THE DEMEYER-KANZAKI GALOIS EXTENSION AND ITS SKEW GROUP RING

George Szeto and Lianyong Xue

Bradley University, USA

ABSTRACT. Several characterizations are given for a ring B being a DeMeyer-Kanzaki Galois extension with Galois group G in terms of the skew group ring B * G. Consequently, the results of S. Ikehata on commutative Galois algebras are generalized.

1. INTRODUCTION

In [5], the class of commutative Galois algebras B with Galois group G was characterized in terms of the Azumaya skew group ring B * G over B^G and the H-separable skew group ring B * G of B respectively, where $B^G = \{a \in B \mid g(a) = a \text{ for all } g \in G\}$. In [3], a broader class of DeMeyer-Kanzaki Galois extensions B with Galois group G was investigated where B is called a DeMeyer-Kanzaki Galois extension with Galois group G if B is an Azumaya algebra over its center C and C is a Galois algebra with Galois group induced by and isomorphic with G. Further generalizations to Azumaya Galois extensions and to Hopf Azumaya Galois extensions were also given (see [2, 7]). The purpose of the present paper is to generalize the characterizations of a commutative Galois algebra B in terms of the skew group ring B * G as given by S. Ikehata (see [5]). We shall show the following equivalent statements:

(1) B is a DeMeyer-Kanzaki Galois extension of B^G with Galois group G.

²⁰⁰⁰ Mathematics Subject Classification. 16S35, 16W20.

Key words and phrases. Galois extensions, DeMeyer-Kanzaki Galois extensions, commutative Galois algebras, Azumaya algebras, *H*-separable extensions, skew group rings.

This work was done under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

²⁶³

- (2) The skew group ring B * G is an Azumaya C^G -algebra and C is a maximal commutative separable subalgebra of $V_{B*G}(B^G)$, the commutator subring of B^G in B * G, over C^G .
- (3) The skew group ring B * G is an *H*-separable extension of B (= the Harata separable), *B* is a separable algebra over C^G , and $J_g = \{0\}$ for each $g \neq 1$ in *G* where $J_g = \{b \in B \mid bx = g(x)b$ for all $x \in B\}$ for each $g \in G$.
- (4) *B* is a separable C^{G} -algebra, C^{G} is a direct summand of *C* as a C^{G} -submodule, and $C \otimes_{C^{G}} (B * G) \cong M_{n}(B)$ where $M_{n}(B)$ is the matrix ring of order *n* over *B* and *n* is the order of *G*.
- (5) *B* is a separable C^G -algebra, C^G is a direct summand of *C* as a C^G -submodule, and $C \otimes_{C^G} V_{B*G}(B^G) \cong M_n(C)$ where $M_n(C)$ is the matrix ring of order *n* over *C* and *n* is the order of *G*.

2. Basic definitions and notations

Throughout, B will represent a ring with 1, C the center of B, G a finite automorphism group of B of order n for some integer n, B^G the set of elements fixed under each element in G, and $J_q = \{b \in B \mid bx = g(x)b \text{ for } dx\}$ all $x \in B$ for each $g \in G$. For a subring A of B with the same identity 1, we denote the commutator subring of A in B by $V_B(A)$. Following the definitions given in [10], we call B a separable extension of A if there exist $\{a_i, b_i \text{ in } B, i = 1, 2, \dots, m \text{ for some integer } m\}$ such that $\sum a_i b_i = 1$, and $\sum ba_i \otimes b_i = \sum a_i \otimes b_i b$ for all b in B where \otimes is over A. An Azumaya algebra is a separable extension of its center. A ring B is called an H-separable extension of A if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule. B is called a Galois extension of B^G with Galois group G if there exist elements $\{a_i, b_i \text{ in } B, i = 1, 2, \dots, m \text{ for some integer}\}$ m such that $\sum_{i=1}^{m} a_i g(b_i) = \delta_{1,g}$ for each $g \in G$. A Galois extension B with Galois group \overline{G} is called an Azumaya Galois extension if B^G is an Azumaya algebra over C^G (see [2, 7]), and a DeMever-Kanzaki Galois extension if B is an Azumaya algebra over C which is a Galois algebra over C^G with Galois group induced by and isomorphic with G (see [3, 6]).

