Resurrection of *Ornithogalum brevipedicellatum* (Asparagaceae) with morphological and molecular data

Candan Aykurt*1, İsmail G. Deniz2, Duygu Sari3, Mecit Vural4, Hüseyin Sümbül1

1 Department of Biology, Faculty of Science, Akdeniz University, Antalya, Turkey
2 Department of Biology Education, Faculty of Education, Akdeniz University, Antalya, Turkey
3 Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
4 Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey

Abstract – This study evaluates *Ornithogalum brevipedicellatum*, which was previously accepted as a synonym of *O. oligophyllum*, as a separate distinct species and discusses the similarities and differences between *O. brevipedicellatum* and its related species (*O. oligophyllum* and *O. pamphylicum*). Similarities and differences among these species were identified by morphological and molecular studies. The leaf morphology and inflorescence of *O. brevipedicellatum* and *O. pamphylicum* are similar to each other, and in terms of these features, they show differences from *O. oligophyllum*. Some diagnostic characteristics are quite different in *O. brevipedicellatum* and *O. pamphylicum*, such as the size of tepals, length of fruiting pedicels and style. Morphological data were supported by the results obtained from molecular studies. According to a dendrogram obtained by molecular studies, *O. brevipedicellatum* and *O. pamphylicum* are similar. *O. oligophyllum* is more closely related to *O. pyrenaicum* used as an out-group. Additionally, the seeds of *O. brevipedicellatum* were examined with the use of scanning electron microscopy.

Key words: Asparagaceae, endemic, molecular, morphology, *Ornithogalum*, scanning electron microscopy, synonym, Turkey.

Introduction

Asparagaceae Juss. (1789) (including Agavaceae Dumort., Aphyllanthaceae Burnett, Hesperocallidiaceae Traub, Hyacinthaceae Batsch ex Borkh., Laxmanniaceae Bubani, Rusaceae M.Roem., Themidaceae Salisb.) include 143 plant genera (APG III 2009). Hyacinthaceae can be treated as subfamily Scilloideae of Asparagaceae, and the subfamilies Hyacinthoideae, Ornithogaloideae, Urgineoideae and Oziroëeae of Hyacinthaceae are then treated as tribes Hyacintheae, Ornithoae, Urgineae and Oziroëae (e.g. APG III 2009). Ornithogaloideae treated as one of the subfamilies in Hyacinthaceae show a distribution through Europe, south-west Asia and Africa, and include about 280 species (Speta 1998). Nowadays, as a result of molecular phylogenetic studies on this subfamily, 19 monophyletic genera are accepted within Ornithogaloideae: *Albuca*, *Avonsera*, *Battandiera*, *Cathissa*, *Coiloxon*, *Dipcadi*, *Eliokarmos*, *Elsiea*, *Ethesia*, *Galtonia*, *Honorius*, *Loncomelos*, *Melomphis*, *Neopatersonia*, *Nicipe*, *Ornithogalum*, *Pseudogaltonia*, *Stellarioides* and *Trimelopter* (Martínez-Azorín et al. 2011). Recently, molecular tools have gained importance in identifying taxonomic relations. In Ornithogaloideae, *matK*, *trnL* intron, *trnL-F* spacer, and *rbcL* plastid DNA sequences have been used for phylogenetic analysis (Manning et al. 2009, Martínez-Azorín et al. 2011) because plastid sequences comprise an important source for phylogenetic reconstruction, mostly at interspecific or higher taxonomic levels (Clegg and Zurawski 1992, Cameron 2004, Kress and Erikson 2007).

