# PERIODIC SOLUTIONS OF A FIRST ORDER DIFFERENTIAL EQUATION

LAVOSLAV ČAKLOVIĆ

University of Zagreb, Croatia

ABSTRACT. The first order dynamical system  $\dot{z} = F(t, z)$  is considered, where F is T-periodic in time and sub-linear at infinity. Existence of T-periodic solution is proved, using degree theory, and applications to non-convex Hamiltonian systems is given as well.

#### 1. INTRODUCTION AND MAIN RESULTS

General type equation. We consider the following first order differential equation  $\mathcal{L}$ 

(F) 
$$\dot{z} = F(t,z)$$

where  $F \in C^1(\mathbb{R} \times \mathbb{R}^N, \mathbb{R}^N)$ ,  $N \in \mathbb{N}$ , is *T*-periodic in time. Our goal is to find a *T*-periodic solution of (F) under the following **sub-linearity** condition at infinity

(SL) 
$$\limsup_{|z| \to +\infty} \frac{|F(t,z)|}{|z|} = 0, \text{ uniformly in } t,$$

in Sobolev space  $H^1_T := \{z \in H^1(0,T;\mathbb{R}^N) \mid z(0) = z(T)\}$  of *T*-periodic functions. A standard technique is to decompose the space in orthogonal sum

$$H_T^1 = E^1 \oplus \mathbb{R}^N, \ z = u + m,$$

where  $E^1 = \{u \in H^1 \mid fu = 0\}$ , and  $fz = \frac{1}{T} \int_0^T z(t) dt$  is the mean value of function z(t). According to the above decomposition we split equation

 $Key\ words\ and\ phrases.$  Differential equations, periodic solution, degree, Hamiltonian system.



<sup>2000</sup> Mathematics Subject Classification. 34C25, 46N20, 47H15, 55M25, 58C30, 58F22.

(F) to obtain  $E^1$ -component of (F), an infinite dimensional equation, and  $\mathbb{R}^N$ -component of (F), finite dimensional one:

(F<sub>1</sub>)  
$$\begin{aligned} \dot{u} &= F(t, u+m) - \oint F(t, u+m) \\ 0 &= \oint F(t, u+m). \end{aligned}$$

We would like to introduce a deformation parameter  $\tau$ ,  $0 \le \tau \le 1$  to obtain a homotopical equivalent uncoupled system which has a solution. Following this idea we introduce

(F<sub>\tau</sub>) 
$$\begin{aligned} \dot{u} &= \tau \left[ F(t, \tau u + m) - \frac{f}{f} F(t, \tau u + m) \right] \\ 0 &= \frac{f}{f} F(t, \tau u + m), \end{aligned}$$

for  $\tau = 1$  (F<sub> $\tau$ </sub>) reduces to (F<sub>1</sub>) and for  $\tau = 0$  we obtain an uncoupled system

Solving  $(F_{\tau})$  is equivalent to finding a zero of the function

$$(m,u) \mapsto \left( \oint F(t,m+\tau u), u - \left(\frac{d}{dt}\right)^{-1} \left( \tau \left[ F(t,m+\tau u) - \oint F(t,m+\tau u) \right] \right) \right)$$

defined on  $\mathbb{R}^N \times E^1$ . Some a priori bounds are needed and invertibility of  $\frac{d}{dt}$  should be justified.

As it was kindly pointed out by the referee, it seems that instead the homotopy defined in formula  $(F_{\tau})$  the homotopy in the proof of Theorem IV.3 in the Mawhin's book [9] can be used.

A priori bound. To obtain an a priori bound on the solution let us rewrite the sub-linearity condition (SL) in equivalent form:

(
$$\varepsilon$$
SL)  $\forall \varepsilon > 0, \exists C_{\varepsilon} > 0, \text{ such that} |F(t,z)| \leq \varepsilon |z| + C_{\varepsilon}, z \in \mathbb{R}^{N}, t \in \mathbb{R}.$ 

As shown in the next proposition some restrictions on  $\varepsilon$  are essential for obtaining a priori bound on solution. See also an example in the proof of Theorem 1.3.

PROPOSITION 1.1. Assume that F is sub-linear at infinity,  $m \in \mathbb{R}^n$  and  $u \in E^1$  is a solution of the first equation in  $(F_{\tau})$ . If  $\varepsilon$ , in inequality ( $\varepsilon SL$ ), is such that  $\varepsilon T < \sqrt{3}/2$  in then

(1.1) 
$$\|u\|_{L^{\infty}} \le \delta |m| + \gamma$$

where

$$\delta := \frac{\varepsilon T}{\sqrt{T} - \varepsilon T}$$
 and  $\gamma := \frac{C_{\varepsilon}T}{\sqrt{T} - \varepsilon T}$ .