Let P be a finitely generated and projective module over a commutative ring R. Then for a prime ideal p of R, $P_p (= P \otimes_R R_p)$ is a free module over R_p (= the local ring of R at p), and the rank of P_p over R_p is the number of copies of R_p in P_p , that is, $\operatorname{rank}_{R_p}(P_p) = m$ for some integer m. It is known that the $\operatorname{rank}_R(P)$ is a continuous function $(\operatorname{rank}_R(P)(p) = m)$ from $\operatorname{Spec}(R)$ to the set of nonnegative integers with the discrete topology (see [4, Corollary 4.11, page 31]). We shall use the $\operatorname{rank}_R(P)$ -function for a finitely generated and projective module P over a commutative ring R.

264

THE DEMEYER-KANZAKI GALOIS EXTENSION AND ITS SKEW GROUP RING 265

3. Characterizations

In this section, keeping all notations as given in section 2, we shall generalize the characterizations of a commutative Galois algebra as given by S. Ikehata (see [5]) to a DeMeyer-Kanzaki Galois extension B with Galois group G in terms of the skew group ring B * G. We begin with an equivalent condition for a commutative Galois algebra C with Galois group G.

THEOREM 3.1. Let C be a commutative ring with a finite automorphism group G. Then, C is a commutative Galois algebra with Galois group G if and only if C^G is a direct summand of C as a C^G -submodule, and $C \otimes_{C^G} (C * G) \cong$ $M_n(C)$.

PROOF. (\Longrightarrow) By Corollary 1.3 on page 85 in [4], C^G is a direct summand of C as a C^G -submodule, and that $C \otimes_{C^G} (C * G) \cong M_n(C)$ is a consequence of Theorem 2 in [5].

(\Leftarrow) Since $C \otimes_{C^G} (C * G) \cong M_n(C)$, $C \otimes_{C^G} (C * G)$ is an Azumaya algebra over C. But C^G is a direct summand of C as a C^G -submodule by hypothesis, so C * G is an Azumaya C^G -algebra (see [4, Corollary 1.10, page 45]). Hence C is a commutative Galois algebra with Galois group G (see [5, Theorem 2]).

Next we characterize a DeMeyer-Kanzaki Galois extension B in terms of the skew group ring B * G.

THEOREM 3.2. The following statements are equivalent:

- (1) B is a DeMeyer-Kanzaki Galois extension of B^G with Galois group G.
- (2) The skew group ring B * G is an Azumaya C^G -algebra and C is a maximal commutative separable subalgebra of $V_{B*G}(B^G)$ over C^G .
- (3) The skew group ring B * G is an H-separable extension of B, B is a separable algebra over C^G , and $J_g = \{0\}$ for each $g \neq 1$ in G.

PROOF. (1) \implies (2) Since *B* is a DeMeyer-Kanzaki Galois extension of B^G with Galois group *G*, $B \cong B^G \otimes_{C^G} C$ such that B^G is an Azumaya C^G -algebra (see [3, Lemma 2]). Hence *B* is an Azumaya Galois extension with Galois group *G*; and so B * G is an Azumaya C^G -algebra (see [2, Theorem 1]). Moreover, *C* is a commutative Galois algebra with Galois group *G* by hypothesis, so *C* is a maximal commutative separable subalgebra of C * G over C^G (see [5, Theorem 2]). But $V_{B*G}(B^G) = V_B(B^G) * G = C * G$, so *C* is a maximal commutative separable subalgebra of $V_{B*G}(B^G)$ over C^G .

 $(2) \Longrightarrow (1)$ Since B * G is an Azumaya C^G -algebra, B is an Azumaya Galois extension with Galois group G (see [2, Theorem 1]). Hence $V_B(B^G)$ is a Galois algebra over C^G with Galois group G (see [1, Theorem 2]). Thus $V_B(B^G) * G \cong \operatorname{Hom}_{C^G}(V_B(B^G), V_B(B^G))$. But C is a maximal commutative separable subalgebra of $V_B(B^G) * G (= V_{B*G}(B^G))$ over C^G by hypothesis,

so by the proof of Theorem 5.5 on page 64 in [4],

$$C \otimes_{C^G} (V_B(B^G) * G) \cong \operatorname{Hom}_C(V_B(B^G) * G, V_B(B^G) * G).$$

Then we have

$$\operatorname{Hom}_{C}(V_{B}(B^{G}) * G, V_{B}(B^{G}) * G) \cong$$
$$\cong C \otimes_{C^{G}} (V_{B}(B^{G}) * G)$$
$$\cong C \otimes_{C^{G}} \operatorname{Hom}_{C^{G}}(V_{B}(B^{G}), V_{B}(B^{G}))$$
$$\cong \operatorname{Hom}_{C}(C \otimes_{C^{G}} V_{B}(B^{G}), C \otimes_{C^{G}} V_{B}(B^{G})).$$

