# A GENERALIZATION OF A RESULT ON MAXIMUM MODULUS OF POLYNOMIALS 

V. K. Jain<br>Indian Institute of Technology, Kharagpur, India

Abstract. For an arbitrary entire function $f(z)$, let

$$
M(f, d)=\max _{|z|=d}|f(z)|
$$

It is known that if the geometric mean of the moduli of the zeros of a polynomial $p(z)$ of degree $n$ is at least 1 , and $M(p, 1)=1$, then for $R>1$

$$
M(p, R) \leq \begin{cases}\frac{R}{2}+\frac{1}{2}, & \text { if } n=1 \\ \frac{R^{n}}{2}+\frac{(3+2 \sqrt{2}) R^{n-2}}{2}, & \text { if } n \geq 2\end{cases}
$$

We have obtained a generalization of this result, by assuming the geometric mean of the moduli of the zeros of the polynomial to be at least $k,(k>0)$.

## 1. Introduction and statement of result

For a polynomial $p(z)$ of degree $n$, we have, as a simple consequence [4, Part III, Chapter 6, Problem no. 269] of maximum modulus principle

Theorem 1.1. If $p(z)$ is a polynomial of degree $n$ such that $M(p, 1)=1$, then for $R>1$

$$
\begin{equation*}
M(p, R) \leq R^{n} \tag{1.1}
\end{equation*}
$$

Equality holds in (1.1) for $p(z)=a z^{n}$, with $|a|=1$.
Ankeny and Rivlin [1] considered a restricted class of polynomials and obtained the following refinement

THEOREM 1.2. If the moduli of the zeros of a polynomial $p(z)$ of degree $n$ are all $\geq 1$ and $M(p, 1)=1$, then for $R>1$

$$
\begin{equation*}
M(p, R) \leq \frac{R^{n}+1}{2} \tag{1.2}
\end{equation*}
$$

Equality holds in (1.2) for $p(z)=\left(b z^{n}+d\right) / 2$, with $|b|=|d|=1$.
Frappier and Rahman [3] in a somewhat different context, obtained a similar type of result for a broader class of polynomials and proved

THEOREM 1.3. If the geometric mean of the moduli of the zeros of a polynomial $p(z)$ of degree $n$ is at least 1 and $M(p, 1)=1$, then for $R>1$

$$
M(p, R) \leq \begin{cases}\frac{R}{2}+\frac{1}{2}, & n=1 \\ \frac{R^{n}}{2}+\frac{(3+2 \sqrt{2}) R^{n-2}}{2}, & n \geq 2\end{cases}
$$

In this note, we have obtained a generalization of Theorem 1.3, by assuming the geometric mean of the moduli of the zeros of the polynomial $p(z)$ to be at least $k,(k>0)$. More precisely, we prove

THEOREM 1.4. If the geometric mean of the moduli of the zeros of a polynomial $p(z)$ of degree $n$ is at least $k,(k>0)$, and $M(p, 1)=1$, then for $R>1$

$$
M(p, R) \leq \begin{cases}\frac{R}{1+k}+\frac{k}{1+k}, & n=1  \tag{1.3}\\ \frac{R^{n}}{1+k^{n}}+\frac{R^{n-2}}{4}\left[\left(5+k^{n}\right)+\frac{1}{1+k^{n}} \sqrt{D}\right], & n \geq 2\end{cases}
$$

where

$$
D=k^{4 n}+4 k^{3 n}+30 k^{2 n}+52 k^{n}+41
$$

Equality holds in $\left(1.3_{1}\right)$ for $p(z)=(z+k) /(1+k)$.

## 2. Lemmas

For the proof of the theorem, we require following lemmas.
LEMMA 2.1. If $p(z)=\sum_{k=0}^{n} a_{k} z^{k}$ is a polynomial of degree $n$ such that $M(p, 1)=1$, then

$$
\left|a_{0}\right|+\left|a_{n}\right| \leq 1
$$

This lemma is due to Visser [5].
LEMMA 2.2. If $p(z)=\sum_{k=0}^{n} a_{k} z^{k}$ is a polynomial of degree $n$ such that $M(p, 1)=1$, then

$$
2\left|a_{0}\right| \cdot\left|a_{n}\right|+\sum_{k=0}^{n}\left|a_{k}\right|^{2} \leq 1
$$

This lemma is due to van der Corput and Visser [2].