Anatolia is an important area for the distribution of the genus *Ornithogalum* in Asia (Uysal et al. 2005). Since the last revision by Cullen (1984) for the Flora of Turkey, nu-

The first specimens of *Ornithogalum brevipedicellatum* in Turkey were collected by Bourgeau in 1860 in the higher mountain steppes of the Elmalı (Antalya) district, the region known as ‘Lycia’ in antiquity. These specimens were evaluated under the name of “*O. brevipedicellatum*” by Boissier, and subsequently were introduced to science in 1873 by Baker (Boissier 1884, Cullen 1984). *O. brevipedicellatum* was reported as the synonym of the *O. oligophyllum* species in the Flora of Turkey (Cullen 1984), the Plant List of Turkey (Uysal 2012) and in “The Plant List” database. *O. oligophyllum* has a substantially wide area of occupancy in Turkey. It was previously reported in The Flora of Turkey that the specimens of the species *O. oligophyllum*, which were collected in Antalya, Isparta and Konya, would be classified as *O. brevipedicellatum* provided that the distinguishing determinant characteristics were supported by a sufficient number of samples (Cullen 1984).

Materials and methods

Plant samples and morphological studies

The plant specimens of the genus *Ornithogalum* were collected by field studies between 2012 and 2014 in the Muğla and Antalya Provinces. During the field studies, GPS locations of *O. brevipedicellatum* were taken, and the individuals of its populations were numbered. This data was used to determine the threat category of *O. brevipedicellatum* according to the Categories and criteria of IUCN (Version 11, 2014). The extent of occurrence (EOO) and area of occupancy (AOO) values were calculated.

In the present study, *Ornithogalum brevipedicellatum* known as a synonym of *O. oligophyllum* is morphologically described in detail and compared with its related species, *O. oligophyllum* and *O. pamphylicum*, with the data obtained from morphological and molecular studies. The individuals of these species were observed during field studies and the morphological evaluations were done both in the field and in laboratory. Specimens collected and used in molecular studies within the scope of this study, are shown in Tab. 1. The digital isotype photographs obtained from MNHN (Museum National d’Histoire Naturelle) of *O. brevipedicellatum* were also examined. Additionally, a number of herbarium specimens of *O. oligophyllum* collected from different parts of Turkey in the ISTE (Istanbul University, Herbarium of the Faculty of Pharmacy) and GAZI (Gazi University Herbarium) were morphologically examined (see Appendix).

Seed micromorphology of *Ornithogalum brevipedicellatum* was investigated using scanning electron microscopy (SEM) techniques. For SEM study, the seeds were treated with gold conjugate on stub. The microphotographs were taken with a Zeiss LEO-1430 scanning electron microscope.

Molecular study: DNA isolation, PCR amplification and sequencing

Complete DNA of *Ornithogalum brevipedicellatum* and *O. pamphylicum* was extracted from the leaves of herbarium specimens using the cetyl trimethyl ammonium bromide (CTAB) method of Doyle and Doyle (1990). DNA concentration and quality were tested with 1% agarose gel against a DNA standard. Two different plastid regions were used for molecular analysis to identify the phylogenetic similarities of the species. Amplification of these regions was conducted with the universal primers used in previous

Tab. 1. Locality data of collected specimens of *Ornithogalum* for the current study.