Thus $V_B(B^G) * G \cong (C \otimes_{C^G} V_B(B^G)) \otimes_C P$ as a *C*-module for some finitely generated and projective *C*-module *P* such that $\operatorname{rank}_C(P) = 1$. Since the rank of a Galois algebra is the order of the Galois group, applying the rank function on both sides of the above isomorphism, we have that

$$\operatorname{rank}_{C}(V_{B}(B^{G})) \cdot n = \operatorname{rank}_{C}(V_{B}(B^{G}) * G) = \operatorname{rank}_{C}(C \otimes_{C^{G}} V_{B}(B^{G}))$$
$$= \operatorname{rank}_{C^{G}}(V_{B}(B^{G})) = n.$$

This implies that $\operatorname{rank}_C(V_B(B^G)) = 1$. Noting that $V_B(B^G)$ is an Azumaya C-algebra and a finitely generated projective C^G -module, we conclude that $V_B(B^G) = C$; and so C is a Galois algebra over C^G with Galois group G. Consequently, B is a DeMeyer-Kanzaki Galois extension of B^G with Galois group G because B is also an Azumaya C-algebra.

(1) \Longrightarrow (3) Since *B* is a DeMeyer-Kanzaki Galois extension of B^G with Galois group $G, B \cong B^G \otimes_{C^G} C$ such that B^G is an Azumaya C^G -algebra and *C* is a Galois algebra with Galois group induced by and isomorphic with *G* (see [3, Lemma 2]). Hence B * G is an *H*-separable extension of *B* (see [9, Lemma 3.1 and Theorem 3.2]) and *B* is a separable algebra over C^G . Noting that $V_B(B^G) = C = J_1$ and that $V_B(B^G) = \oplus \sum_{g \in G} J_g$ (see [6, Proposition 1]), we conclude that $J_g = \{0\}$ for each $g \neq 1$ in *G*.

(3) \implies (1) Since *B* is a separable algebra over C^G , *B* is an Azumaya algebra over *C*. Next we claim that *C* is a Galois algebra with Galois group induced by and isomorphic with *G*. In fact, since B * G is an *H*-separable extension of *B* by hypothesis and *B* is a direct summand of B * G as a left (or right) *B*-module, $V_{B*G}(V_{B*G}(B)) = B$ (see [8, Proposition 1.2]). This implies that the center of B * G is C^G . Moreover, *B* is a separable algebra over C^G , so B * G is a separable algebra over C^G by the transitivity of separable extensions. Thus B * G is an Azumaya C^G -algebra; and so *B* is an Azumaya Galois extension with Galois group *G* (see [2, Theorem 1]). Therefore $V_B(B^G)$ is a Galois algebra over C^G with Galois group induced by and isomorphic with *G* (see [1, Theorem 2]). But then, by Proposition 1 in [6], $V_B(B^G) = \bigoplus \sum_{g \in G} J_g$. Since $J_g = \{0\}$ for each $g \neq 1$ in *G* by hypothesis, so $V_B(B^G) = J_1 = C$. This proves that *C* is a Galois algebra with Galois group induced by and isomorphic with *G*. Thus statement (1) holds.

266

THE DEMEYER-KANZAKI GALOIS EXTENSION AND ITS SKEW GROUP RING 267

By generalizing Theorem 3.1, we obtain another two characterizations of a DeMeyer-Kanzaki Galois extension.

THEOREM 3.3. The following statements are equivalent:

- (1) B is a DeMeyer-Kanzaki Galois extension of B^G with Galois group G.
- (2) B is a separable C^G -algebra, C^G is a direct summand of C as a C^G -submodule, and $C \otimes_{C^G} (B * G) \cong M_n(B)$.
- (3) B is a separable C^G -algebra, C^G is a direct summand of C as a C^G submodule, and $C \otimes_{C^G} V_{B*G}(B^G) \cong M_n(C)$.

