAD_SEEN is used. It is set by the control
software, according to results obtained from the binary in-
put module. For this reason, the assertion allows to find
various kinds of problems, including an error in the imple-
mentation, as well as problems with communication.

As an example of analysis of the measured results, the
experiment in one hypothetical case will be considered.
Let assume that the control program is correct (i.e., the gate
is opened for sufficient time to pass one bead), but after
several successful test runs, an external error is intention-
ally introduced (such as a communication cable is discon-
nected). In such an experiment, the test run log shows that
the assertion has been passed numerous times, however,
finally it has been hit with verdict suggesting that the rea-
son is external, with probability mci. Such an experiment
result could be presented in the CPTest window (Fig. 8).

6 CONCLUSION
The quality of control software, created according to

the IEC 61131-3 standard, can be improved in a few ways,

AUTOMATIKA 56(2015) 4, 499–507 505

Impact of Communication Timeouts on Meeting Functional Requirements for IEC 61131-3 Distributed Control Systems M. Jamro, D. Rzonca

such as by precise testing. Apart from checking whether
particular POUs operate correctly in separation from other
components, it is crucial to ensure that the whole system
operates as planned. Such a task is very important in case
of DCSs where problems with communication between de-
vices may cause unexpected software operation.

In the paper, the enhanced version of tests created in the
CPTest+ dedicated test definition language have been pro-
posed. An influence of communication problems on meet-
ing functional requirements for the currently tested unit
has been minimized, due to the dedicated ASSERT_COM
instruction. The special assertion can be repeated many
times to check whether in the following cycles the require-
ment is satisfied. What is more, the dedicated function has
been proposed to identify a source of error by distinguish-
ing between problems related and unrelated to external fac-
tors. The proposed approach also promotes analysis of data
collected during such tests, because they reveal behavior of
the system in real imperfect environment.

REFERENCES

[1] M. Jamro, “Development and Execution of POU-oriented
Performance Tests for IEC 61131-3 Control Software,” in
Recent Advances in Automation, Robotics and Measuring
Techniques (R. Szewczyk, C. Zielinski, and M. Kaliczyn-
ska, eds.), vol. 267 of Advances in Intelligent Systems and
Computing, pp. 91–101, Springer, 2014.

[2] J. Dooley, “Unit Testing,” in Software Development and
Professional Practice, pp. 193–208, Apress, 2011.

[3] G. Soares, R. Gheyi, D. Serey, and T. Massoni, “Making
Program Refactoring Safer,” Software, IEEE, vol. 27, no. 4,
pp. 52–57, 2010.

[4] L. Crispin, “Driving Software Quality: How Test-Driven
Development Impacts Software Quality,” Software, IEEE,
vol. 23, no. 6, pp. 70–71, 2006.

[5] J. Grenning, “Applying test driven development to em-
bedded software,” Instrumentation Measurement Magazine,
IEEE, vol. 10, no. 6, pp. 20–25, 2007.

[6] “IEC 61131-3 - Programmable controllers - Part 3: Pro-
gramming languages,” 2013.

[7] M. Jamro, “POU-oriented Unit Testing of IEC 61131-3
Control Software,” Industrial Informatics, IEEE Transac-
tions on, 2015. accepted.

[8] M. Jamro, D. Rzonca, and W. Rząsa, “Testing communi-
cation tasks in distributed control systems with SysML and
Timed Colored Petri Nets model,” Computers in Industry,
vol. 71, pp. 77–87, 2015.

[9] D. Winkler, R. Hametner, and S. Biffl, “Automation com-
ponent aspects for efficient unit testing,” in Emerging Tech-
nologies Factory Automation, 2009. ETFA 2009. IEEE Con-
ference on, pp. 1–8, 2009.

[10] R. Hametner, D. Winkler, T. Ostreicher, S. Biffl, and
A. Zoitl, “The adaptation of test-driven software processes
to industrial automation engineering,” in Industrial Infor-
matics (INDIN), 2010 8th IEEE International Conference
on, pp. 921–927, 2010.

[11] R. Hametner, D. Winkler, and A. Zoitl, “Agile testing con-
cepts based on keyword-driven testing for industrial au-
tomation systems,” in IECON 2012 - 38th Annual Con-
ference on IEEE Industrial Electronics Society, pp. 3727–
3732, 2012.

[12] H. Prahofer, R. Schatz, C. Wirth, and H. Mossenbock,
“A Comprehensive Solution for Deterministic Replay De-
bugging of SoftPLC Applications,” Industrial Informatics,
IEEE Transactions on, vol. 7, no. 4, pp. 641–651, 2011.