We prove the proposition in section 3 on page 291. Moreover, for any r > 0 we introduce

$$R_{\varepsilon}(r) := \frac{r+\gamma}{1-\delta}$$

As we shall see in Lemma 3.1, inequality (1.1) implies that z = m + u(t) is localized in the ball  $B(|m|, R_{\varepsilon}(r) - r)$  whenever  $|m| \ge R_{\varepsilon}(r)$ .

There are two additional properties, we call them 'guiding function' and 'half space localization'. Each of them assures a priori bound on the solution.

### Guiding function.

There exist a guiding function W(z),

(1.2) 
$$W \in C^1(\mathbb{R}^N, \mathbb{R})$$
, and positive  $r > 0$  such that  $|z| \ge r \Rightarrow F(t, z) \cdot W'(z) > 0$  uniformly on  $t$ .

As shown in Lemma 3.2, if F has a guiding function then  $|m| \ge R_{\varepsilon}(r)$ implies that the second equation  $(\mathbf{F}_{\tau})$  has no solution.

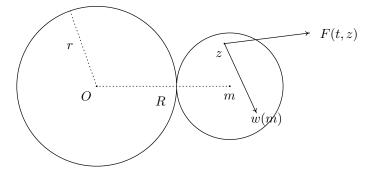
## Half space localization.

There exists r > 0 and a continuous

(1.3) 
$$\begin{aligned} \text{function } w : \mathbb{R}^N \setminus B(0, R_{\varepsilon}(r)) \to \mathbb{R}^N, \text{ such that} \\ |m| \geq R_{\varepsilon}(r) \Rightarrow \left(w(m) \cdot m \geq 0 \text{ and } F(t, z) \cdot w(m) > 0\right) \\ \text{for all } z \in B(m, R_{\varepsilon}(r) - r) \text{ uniformly on } t. \end{aligned}$$

If  $z \in B(m, R_{\varepsilon}(r) - r)$  and F satisfies half space localization property then F(t, z) belongs to the half space  $\{z \in \mathbb{R}^N \mid w(m) \cdot z > 0\}$ . Specially, this implies that the second equation  $(\mathbf{F}_{\tau})$  has no solution.

In both cases, i.e. if F has guiding function or satisfies half space localization property, then, if there exists a solution z = u + m of  $(F_{\tau})$  it should satisfy  $|m| \leq R_{\varepsilon}(r)$ . Evidently, some additional property of F is needed to prove the existence of solution. This is the non-triviality of degree as stated in next theorem.



A priori bound

THEOREM 1.2 (Krasnoselski). Assume that F(t, z) satisfies (SL) (or  $(\varepsilon SL)$ ). If F has guiding function and  $d := \deg(W', B(0, r), 0) \neq 0$  then (F) has a T-periodic solution.

A simple argument for introducing condition  $\deg(W', B(0, r), 0) \neq 0$  is the situation when  $F : \mathbb{R} \to \mathbb{R}$  is strictly positive. Then, equation  $\dot{z} = F(z)$  has no periodic solutions,  $\deg(W', B, 0) = 0$  for any interval B = (-r, r), r > 0 and condition (1.2) is fulfilled with W' = F. Evidently, the degree d has the same value for greater r because of the non-vanishing derivative W' in (1.2).

Applications to some types of Hamiltonian systems are given in section 5. The theorem is a particular case of [6, Lema 6.5, Ch. 2] and we are not going to prove it here. Its proof is inspirative for more general statement in the next theorem.

THEOREM 1.3. Assume that F(t, z) satisfies (SL) (or  $(\varepsilon SL)$ ). If F satisfies half space localization property and deg $(w, 0, R) \neq 0$  then (F) has a T-periodic solution.

An application to radial-like Hamiltonian is given in Theorem 1.4, with w(m) = Jm.

Radial-like Hamiltonians. We consider the first order Hamiltonian system

$$\dot{z} = JH'(t,z)$$

where  $H(t,z) : \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$  is  $C^1$  function and *T*-periodic in time (prime denotes partial derivative with respect to z).

We say that Hamiltonian H is strongly sub-quadratic at infinity if there exists r>0 and 1< p<2 such that

(SS) 
$$|H'(t,z)| \le \Theta_2 |z|^{p-1}$$
 whenever  $|z| \ge r$ .

We say that Hamiltonian H is radial-like if there exists  $\mu > 0$  such that

(Rad) 
$$\frac{H'(t,z) \cdot z}{|H'(t,z)||z|} \ge \mu > 0 \text{ for } |z| \ge r > 0 \text{ uniformly in } t.$$

The following theorem is a consequence of Theorem 1.3.