PROOF. (1) \implies (2) Since *B* is a DeMeyer-Kanzaki Galois extension of B^G with Galois group *G*, $B \cong B^G \otimes_{C^G} C$ where B^G is an Azumaya C^G algebra and *C* is a Galois algebra with Galois group induced by and isomorphic with *G* (see [3, Lemma 2]). Hence C^G is a direct summand of *C* as a C^G submodule (see [4, Corollary 1.3, page 85]), and $V_{B*G}(B^G) = C*G$ such that $C \otimes_{C^G} (C*G) \cong M_n(C)$ (see [5, Theorem 2]); and so

$$C \otimes_{C^G} (B * G) \cong C \otimes_{C^G} (B^G \otimes_{C^G} C * G) \cong C \otimes_{C^G} (C * G) \otimes_{C^G} B^G$$
$$\cong M_n(C) \otimes_{C^G} B^G \cong M_n(B).$$

 $(2) \Longrightarrow (1)$ Since B is a separable C^G -algebra, B is an Azumaya algebra over C. Moreover, $M_n(B) \cong B \otimes_C M_n(C)$, so $M_n(B)$ is an Azumaya Calgebra. By hypothesis, $C \otimes_{C^G} (B * G) \cong M_n(B)$, so $C \otimes_{C^G} (B * G)$ is an Azumaya algebra over C. But C contains C^G as a direct summand as a C^G -submodule by hypothesis, so B * G is an Azumaya C^G -algebra (see [4, Corollary 1.10, page 45]). Hence B is an Azumaya Galois extension with Galois group G (see [2, Theorem 1]). Thus $V_B(B^G)$ is a Galois algebra over C^G with Galois group G (see [1, Theorem 2]). Therefore both B and $B^G \cdot V_B(B^G)$ are Galois extensions of B^G with Galois group G such that $B^G \cdot V_B(B^G) \subset B$. This implies that $B = B^G \cdot V_B(B^G)$ such that $V_B(B^G)$ is a Galois algebra over C^G with Galois group G; and so $V_B(B^G)$ an Azumaya C-algebra and both $V_B(B^G)$ and C are finitely generated projective modules over C^G .

Next we claim that $V_B(B^G) = C$. In fact, since $C \otimes_{C^G} (B * G) \cong M_n(B)$, rank_{C^G} $(B*G) = \operatorname{rank}_C(M_n(B))$. This implies that $\operatorname{rank}_{C^G}(C) \cdot \operatorname{rank}_C(B) \cdot n =$ rank_C $(B) \cdot n^2$. Thus $\operatorname{rank}_{C^G}(C) = n$. But $V_B(B^G)$ is a Galois algebra over C^G with Galois group G, so $\operatorname{rank}_{C^G}(V_B(B^G)) = n$. Therefore $\operatorname{rank}_{C^G}(V_B(B^G)) =$ $n = \operatorname{rank}_{C^G}(C)$. Noting that $V_B(B^G)$ is an Azumaya C-algebra and a finitely generated projective C^G -module, we conclude that $V_B(B^G) = C$; and so Cis a Galois algebra with Galois group induced by and isomorphic with G. Consequently, B is a DeMeyer-Kanzaki Galois extension with Galois group G.

(1) \iff (3) The proof is similar to (1) \iff (2).

G. SZETO AND L. XUE

References

- R. Alfaro and G. Szeto, Skew Group Rings which are Azumaya, Comm. in Algebra 23 (1995), 2255–2261.
- [2] R. Alfaro and G. Szeto, On Galois Extensions of an Azumaya Algebra, Comm. in Algebra 25 (1997), 1873–1882.
- [3] F.R. DeMeyer, Some Notes on the General Galois Theory of Rings, Osaka J. Math. 2 (1965), 117–127.
- [4] F. R. DeMeyer and E. Ingraham, Separable algebras over commutative rings, Volume 181, Springer Verlag, Berlin, Heidelberg, New York, 1971.
- [5] S. Ikehata, Note on Azumaya Algebras and H-Separable Extensions, Math. J. Okayama Univ. 23 (1981), 17–18.
- [6] T. Kanzaki, On Galois algebra over a commutative ring, Osaka J. Math. 2 (1965), 309–317.
- [7] M. Ouyang, Azumaya Extensions and Galois Correspondence, Algebra Colloquium 7 (2000), 43–57.
- [8] K. Sugano, Note on Semisimple Extensions and Separable Extensions, Osaka J. Math. 4 (1967), 265–270.
- [9] G. Szeto and L. Xue, On Characterizations of a Center Galois Extension, International Journal of Mathematics and Mathematical Sciences 23 (2000), 753–758.
- [10] G. Szeto and L. Xue, The structure of Galois algebras, Journal of Algebra, 237 (2001), 238–246.

G. Szeto Department of Mathematics Bradley University Peoria, Illinois 61625 USA *E-mail*: szeto@hilltop.bradley.edu

L. Xue Department of Mathematics Bradley University Peoria, Illinois 61625 USA *E-mail*: lxue@hilltop.bradley.edu *Received*: 06.09.2002.

268