[13] L. Feng-Li, W. Moyne, and D. Tilbury, “Network design
consideration for distributed control systems,” Control Sys-
tems Technology, IEEE Transactions on, vol. 10, no. 2,
pp. 297–307, 2002.

[14] P. Gaj, J. Jasperneite, and M. Felser, “Computer communi-
cation within industrial distributed environment – a survey,”
Industrial Informatics, IEEE Transactions on, vol. 9, no. 1,
pp. 182–189, 2013.

[15] IEC, “IEC 61158 Standard: Industrial Communication Net-
works – Fieldbus Specifications,” 2007.

[16] OMG, “OMG Systems Modeling Language, V1.3,” 2012.

[17] M. Jamro, D. Rzonca, J. Sadolewski, A. Stec, Z. Swider,
B. Trybus, and L. Trybus, “CPDev Engineering Envi-
ronment for Modeling, Implementation, Testing, and Vi-
sualization of Control Software,” in Recent Advances
in Automation, Robotics and Measuring Techniques
(R. Szewczyk, C. Zielinski, and M. Kaliczynska, eds.),
vol. 267 of Advances in Intelligent Systems and Computing,
pp. 81–90, Springer, 2014.

[18] M. Jamro and B. Trybus, “Testing Procedure for IEC
61131-3 Control Software,” in 12th IFAC/IEEE Interna-
tional Conference on Programmable Devices and Embed-
ded Systems (PDeS), pp. 192–197, 2013.

[19] M. Jamro and D. Rzonca, “Measuring, Monitoring, and
Analysis of Communication Transactions Performance
in Distributed Control System,” in Computer Networks
(A. Kwiecien, P. Gaj, and P. Stera, eds.), vol. 431 of
Communications in Computer and Information Science,
pp. 147–156, Springer International Publishing, 2014.

[20] D. Hastbacka, T. Vepsalainen, and S. Kuikka, “Model-
driven development of industrial process control applica-
tions,” The Journal of Systems and Software, vol. 84, no. 7,
pp. 1100–1113, 2011.

[21] J. Babic, S. Marijan, and I. Petrovic, “Introducing Model-
Based Techniques into Development of Real-Time Embed-
ded Applications,” Automatika – Journal for Control, Mea-
surement, Electronics, Computing and Communications,
vol. 52, no. 4, pp. 329–338, 2011.

[22] OMG, “OMG Unified Modeling Language, Infrastructure,
V2.4.1,” 2011.

506 AUTOMATIKA 56(2015) 4, 499–507

Impact of Communication Timeouts on Meeting Functional Requirements for IEC 61131-3 Distributed Control Systems M. Jamro, D. Rzonca

[23] M. Jamro and B. Trybus, “An approach to SysML modeling
of IEC 61131-3 control software,” in Methods and Models
in Automation and Robotics (MMAR), 2013 18th Interna-
tional Conference on, pp. 217–222, 2013.

[24] M. Jamro, “SysML Modeling of Functional and Non-
functional Requirements for IEC 61131-3 Control Sys-
tems,” in Progress in Automation, Robotics and Measuring
Techniques (R. Szewczyk, C. Zielinski, and M. Kaliczyn-
ska, eds.), vol. 350 of Advances in Intelligent Systems and
Computing, pp. 91–100, Springer International Publishing,
2015.

Marcin Jamro received B.Sc., M.Sc. in com-
puter engineering, as well as Ph.D. in computer
science at Rzeszow University of Technology
(Poland) in 2011, 2012, and 2015, respectively.
He was a research assistant at Rzeszow Univer-
sity of Technology till 9/2015. His research fo-
cuses on software engineering of real-time sys-
tems, especially their modeling and testing. Au-
thor and co-author of more than 25 publications,
including scientific papers, chapters in mono-
graphs, and a book.

Dariusz Rzonca received B.Sc. in mathematics
at University of Rzeszow in 2002, M.Sc. in com-
puter engineering at Rzeszow University of Tech-
nology in 2004, and Ph.D. in computer science at
Silesian University of Technology in 2012. He
has been working as an assistant professor at
Rzeszow University of Technology. His research
focuses on Petri nets, industrial control systems,
embedded systems, and cryptography. Author
and co-author of more than 50 publications.

AUTHORS’ ADDRESSES
Marcin Jamro, Ph.D.
Dariusz Rzonca, Ph.D.
Department of Computer and Control Engineering,
Faculty of Electrical and Computer Engineering,
Rzeszow University of Technology,
al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
email: {mjamro, drzonca}@kia.prz.edu.pl

Received: 2014-04-16
Accepted: 2015-10-05

AUTOMATIKA 56(2015) 4, 499–507 507