THEOREM 1.4. Suppose that the Hamiltonian H is radial-like an strongly sub-quadratic at infinity. Then:

i) F = JH' is sub-linear at infinity and satisfies (1.3) with w(m) = Jm.
ii) Hamiltonian system (H) has a T-periodic solution.

The same conclusion as in Theorem 1.4 can be proved using variational methods under additional hypothesis on Hamiltonian

 $|H'(t,z)|\cdot |z|\geq \beta\geq 0, \quad |z|\geq r\geq 0 \text{ uniformly in } t.$  The proof can be found in [5].

A simple test for radial-like Hamiltonian is given in the following theorem.

THEOREM 1.5. Assume that Hamiltonian H is strongly sub-quadratic at infinity and satisfies

(1.4) 
$$\Theta_1 |z|^p \leq H'(t,z)z$$

where  $0 < \Theta_1 \leq \Theta_2$  and 1 . Then <math>H(t, z) is radial-like Hamiltonian.

OPEN PROBLEM. Is it possible to prove Theorem 1.4 under weaker condition

 $H'(t,z)\cdot z>0, \quad |z|\geq r\geq 0 \ ( \ \text{uniformly in} \ t)$ 

instead of (Rad)?

Almost convex Hamiltonians. We also consider Hamiltonians that are weakly sub-quadratic in the sense

(WS) 
$$\limsup_{|z| \to +\infty} \frac{|H(t,z)|}{|z|^2} = 0, \quad \text{uniformly on } t.$$

It seems that weak subquadraticity is not sufficient for existence of T-periodic solutions for (H) even for radial-like Hamiltonians. We need an additional assumption

(AC) 
$$H(t,z) = \hat{H}(t,z) - \frac{k}{2}|z|^2$$

where H is strictly convex for some positive number k. Hamiltonian which satisfies (AC) we call almost convex. In other words, H is almost convex if adding a quadratic term makes it strictly convex.

The following theorem is then easy to prove.

THEOREM 1.6. Assume that the Hamiltonian H(t, z) is radial-like, weakly sub-quadratic, and almost convex for  $0 < k < \frac{2}{T\sqrt{3}}$ . Then, the Hamiltonian system (H) has a T-periodic solution.

Evidently, without proof, we have the following corollary.

COROLLARY 1.7. Assume that Hamiltonian H is radial-like, weakly subquadratic and convex. Then (H) has a T-periodic solution.

2. Some technical results

The framework for our problem is the space  $H_T^1 := H^1(S_T, \mathbb{R}^N)$  of *T*periodic functions from  $\mathbb{R}$  to  $\mathbb{R}^N$ , here  $S_T$  denotes the sphere  $\mathbb{R}/[0, T]$ , with a standard Hilbert space structure and norm

$$||z||_{H^1} = \left(\int_0^T |z(t)|^2 dt + \int_0^T |\dot{z}(t)|^2 dt\right)^{1/2}$$

From now on we shall use shorthand notation  $\int_0^T f$  for the integral  $\int_0^T f(t) dt$ .

LEMMA 2.1. For all  $u \in E^1$  we have

(2.1) 
$$||u||_{L^{\infty}} \leq \sqrt{\frac{T}{12}} ||\dot{u}||_{L^{2}}.$$

Moreover, the constant  $\sqrt{T/12}$  is the best Sobolev constant in (2.1).

PROOF. Let  $u = \sum_{\substack{k \in \mathbb{Z} \\ k \neq 0}} u_k e^{i k \frac{2\pi}{T} t}$  be Fourier expansion for u, where  $u_k \in$ 

 $\mathbb{R}^N.$  Then

$$\dot{u}(t) = \sum_{\substack{k \in \mathbb{Z} \\ k \neq 0}} ik \frac{2\pi}{T} u_k e^{i k \frac{2\pi}{T} t}$$
$$\|\dot{u}\|_{L^2} = \frac{2\pi}{T} (\sum_{\substack{k \in \mathbb{Z} \\ k \neq 0}} Tk^2 |u_k|^2)^{1/2}.$$

On the other hand

$$\begin{aligned} |u(t)| &\leq \sum_{\substack{k \in \mathbb{Z} \\ k \neq 0}} |u_k| k \frac{1}{k} \leq \left( \sum_{\substack{k \in \mathbb{Z} \\ k \neq 0}} |u_k|^2 k^2 \right)^{1/2} \left( \sum_{\substack{k \in \mathbb{Z} \\ k \neq 0}} \frac{1}{k^2} \right)^{1/2} \\ &= \frac{\pi}{\sqrt{3}} \frac{\sqrt{T}}{2\pi} \|\dot{u}\|_{L^2} = \sqrt{\frac{T}{12}} \|\dot{u}\|_{L^2}. \end{aligned}$$