<table>
<thead>
<tr>
<th>Species</th>
<th>Locality</th>
<th>Collection data</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. brevipedicellatum</td>
<td>C2 Muğla, Fethiye, Seki, 6 km from Seki to Yuva, Ak Mountain, steppe, 1980 m, 27.iv.2012.</td>
<td>C. Aykurt 3071(AKDU)</td>
</tr>
<tr>
<td></td>
<td>Muğla, Fethiye, Seki, 4–6 km from Seki to Yuva, Ak Mountain, 1900–1980 m, steppe, 4.x.2012.</td>
<td>C. Aykurt 3084(AKDU)</td>
</tr>
<tr>
<td></td>
<td>Muğla: Fethiye, Seki, 4–6 km from Seki to Yuva, Ak Mountain, 1900–1980 m, steppe, 22.v.2012.</td>
<td>C. Aykurt 3137*(AKDU)</td>
</tr>
<tr>
<td></td>
<td>Antalya: Kaş, Gömbe, between Gömbe-Ikizgüler, Subaşı environs, plateau, 2080 m, 25.05.2012.</td>
<td>C. Aykurt 3156(AKDU)</td>
</tr>
<tr>
<td></td>
<td>Muğla, Fethiye, Seki, 6 km from Seki to Yuva, Ak Mountain, steppe, 1975 m, 30.04.2013.</td>
<td>C. Aykurt 3741*(AKDU)</td>
</tr>
<tr>
<td></td>
<td>Muğla, Fethiye, Seki, 6 km from Seki to Yuva, Ak Mountain, steppe, 1827 m, 30.04.2013.</td>
<td>C. Aykurt 3742*(AKDU)</td>
</tr>
<tr>
<td></td>
<td>Muğla, Fethiye, Seki, 6 km from Seki to Yuva, Ak Mountain, steppe, 1825 m, 23.05.2013.</td>
<td>C. Aykurt 3868(AKDU)</td>
</tr>
<tr>
<td></td>
<td>Muğla, Fethiye, Seki, 6 km from Seki to Yuva, Ak Mountain, steppe, 1975 m, 23.05.2013.</td>
<td>C. Aykurt 3869(AKDU)</td>
</tr>
<tr>
<td>O. pamphylicum</td>
<td>Antalya, above Feslegen Plateau, Sakarşanar, 1850–1900 m, calcareous slopes, 4.v.2012.</td>
<td>C. Aykurt 3087(AKDU)</td>
</tr>
<tr>
<td></td>
<td>Antalya, Elmali, Imecik Plateau, Bey Mountains, 1800 m, 29.04.2012.</td>
<td>C. Aykurt 3089*(AKDU)</td>
</tr>
<tr>
<td></td>
<td>Antalya, Elmali, Kızlarsivrisi Mountain, Karakuyu district, 1900 m, openings in Cedrus libani forest, calcareous slopes, 09.v.2012.</td>
<td>İ.G. Deniz 4528(AKDU)</td>
</tr>
<tr>
<td></td>
<td>Antalya: Çalış Mountain, 1700 m, calcareous slopes, 15.v.2014.</td>
<td>İ.G. Deniz 5548(AKDU)</td>
</tr>
<tr>
<td>O. oligophyllum</td>
<td>C3 Antalya: Sarçınar, 36 S 274566, 4096808, 1380 m, 14.iv.2014.</td>
<td>C. Aykurt 3882(AKDU)</td>
</tr>
<tr>
<td></td>
<td>C2 Antalya: Finike, West side of Finike, under Cedrus libani, 1200 m, 24.iv.2014.</td>
<td>C. Aykurt 3911(AKDU)</td>
</tr>
</tbody>
</table>
studies. The \textit{trnL} intron and \textit{trnL} spacers were amplified with \textit{c} (5'-CGAAATCGGTAGACGCTACG) and \textit{f} (5'-ATTTTGACTG-GTGACACGAG) primers described in Taberlet et al. (1991). Amplification of the \textit{rbcL} gene was performed using a forward primer (5'-GCTTATTCAAAAACTTCCAGGCCCAGG), and a reverse primer (5'-TGCGATGTACCTGCAGTTGC) (Ledó et al. 1998). Polymerase chain reaction (PCR) for both \textit{trnL} and \textit{rbcL} regions contained 2 mM MgCl$_2$, 0.2 mM of each dNTP, 10 pM μL–1 of each primer, 1 U of Taq DNA polymerase (Fermentas Life Sciences, Burlington, Canada) with supplied reaction buffer at 10× concentration, and 40 ng of template DNA. The amplifications were performed on a programmable thermocycler (BIONEER, MyGenie™) with the following program: one cycle of 4 min at 94 ºC, 28 cycles of 1 min at 94 ºC, 30 s at 48 ºC for \textit{rbcL}, or 1 min at 50 ºC for \textit{trnL}, 1 min at 72 ºC, and for final extension one cycle of 7 min at 72 ºC. PCR products were cleaned up using the GeneJET gel extraction kit (Thermo Scientific Fermentas, Vilnius, Lithuania). Sequencing process was carried out at Iontek Laboratory in Istanbul, Turkey as direct sequencing from PCR products. The sequences of other species (\textit{O. oligophyllum} and \textit{O. pyrenaicum}) were retrieved from GenBank databases at the National Center for Biotechnology Information (NCBI) and compared with \textit{O. brevipedicellatum} \textit{trnL} and \textit{rbcL} sequences. A phylogenetic tree was constructed using the software MEGA 5. Bootstrap values are displayed at tree nodes (Tamura et al. 2011).

