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Abstract. For an arbitrary entire function f(z), let

M(f, d) = max
|z|=d

|f(z)|.

It is known that if the geometric mean of the moduli of the zeros of a
polynomial p(z) of degree n is at least 1, and M(p, 1) = 1, then for R > 1

M(p, R) ≤

{

R
2

+ 1
2
, if n = 1,

Rn

2
+

(3+2
√

2)Rn−2

2
, if n ≥ 2.

We have obtained a generalization of this result, by assuming the geometric
mean of the moduli of the zeros of the polynomial to be at least k, (k > 0).

1. Introduction and statement of result

For a polynomial p(z) of degree n, we have, as a simple consequence [4,
Part III, Chapter 6, Problem no. 269] of maximum modulus principle

Theorem 1.1. If p(z) is a polynomial of degree n such that M(p, 1) = 1,
then for R > 1

(1.1) M(p,R) ≤ Rn.

Equality holds in (1.1) for p(z) = azn, with |a| = 1.

Ankeny and Rivlin [1] considered a restricted class of polynomials and
obtained the following refinement
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Theorem 1.2. If the moduli of the zeros of a polynomial p(z) of degree
n are all ≥ 1 and M(p, 1) = 1, then for R > 1

(1.2) M(p,R) ≤ Rn + 1

2
.

Equality holds in (1.2) for p(z) = (bzn + d)/2, with |b| = |d| = 1.

Frappier and Rahman [3] in a somewhat different context, obtained a
similar type of result for a broader class of polynomials and proved

Theorem 1.3. If the geometric mean of the moduli of the zeros of a
polynomial p(z) of degree n is at least 1 and M(p, 1) = 1, then for R > 1

M(p,R) ≤
{

R
2 + 1

2 , n = 1,
Rn

2 + (3+2
√

2)Rn−2

2 , n ≥ 2.

In this note, we have obtained a generalization of Theorem 1.3, by as-
suming the geometric mean of the moduli of the zeros of the polynomial p(z)
to be at least k, (k > 0). More precisely, we prove

Theorem 1.4. If the geometric mean of the moduli of the zeros of a
polynomial p(z) of degree n is at least k, (k > 0), and M(p, 1) = 1, then for
R > 1

(1.3) M(p,R) ≤
{

R
1+k + k

1+k , n = 1,
Rn

1+kn + Rn−2

4

[
(5 + kn) + 1

1+kn

√
D
]
, n ≥ 2.

where
D = k4n + 4k3n + 30k2n + 52kn + 41.

Equality holds in (1.31) for p(z) = (z + k)/(1 + k).

2. Lemmas

For the proof of the theorem, we require following lemmas.

Lemma 2.1. If p(z) =
n∑
k=0

akz
k is a polynomial of degree n such that

M(p, 1) = 1, then
|a0|+ |an| ≤ 1.

This lemma is due to Visser [5].

Lemma 2.2. If p(z) =
n∑
k=0

akz
k is a polynomial of degree n such that

M(p, 1) = 1, then

2|a0| · |an|+
n∑

k=0

|ak|2 ≤ 1.

This lemma is due to van der Corput and Visser [2].
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3. Proof of Theorem 1.4

If

p(z) = a0 + a1z,

then
M(p,R)

M(p, 1)
=
|a0|+ |a1|R
|a0|+ |a1|

≤ R + k

1 + k
,

thereby proving the theorem for this particular case. Therefore we now assume
that

n ≥ 2,

and

p(z) = anz
n + an−1z

n−1 + an−2z
n−2 + · · ·+ a0,

= anz
n + an−1z

n−1 + r(z).(3.1)

As the geometric mean of the moduli of the zeros of the polynomial is at least
k, we have

(3.2) |a0| ≥ kn|an|,
and therefore, by Lemma 2.1

(3.3) α := |an| ≤
1

1 + kn
.

Further, by Lemma 2.2, we have

(|a0|+ |an|)2 + |an−1|2 ≤ 1,

which, by (3.2) and (3.3), implies

(knα+ α)2 + |an−1|2 ≤ 1,

i.e.

(3.4) |an−1| ≤
√
{1− α2(1 + kn)2}.

Using (3.3) and (3.4), we can now say that

|anzn + an−1z
n−1| ≤ α|z|n + |z|n−1

√
{1− α2(1 + kn)2}

≤ 1

1 + kn
|zn|+ (1 + kn) + α(1 + kn)2

4
|z|n−2,(3.5)

by (3.3). And, by (3.1)

r(z) = p(z)− anzn − an−1z
n−1

is a polynomial, of degree at most (n− 2), with

M(r, 1) ≤ 1 + α+
√
{1− α2(1 + kn)2},

(by (3.3) and (3.4)), thereby implying, by Theorem 1.1, for R > 1

M(r, R) ≤
[
1 + α+

√
{1− α2(1 + kn)2}

]
Rn−2.
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Hence, by (3.1) and (3.5), we have, for R > 1

M(p,R) ≤ Rn

1 + kn
+

[
5 + kn

4
+ α

{
1 +

(1 + kn)2

4

}

+
√
{1− α2(1 + kn)2}

]
Rn−2,

from which, the inequality (1.32) follows, on finding the maximum value of
the function

φ(α) = α

{
1 +

(1 + kn)2

4

}
+
√
{1− α2(1 + kn)2},

on the interval [0, 1/(1 + kn)]. This completes the proof of Theorem 1.4.

References

[1] N. C. Ankeny and T. J. Rivlin, On a theorem of S.Bernstein, Pacific J. Math. 5 (1955),
849–852.

[2] J. G. van der Corput and C. Visser, Inequalities concerning polynomials and trigono-
metric polynomials, Nederl. Akad. Wetensch. Proc. 49, 383–392 (Indag. Math. 8
(1946), 238–247).

[3] C. Frappier and Q. I. Rahman, On an inequality of S. Bernstein, Canad. J. Math. 34
(1982), 932–944.
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