This proves inequality. To see that  $\sqrt{T/12}$  is the best Sobolev constant in inequality (2.1) we take

$$u = \sum_{k \neq 0} \frac{1}{k^2} e^{i k \frac{2\pi}{T} t}$$

with  $||u||_{L^{\infty}} = u(0) = \sum_{k \neq 0} \frac{1}{k^2} = \frac{\pi^2}{3}$ . On the other side,

$$\|\dot{u}\|_{L^2} = \frac{2\pi}{T} \left(\sum_{k\neq 0} T \frac{1}{k^2}\right)^{1/2} = \frac{2\pi}{\sqrt{T}} \frac{\pi}{\sqrt{3}},$$

Π

which proves the claim.

The following lemma speaks about invertibility of  $\frac{d}{dt}$ .

Lemma 2.2.

- i)  $L := \frac{d}{dt}$  is a bounded linear operator from  $H^1$  to  $L^2 := L^2(S_T; \mathbb{R}^N)$ ii) L is bijective from  $E^1$  onto  $E = \{u \in L^2 | fu = 0\}$  and  $L^{-1} : E \to E^1$ is an isomorphism of Banach spaces.

iii)  $L^{-1}: E \to E$  and  $L^{-1}: E \to L^{\infty} := L^{\infty}(0,T;\mathbb{R}^N)$  are compact operators, and

$$\|L^{-1}\|_{\mathcal{L}(E,L^{\infty})} \le \sqrt{\frac{T}{12}}.$$

**PROOF.** i) follows from the definition of the norm on  $H^1$ . ii) Injectivity is clear:  $N(L) = \{u \in E^1 | \dot{u} = 0\} = \{0\}$ . To prove surjectivity let us take  $v \in E$ , i.e.  $\int v = 0$ . Then  $z(t) = \int_0^t v(\tau) d\tau$  belongs to  $H^1, \dot{z} = v$  and z(t) is *T*-periodic. Put  $z_0 = z - \int z$ . Then  $z_0 \in E^1$  and  $\dot{z}_0 = v$ . That  $L^{-1}: E \to E^1$  is an isomorphism follows from open mapping theo-

rem.

iii) is a consequence of the well-known theorem of Rellich and Kondrachov (see H. Brezis [3]). The inequality follows from Lemma 2.1. Π

#### 3. A priori bounds

PROOF OF PROPOSITION 1.1. Because  $0 \le \tau \le 1$  it is sufficient to prove the proposition for  $\tau = 1$ . Using inequality  $||u + m||_{L^{\infty}} \leq ||u||_{L^{\infty}} + |m|$  and inequality ( $\varepsilon$ SL), one gets from (F $_{\tau}$ ), that

$$\|\dot{u}\|_{L^2} \le 2\varepsilon T^{1/2} (\|u\|_{L^{\infty}} + |m|) + 2C_{\varepsilon} T^{1/2}$$

Using Lemma 2.1 we obtain

$$2\sqrt{3}T^{-1/2}\|u\|_{L^{\infty}} \leq 2\varepsilon T^{1/2}(\|u\|_{L^{\infty}} + |m|) + 2C_{\varepsilon}T^{1/2}$$

and finally

$$|u||_{L^{\infty}} \leq \frac{\varepsilon T}{\sqrt{3} - \varepsilon T} |m| + \frac{C_{\varepsilon} T}{\sqrt{3} - \varepsilon T} =: \delta |m| + \gamma.$$

which proves the inequality.

LEMMA 3.1. Assume that F is sub-linear at infinity. For a given  $m \in \mathbb{R}^N$ let u(t) is a solution of the first equation in  $(F_{\tau})$  and r > 0. Then, for  $|m| \geq R_{\varepsilon}(r)$  the following inequalities take place:

$$|u(t)| \le |m| - r \quad and \quad |u(t) + m| \ge r$$

**PROOF.** i) Let us prove first that  $|m| = R_{\varepsilon}$ . Then, because of Proposition 1.1,

$$|u(t)| \le \delta \frac{r+\gamma}{1-\delta} + \gamma = \frac{\delta r+\gamma}{1-\delta} = \frac{r+\gamma}{1-\delta} - r$$
$$= R_{\varepsilon}(r) - r = |m| - r$$

ii) If  $|m| = R > R_{\varepsilon}$ , let us denote  $r(R) = R(1-\delta) - \gamma$ . Obviously r(R) > rand, as above,

$$|u(t)| \le R - r(R) \le |m| - r$$

To prove the second inequality in lemma let us calculate

$$|u(t) + m| \ge |m| - |u(t)| \ge |m| - \delta |m| - \gamma$$
  
=  $(1 - \delta)|m| - \gamma \ge r.$ 

The following lemma is already proved in the book of Krasnoselski [6]. Because of its importance and simplicity we are giving a sketch of the proof.