Results

Morphological studies

\textit{Ornithogalum brevipedicellatum} Boiss. ex Baker, J. Linn. Soc., Bot. 13: 263 (1873) (Figs. 1–3)

Geophyte, 5–10(–15) cm high; bulb 1.3–1.8(–2) × 1.3–1.8(–2) cm, ovoid-spherical, without bulblets; outer tunics cream to pale-brown. Leaf synanthous, 4–6(–7), 9–37 × 2.3–0.5 cm, linear-lanceolate, canaliculate, with a whitish median line, gradually narrowing towards the base, longer than scape, margins entire, glabrous. Scape below the ground level, 3–12 cm, slender. Inflorescence congested racemose, racem borne at ground level, dense, 2–6 × 3–4.5 cm, with (1–)5–15(–18) flowers. Bracts lanceolate, longer than pedicels. Flowers sessile or subpedicellate up to 3 mm at anthesis and fruiting period. Tepals eliptic to ovate-eliptic, obtuse to acute at apex; outers 12–18 × 4–5 mm; inners 13–18 × 4.5–5 mm, white inside, green with narrowly white margins outside. Filaments white, conspicuously tapering towards the apex, 4–6 × 1–2 mm; anthers medificed, milky white, 2–2.2 mm length. Ovary ovoid, 3.5–5 × 2–3.5 mm, pale green, longer than style; stigma capitate. Capsule 10–15 × 10–15 mm, ovoid, erect, distinctly winged, pale brown. Seeds numerous, 1.8–2 × 1.2–1.8 mm, elliptic-subglobose to globose, black, strongly apiculate; testa reticulate, with reticules formed by prominent crests, testa cells irregular.

Hitherto \textit{Ornithogalum brevipedicellatum} was evaluated as the synonym of \textit{O. oligophyllum}; however the species is morphologically more related to \textit{O. pamphylicum}, described in 2002. The inflorescence type of \textit{O. brevipedicellatum} is similar to \textit{O. pamphylicum}. The raceme of \textit{O. brevipedicellatum} is very condensed in flowering and fruiting period and borne at ground level. Its flowers are sessile or the floral or fruiting pedicels are up to 3 mm long. The inflorescence of \textit{O. pamphylicum} resembles \textit{O. brevipedicellatum}, but the internodes are more elongated and the pedicels are flaccid and longer at fruiting time. On the other hand, the lower pedicels of \textit{O. oligophyllum} are longer than the flowers; fruiting pedicels are 10–30 mm long. Therefore, the inflorescence of \textit{O. oligophyllum} can be evaluated as corymbose or pseudocorymbose. Moreover, the inflorescence of \textit{O. brevipedicellatum} is different due to its sessile or subpedicellate flowers.
TAXONOMIC NOTES ON ORNITHOGALUM BREVIPEDICELLATUM

The other morphological differences of *O. brevipedicellatum*, *O. oligophyllum* and *O. pamphylicum* are shown in Tab. 2.

Habitat, distribution and conservation status

An old specimen collection record was documented in Flora Orientalis indicating that specimens of the *Ornithogalum brevipedicellatum* species were collected on Mount Trodos in southern Cyprus (Boissier 1884). However, recent data supporting these dubious records was not documented and for that reason, the species *O. brevipedicellatum* was evaluated as endemic to Turkey.

The conservation status of *Ornithogalum brevipedicellatum* is described below according to the rules of citation. Considering the IUCN (2014) categories and criteria (Version 11), the species should be placed in the EN (endangered) category, according to the criteria for critically endangered, endangered and vulnerable.

The subpopulations of the species were identified in Seki (Muğla) and Gömbe (Kas, Antalya) (Fig. 4). No artificial factors endangering the development of the species in its area of occupancy were present. Therefore, it was projected that the population of the species in terms of percentage did not decrease through time as a result of anthropological effects. Item A cannot therefore be evaluated. The distance between the two locations of the species is 25 km. The EOO value of the species was determined as 130 km² (EN B1b(iii)) taking both locations of occupancy and the area contained within the shortest continuous imaginary boundary. The AOO value in this area, where the species was identified was calculated as 13 km² (EN B2b(ii)). The number of individuals identified in the subpopulations of the species was determined as 400 at the Seki location and 200 at the Gömbe location (EN C).