## 3. Proof of Theorem 1.4

If

$$
p(z)=a_{0}+a_{1} z
$$

then

$$
\frac{M(p, R)}{M(p, 1)}=\frac{\left|a_{0}\right|+\left|a_{1}\right| R}{\left|a_{0}\right|+\left|a_{1}\right|} \leq \frac{R+k}{1+k}
$$

thereby proving the theorem for this particular case. Therefore we now assume that

$$
n \geq 2
$$

and

$$
\begin{align*}
p(z) & =a_{n} z^{n}+a_{n-1} z^{n-1}+a_{n-2} z^{n-2}+\cdots+a_{0} \\
& =a_{n} z^{n}+a_{n-1} z^{n-1}+r(z) \tag{3.1}
\end{align*}
$$

As the geometric mean of the moduli of the zeros of the polynomial is at least $k$, we have

$$
\begin{equation*}
\left|a_{0}\right| \geq k^{n}\left|a_{n}\right| \tag{3.2}
\end{equation*}
$$

and therefore, by Lemma 2.1

$$
\begin{equation*}
\alpha:=\left|a_{n}\right| \leq \frac{1}{1+k^{n}} \tag{3.3}
\end{equation*}
$$

Further, by Lemma 2.2, we have

$$
\left(\left|a_{0}\right|+\left|a_{n}\right|\right)^{2}+\left|a_{n-1}\right|^{2} \leq 1
$$

which, by (3.2) and (3.3), implies

$$
\left(k^{n} \alpha+\alpha\right)^{2}+\left|a_{n-1}\right|^{2} \leq 1
$$

i.e.

$$
\begin{equation*}
\left|a_{n-1}\right| \leq \sqrt{\left\{1-\alpha^{2}\left(1+k^{n}\right)^{2}\right\}} \tag{3.4}
\end{equation*}
$$

Using (3.3) and (3.4), we can now say that

$$
\begin{align*}
\left|a_{n} z^{n}+a_{n-1} z^{n-1}\right| & \leq \alpha|z|^{n}+|z|^{n-1} \sqrt{\left\{1-\alpha^{2}\left(1+k^{n}\right)^{2}\right\}} \\
& \leq \frac{1}{1+k^{n}}\left|z^{n}\right|+\frac{\left(1+k^{n}\right)+\alpha\left(1+k^{n}\right)^{2}}{4}|z|^{n-2} \tag{3.5}
\end{align*}
$$

by (3.3). And, by (3.1)

$$
r(z)=p(z)-a_{n} z^{n}-a_{n-1} z^{n-1}
$$

is a polynomial, of degree at most $(n-2)$, with

$$
M(r, 1) \leq 1+\alpha+\sqrt{\left\{1-\alpha^{2}\left(1+k^{n}\right)^{2}\right\}}
$$

(by (3.3) and (3.4)), thereby implying, by Theorem 1.1 , for $R>1$

$$
M(r, R) \leq\left[1+\alpha+\sqrt{\left\{1-\alpha^{2}\left(1+k^{n}\right)^{2}\right\}}\right] R^{n-2}
$$

Hence, by (3.1) and (3.5), we have, for $R>1$

$$
\begin{aligned}
M(p, R) \leq & \frac{R^{n}}{1+k^{n}}+\left[\frac{5+k^{n}}{4}+\alpha\left\{1+\frac{\left(1+k^{n}\right)^{2}}{4}\right\}\right. \\
& \left.+\sqrt{\left\{1-\alpha^{2}\left(1+k^{n}\right)^{2}\right\}}\right] R^{n-2}
\end{aligned}
$$

from which, the inequality $\left(1.3_{2}\right)$ follows, on finding the maximum value of the function

$$
\phi(\alpha)=\alpha\left\{1+\frac{\left(1+k^{n}\right)^{2}}{4}\right\}+\sqrt{\left\{1-\alpha^{2}\left(1+k^{n}\right)^{2}\right\}}
$$

on the interval $\left[0,1 /\left(1+k^{n}\right)\right]$. This completes the proof of Theorem 1.4.

## References

[1] N. C. Ankeny and T. J. Rivlin, On a theorem of S.Bernstein, Pacific J. Math. 5 (1955), 849-852.
[2] J. G. van der Corput and C. Visser, Inequalities concerning polynomials and trigonometric polynomials, Nederl. Akad. Wetensch. Proc. 49, 383-392 (Indag. Math. 8 (1946), 238-247).
[3] C. Frappier and Q. I. Rahman, On an inequality of S. Bernstein, Canad. J. Math. 34 (1982), 932-944.
[4] G. Polya and G. Szegö, Problems and Theorems in analysis, Vol. 1. Springer-Verlag, Berlin-Heidelberg, 1972.
[5] C. Visser, A simple proof of certain inequalities concerning polynomials, Nederl. Akad. Wetensch. Proc. 47, 276-281 (Indag. Math. 7 (1945), 81-86).
V. K. Jain

Mathematics Department,
Indian Institute of Technology,
Kharagpur-721302,
India
Received: 20.07.2002.
Revised: 10.12.2002.