LEMMA 3.2 (Krasnoselski). Assume that function F is sub-linear at infinity and has a guiding function for  $|z| \ge r$ . Then, equation  $(F_{\tau})$  has no solution with mean m such that  $|m| \ge R_{\varepsilon}(r)$ .

SKETCH OF THE PROOF. Let  $u \in E^1$  is a solution of the first equation  $(\mathbf{F}_{\tau})$ . Then,

$$0 \neq \int F(t, \tau u(t) + m).$$

Otherwise,

$$\dot{u} = \tau F(t, \tau u + m)$$

and for  $z(t) = \tau u(t) + m$  we have

$$\dot{z} = \dot{u} = F(t, z).$$

Using Lemma 3.1 and (1.2) and we finally have

$$\frac{d}{dt}W(z(t)) = \tau^2 F(t, z(t)) \cdot W'(z(t)) > 0$$

which is impossible since z is T-periodic.

# 4. Proof of Theorem 1.3

Let us consider a model Hamiltonian of the form

$$H(z) = \frac{1}{p} |z|^p, \quad 1$$

Using the fact that the corresponding energy is constant we can solve it explicitly using a substitution  $z = re^{i\phi(t)}$ . But Theorem 1.2 cannot be applied. If we look carefully why this method fails, we see that the choice of function W(z) is the cause of difficulties. The equation is

$$\dot{z} = |z|^{p-2} J z.$$

If we take w(z) = Jz and multiply both sides of the equation, we get

$$\dot{z} \cdot Jz = |z|^{p-2} Jz \cdot Jz = |z|^p.$$

The right-hand side is positive, but the left-hand side cannot be written in the form  $\frac{d}{dt}U(z)$  and we cannot prove an à priori bound on the solution. To overcome this difficulty we introduced half space localization property (1.3).

Π

PROOF OF THEOREM 1.3. Let us denote by  $\varphi_{\tau}(u,m)$  a function from  $E \times \mathbb{R}^N$  to E defined by

$$\varphi_{\tau}(u,m) = L^{-1} \left\{ \tau \Big[ F(t,\tau u+m) - f F(t,\tau u+m) \Big] \right\}.$$

The function  $\varphi_{\tau}$  is continuous in  $(\tau, u, m)$  and compact. Solving  $(\mathbf{F}_{\tau})$  is equivalent to finding a zero of the function  $\chi_{\tau}: E \times \mathbb{R}^N \to E \times \mathbb{R}^N$  defined by

$$\chi_{\tau}(u,m) = \left(u - \varphi_{\tau}(u,m), \oint F(t,\tau u(t) + m)dt\right).$$

Because of inequality

$$||u||_{L^2} \le T^{1/2} ||u||_{L^{\infty}} \le T^{1/2} (\delta |m| + \gamma)$$

it is more convenient to study solvability of equation  $\chi_{\tau}(u,m) = 0$  in the subset  $\Omega = B_1 \times B_2$  in  $E \times \mathbb{R}^n$  where  $B_1 = B\left(0, \frac{\delta R + \gamma}{1 - \delta}T^{1/2}\right) \subset E$  and  $B_2 = B(0, R) \subset \mathbb{R}^N$  with  $R = \frac{r + \gamma}{1 - \delta}$ . To prove the existence of solution, it

 $B_2 = B(0, R) \subset \mathbb{R}^N$ , with  $R = \frac{r+\gamma}{1-\delta}$ . To prove the existence of solution, it suffices to show that the degree

$$d_{\tau} := \deg(\chi_{\tau}, B_1 \times B_2, (0, 0)), \quad \tau \in [0, 1]$$

is different from zero. Because of the half space localization property (1.3) and Lemma 3.1 the degree is well defined, because  $fF(t, \tau u + m) \neq 0$  for |m| = R, and does not depend on  $\tau$ . We calculate it for  $\tau = 0$ :

$$d_0 = \deg(u \times fF(t, m), B_1 \times B_2, (0, 0))$$
  
= deg(*id*\_E, B\_1, 0) \cdot deg(fF(t, m), B\_2, 0)  
= deg(fF(t, m), B\_2, 0)

where we have used  $\deg(id_E, B_1, 0) = 1$ . Let us define  $\overline{F}(m) = \frac{1}{2}F(t, m)$ . Then |m| = R implies that

$$\bar{F}(m) \cdot w(m) = fF(t,m) \cdot w(m)dt > 0.$$

We conclude that  $\bar{F}/_{\partial B_2}$  and  $w/_{\partial B_2}$  are homotopic and

$$\deg(w, B_2, 0) = 1 \neq 0.$$

This proves the theorem.