Molecular studies

Individuals of *Ornithogalum brevipedicellatum* and *O. pamphylicum* were collected from different localities for molecular analysis (Tab. 1). The sequences of these specimens were compared and evaluated with *O. oligophyllum*

Tab. 2. Comparison of the morphological characters of *Ornithogalum brevipedicellatum*, *O. oligophyllum* and *O. pamphylicum*.

<table>
<thead>
<tr>
<th>Features</th>
<th>O. brevipedicellatum</th>
<th>O. oligophyllum</th>
<th>O. pamphylicum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scape length (cm)</td>
<td>3–12 (borne at ground level)</td>
<td>4–15</td>
<td>3–15</td>
</tr>
<tr>
<td>Number of leaves</td>
<td>4–6(–7)</td>
<td>2–3 (rarely 4)</td>
<td>(3–)4–11(–13)</td>
</tr>
<tr>
<td>Leaves with a whitish median line</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaves width</td>
<td>2–5 mm</td>
<td>5–20 mm</td>
<td>1–4 mm</td>
</tr>
<tr>
<td>Inflorescence</td>
<td>congested racemose</td>
<td>corymbose or pseudocorymbose</td>
<td>laxly racemose (internodes more elongated)</td>
</tr>
<tr>
<td>Number of flowers</td>
<td>(1–)5–15(–18)</td>
<td>3–10(–20)</td>
<td>3–25</td>
</tr>
<tr>
<td>Fruiting pedicels</td>
<td>Capsules sessile or subpedicellate (up to 3 mm long), erect</td>
<td>10–30 mm, become flaccid at base</td>
<td>Capsules pedicellate (6–12 mm), erect</td>
</tr>
<tr>
<td>Flowers</td>
<td>odour</td>
<td>odourless</td>
<td>odourless</td>
</tr>
<tr>
<td>Tepals (mm)</td>
<td>12–18 × 4–5</td>
<td></td>
<td>20–30 × 5–9</td>
</tr>
<tr>
<td>Style length (mm)</td>
<td>1.5–2</td>
<td>2–3.5</td>
<td>4–5</td>
</tr>
</tbody>
</table>

Fig. 3. *Ornithogalum brevipedicellatum* on Ak Mountain (Elmalı, Antalya).

Fig. 4. Distribution areas of *Ornithogalum brevipedicellatum* (●), *Ornithogalum oligophyllum* (●) and *Ornithogalum pamphylicum* (◼) in Turkey.
and O. pyrenaicum retrieved from the GenBank database. To amplify the trnL and rbcL region of O. brevipedicellatum and O. pamphylicum species, c/f and 427F/724R primer pairs were used, respectively, as described in methodology section. About 1200 bp amplicons for trnL and 300 bp amplicons for rbcL were yielded in PCR assays. These amplicons were sequenced and compared with those of O. oligophyllum species (Fig. 5) available in the GenBank using the BLAST similarity search tool. In the trnL tree, two groups were identified. All of the individuals of O. brevipedicellatum were aligned in the first group. O. pamphylicum was the closest species to O. brevipedicellatum while O. oligophyllum and O. pyrenaicum were more distant from this group. Similarly, three individuals of O. brevipedicellatum were located together in the rbcL tree. Although O. pamphylicum was placed in a different branch, it was the closest species to O. brevipedicellatum while O. oligophyllum and O. pyrenaicum species were positioned in another group.

Discussion

The Ornithogalum genus, previously classified into numerous subcategories by several different researchers, was rearranged recently in the light of the novel molecular phylogenetic studies conducted on the Ornithogaloideae subfamily (Martínez-Azorín et al. 2011). Moret and Galland (1992) indicated that many taxa have been described in subg. Ornithogalum which is a taxonomically problematic subgenus on the basis of subtle morphological variations, usually with little biological significance. The complex taxonomy of subg. Ornithogalum may be due to intraspecific variations, the plasticity of individuals, their habits being strongly dependent on environmental factors and poor conservation of the types (Moret and Galland 1992).