#### 5. Some consequences of Theorems 1.2 and 1.3

Here are some examples of the first order Hamiltonian systems for which Theorem 1.2 is applicable.

COROLLARY 5.1. Suppose F(t, z) = JH'(t, z) sub-linear at infinity and  $H'_x x - H'_y y > 0$  (or < 0).

Then, the equation (F) has a T-periodic solution.

Here  $W(z) = \frac{1}{2}(x^2 - y^2) = \frac{1}{2} \text{Re}|z|^2$ , w(z) = (x, -y) and  $\text{deg}(w, B_R, 0) \neq 0$  for R > 0. In fact,  $\text{deg}(w, B_R, 0) = -1$  which is a consequence of excision and multiplicative properties of the degree.

COROLLARY 5.2. A special case of the previous corollary is the following one:

$$H(t,z) = f(t) \left(\frac{1}{p} |x|^p - \frac{1}{p} |y|^p\right), \quad 1$$

where f(t) > 0 and is T-periodic. Then

$$H'_{x}x - H'_{y}y = \left(|x|^{p} + |y|^{p}\right)f(t) > 0$$

and Corollary 5.1 can be applied.

COROLLARY 5.3. Let  $H(t,z) = \frac{1}{p}f(t)|z|^p + g(t)|z|$  where 1 and <math>f,g are real T-periodic continuous functions and  $0 < \alpha \le \min f(t)$ . Then the Hamiltonian system  $\dot{z} = JH'(t,z)$  has a T-periodic solution.

PROOF. Indeed, F(t, z) := JH'(t, z) is sub-linear at infinity. It is sufficient to prove that F satisfies the half space localization property. Let us define w(m) := Jm and choose r > 0 such that

$$ar^{p-1} > \rho := \max_{t \in [0,T]} |g(t)|.$$

Then,

$$w \cdot m = Jm \cdot m = 0$$

0

and if  $|m| = R_{\varepsilon}(r) =: R$  and  $z \in B(m, R - r)$  then |z| > r by Lemma 3.1 and

$$F(t,z) \cdot Jm = JH'(t,z) \cdot Jm = H'(t,z) \cdot m$$
$$= f(t)|z|^{p-2}z \cdot m + g(t)\frac{z}{|z|} \cdot m$$
$$\geq \alpha r^{p-1}R - \rho R \geq (\alpha r^{p-1} - \rho)R > 0$$

Π

which implies (1.3).

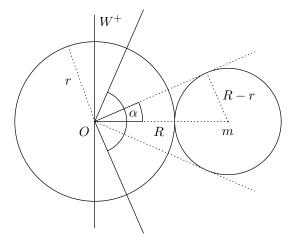
COROLLARY 5.4. Same conclusion as in Corollary 5.3 with hypothesis  $H(t,z) = \frac{1}{p}f(t)|z|^p + g(t)z$  where  $g: [0,T] \to \mathbb{R}^N$ .

### 6. RADIAL-LIKE HAMILTONIANS

Proof of Theorem 1.4. It is sufficient to prove that for |m| large enough, there exists  $\varepsilon > 0$  in ( $\varepsilon$ SL), such that

(6.1) 
$$\sin \alpha := \frac{R_{\varepsilon}(r) - r}{R_{\varepsilon}(r)} < \mu.$$

In this case H'(t, z) is an element of the positive dual cone generated by the ball  $B(m, R_{\varepsilon}(r) - r)$ , hence an element of the half space  $\{x \in \mathbb{R}^{2N} | x \cdot m > 0\}$ 



and obviously  $\int JH'(t,z) \cdot Jm = \int H'(t,z) \cdot m \neq 0$  which proves half space localization property. To prove (6.1) we have

$$\frac{R_{\varepsilon}(r)-r}{R_{\varepsilon}(r)} = \frac{\frac{r+\gamma}{1-\delta}-r}{\frac{r+\gamma}{1-\delta}} = \frac{r\delta+\gamma}{r+\gamma}.$$

Then (6.1) is equivalent to

$$r(\mu - \delta) > \gamma(1 - \mu).$$

Now,  $\varepsilon$  can be chosen such that  $\mu - \delta > 0$  and r can be taken such that

$$r > \frac{\gamma(1-\mu)}{\mu-\delta}$$

which proves the theorem.

Proof of Theorem 1.5. Let F(t, z) = JH'(t, z). Evidently F is sub-linear at infinity. To prove that H is radial-like Hamiltonian let us consider z such that  $|z| \ge r$ . Then

$$\frac{H'(t,z)\cdot z}{|H'(t,z)||z|} \geq \frac{\Theta_1|z|^p}{\Theta_2|z|^p} = \frac{\Theta_1}{\Theta_2} =: \mu > 0$$

which proves the theorem.

## 7. Almost convex Hamiltonians

*Proof of Theorem 1.6.* The idea is to prove inequality (1.1) and to get a priori bound on the solution from this inequality. We shall write (H) in the form

$$L_k z := \dot{z} + kJz = J\dot{H}'(t,z)$$

or, to simplify the notation

(7.1) 
$$L_k z = \hat{F}(t, z)$$

295

Π

with  $\hat{F}(t,z) = J\hat{H}'(t,z)$ .

Let us perform decomposition of the equation (7.1) like in  $(F_1)$ , i.e.

(7.2) 
$$L_k u = \hat{F}(t, u+m) - \int \hat{F}(t, u+m) \\ 0 = \int F(t, u+m).$$

The proof will be divided into several steps:

1<sup>st</sup> step:  $\limsup_{|z| \to +\infty} \frac{|\hat{F}(t,z)|}{|z|} \le 2k$ , uniformly on t. 2<sup>nd</sup> step: For any  $u \in E$  such that  $\int u = 0$  we have

$$||u||_{L^{\infty}} \le \frac{\sqrt{T}}{2\sqrt{3} - kT} ||L_k u||_{L^2}.$$

 $3^{\rm rd}$  step: If  $u \in E, \int u = 0$ , is a solution of the first equation (7.2) for given  $m \in \mathbb{R}^{2N}$ , then

$$\|u\|_{L^{\infty}} \le \delta |m| + \gamma, \qquad 0 < \delta < 1$$

where  $\delta = \frac{2(2k + \varepsilon)T}{\sqrt{3} - 5kT - \varepsilon T}$ ,  $\gamma = \frac{2C_{\varepsilon}T}{\sqrt{3} - 5kT - \varepsilon T}$ . 4<sup>th</sup> step: (Conclusion) Using (Rad) and the 3<sup>rd</sup> step we obtain a priori

bound on the solution, because (1.3) is satisfied with w(m) = Jm.

Proof of the 1<sup>st</sup> step, Let us denote by  $\hat{G}$  the Legendre transform of  $\hat{H}$ , i.e.

$$\hat{G}(t,v) = -\hat{H}(t,z) + vz$$

where  $v = \hat{H}'(t, z)$  and  $z = \hat{G}'(t, v)$ . Because of (WS) and the properties of the Legendre transform for each  $\varepsilon, 0 < \varepsilon < k$ , there exists  $C_{\varepsilon} \in \mathbb{R}$  such that

$$\frac{k-\varepsilon}{2}|z|^2 - C_{\varepsilon} \le \hat{H}(t,z) \le \frac{k+\varepsilon}{2}|z|^2 + C_{\varepsilon}$$
$$\frac{1}{2(k+\varepsilon)}|v|^2 - C_{\varepsilon} \le \hat{G}(t,v) \le \frac{1}{2(k-\varepsilon)}|v|^2 + C_{\varepsilon}.$$

Functions  $\hat{H}$  and  $\hat{G}$  are bounded from bellow by a constant  $-C_{\varepsilon}$  and consequently

(7.3) 
$$\frac{1}{2(k+\varepsilon)}|v|^2 - C_{\varepsilon} \le \hat{G}(t,v) \le vz - \hat{H}(t,z) \le vz + C_{\varepsilon},$$

(7.4) 
$$\frac{k-\varepsilon}{2}|z|^2 - C_{\varepsilon} \le \hat{H}(t,z) \le vz - \hat{G}(t,z) \le vz + C_{\varepsilon}.$$

Dividing (7.3) by |v| |z| we have

$$\frac{1}{2(k+\varepsilon)}\frac{|v|}{|z|} \le 1 + \frac{2C_{\varepsilon}}{|v||z|}, \quad \forall \varepsilon > 0$$

which proves the  $1^{st}$  step.

Proof of the 2<sup>nd</sup> step.

$$\begin{split} \|L_k u\|_{L^2} &= \|\dot{u} + kJu\|_{L^2} \ge \|\dot{u}\|_{L^2} - k\|u\|_{L^2} \\ &\ge \frac{2\sqrt{3}}{\sqrt{T}} \|u\|_{L^{\infty}} - k\sqrt{T}\|u\|_{L^{\infty}} \\ &= \frac{2\sqrt{3} - kT}{\sqrt{T}} \|u\|_{L^{\infty}} \end{split}$$

where we have used inequality (2.1) from Lemma 2.1 and inequality  $||u||_{L^2} \leq \sqrt{T} ||u||_{L^{\infty}}$ .