Martínez-Azorín et al. (2010) reported that some authors have used the inflorescence structure and/or the length of the floral bracts relative to their pedicels as diagnostic characteristics. When Ornithogalum brevipedicellatum, O. pamphylicum and O. oligophyllum species are evaluated with respect to the inflorescence type and length of the pedicels, it is seen that the specimens of O. brevipedicellatum are distinct; distinguished from the other species by the lack of pedicels, or the presence of very short pedicels—either during flowering or fruiting periods. The presence of very short internodes between the flowers in the subpedicellate or the sessile flowers allowed the inflorescence of the species to be evaluated as congested racemose, rather than corymb or pseudocorymb. Furthermore, the habits of these three species show differences, while the first flowers of O. brevipedicellatum and O. pamphylicum are at ground level but the inflorescence of O. oligophyllum has generally a scape above ground level. The pedicels of O. oligophyllum are distinctly longer than the pedicels of O. brevipedicellatum and O. pamphylicum in flowering and fruiting periods.

Ornithogalum brevipedicellatum and O. pamphylicum are similar to each other with respect to their leaf morphology and inflorescence in flowering time. They have narrower leaves from O. oligophyllum. We observed the white line on the leaf surface of O. pamphylicum and the ovary of the species is distinctly winged, contrary to the description of the species by Düşen and Sümbül (2002). Therefore, O. pamphylicum was included in subg. Ornithogalum in the present study but, on the contrary, in subg. Myogalum by Düşen and Sümbül (2002). The closer morphologic proximity between O. brevipedicellatum and O. pamphylicum as opposed to O. oligophyllum was supported by the data obtained from molecular studies. Considering to the phylogenetic tree obtained from trnL and rbcL sequences, the individuals of O. brevipedicellatum were separated from O. oligophyllum in two different dendrograms. O. brevipedicellatum are closer to O. pamphylicum compared with O. oligophyllum.

The most remarkable morphological differences between O.brevipedicellatum and O. pamphylicum can be defined as follows: (1) The capsules of O. brevipedicellatum are generally sessile, sometimes subpediculate but they are pedicellate and pendant in O. pamphylicum; (2) lengths of

Fig. 5. Phylogenetic trees of trnL (a) and rbcL (b) sequences from six Ornithogalum specimens. Locations (*) and GenBank accession numbers (**) are given next to the Ornithogalum name.
the style are quite different; (3) *O. brevipedicellatum* has more congested inflorescence while the internodes are elongated in *O. pamphylicum*; (4) The tepals are more narrow in *O. brevipedicellatum* (Tab. 2).

The seed size, shape, color, surface ornamentation and shape of the cells, raphe, micropylar and chalazal poles are useful diagnostic characteristics for seed micro-morphological studies conducted on the genus *Ornithogalum* (Bednorz and Czarna 2008, Cikat et al. 2015). Moret et al. (1990) and Martinez-Azorin et al. (2010) reported that subg. *Ornithogalum* shows globose and apiculate seeds with reticulate testa. Similarly, the seeds of *O. brevipedicellatum* are elliptic-subglobose to globose, distinctly apiculate with reticulate testa. The results obtained from the present study clearly indicate that *O. brevipedicellatum* is a distinct species and cannot be claimed to be a synonym of *O. oligophyllum*.

Acknowledgements

The authors are indebted to Akdeniz University Scientific Research Projects Unit (Project number: 2012.01. 0115.004) for financial support to field studies and thanks to the curators of AKDU, ISTE and GAZI.

Appendix

Additional specimens examined

References

Bednorz, L., Czarna, A., 2008: SEM and stereo microscope observations on the seeds of some *Ornithogalum* (Hyacinthaceae) species. Biologia 63, 642–646.

Özhatay, N., Kültür, Ş., Aslan, S., 2009: Check-list of additional taxa to the supplement Flora of Turkey IV. Turkish Journal of Botany 33, 191–226.