<u>Proof of the 3<sup>rd</sup> step.</u> Using the 1<sup>st</sup> and 2<sup>nd</sup> step in the first equation of (7.2) we obtain

$$\frac{2\sqrt{3} - kT}{\sqrt{T}} \|u\|_{L^{\infty}} \leq \|L_{k}u\|_{L^{2}} \leq 2(2k + \varepsilon)T^{1/2}(\|u\|_{L^{\infty}} + |m|) + 2C_{\varepsilon}T^{1/2}$$

which proves the claim.

COROLLARY 7.1. Suppose that H(t,z) = h(z) + g(t)z, where h(z) is a convex, radial-like and weakly sub-quadratic. If  $g : \mathbb{R} \to \mathbb{R}^N$  is T-periodic and non-constant. Then, Hamiltonian system H has a non-constant T-periodic solution.

## 8. Appendix

The following inequalities are useful in the theory of convex Hamiltonian systems. Let  $G(z) = \gamma |z|^q + \alpha$  where  $\gamma > 0$ , q > 1 and  $\alpha \in R$ . Then if  $\frac{1}{p} + \frac{1}{q} = 1$ ,

$$G^*(v) = \left(\frac{1}{\gamma q}\right)^{p/q} \frac{|v|^p}{p} - \alpha.$$

If H is a Legendre function, then:

(8.1) 
$$H(z) \le \gamma |z|^q + \alpha \Longleftrightarrow H^*(v) \ge \left(\frac{1}{\gamma q}\right)^{p/q} \frac{|v|^p}{p} - \alpha,$$

(8.2) 
$$H(z) \ge \gamma |z|^q + \alpha \iff H^*(v) \le \left(\frac{1}{\gamma q}\right)^{p/q} \frac{|v|^p}{p} - \alpha$$

PROPOSITION 8.1. Let H be a Legendre function such that for some  $\gamma > 0$ ,  $q > 1, \alpha, \eta \in R$ ,

(8.3) 
$$\eta \le H(z) \le \gamma |z|^q + \alpha.$$

If  $\frac{1}{p} + \frac{1}{q} = 1$  then

$$\left(\frac{1}{\gamma q}\right)^{p/q} \frac{|H'(z)|^p}{p} \le H'(z)z + \alpha - \eta$$

PROOF. Let v = H'(z). From (8.1) and (8.3) we obtain

$$\left(\frac{1}{\gamma q}\right)^{p/q} \frac{|v|^p}{p} - \alpha \le H^*(v) = vz - H(z) \le vz - \eta.$$

#### Π

#### References

- A. Bahri, H. Berestycki, Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Appl. Math. 37 (1983), 403–442.
- H. Berestycki, Solutions périodiques de systèmes hamiltoniens, Séminaire Bourbaki, Soc. Math. France, Paris, 1983, 105–128.
- [3] H. Brezis, Analyse fonctionelle, théorie et applications, Masson, Paris, 1983.
- [4] F. Clarke, I. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure, Appl. Math. 33 (1980), 103–116.
- [5] L. Čaklović, Periodic solutions of a first order nonconvex Hamiltonian system, Glas. Mat. 37 (2002), 101–118.
- [6] M. A. Krasnosel'ski, The operator of translation along trajectories of ordinary differential equations, Mir, Moskow, 1966.
- [7] M. A. Krasnosel'ski, Topological methods in the theory of nonlinear integral equations, Macmillan, New York, 1964.
- [8] I. Ekeland, J. M. Lasry, On the number of Periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. Math. 112(1980), 283–319
- [9] J. Mawhin, Topological degree methods in nonlinear boundary value problems, CBMS 40, Amer. Math. Soc., Providence, R.I., 1979.
- [10] L. Nirenberg, Topics in nonlinear functional analysis, Lecture notes, Courant Institute of Math. Sc., New York Univ., 1974.
- [11] P. H. Rabinowitz, Subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 33 (1980), 609–633.
- [12] P. H. Rabinowitz, Méthodes topologiques et problémes aux limits non linéaires, Lecture notes Univ. Paris VI, (1975), Redigées par H. Berestycki.
- M. Willem, Subharmonic oscillations of convex Hamiltonian systems, Nonlinear Anal. 9 (1985), 1303–1311.

L. Čaklović Department of Mathematics University of Zagreb P.O.Box 335, 10002 Zagreb Croatia *E-mail*: caklovic@math.hr

*Received*: 20.06.2000. *Revised*: 29.01.2003.