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PROJECTION-INVARIANTS, GRAM-SCHMIDT
OPERATORS, AND WAVELETS

Jean-Paul Pemba

Prairie View A&M University, U.S.A.

Abstract. We introduce some projection-invariants for a normal-
ized sequence in a Hilbert space, based on the smallness of the mutual
projections of its elements. We then establish conditions to have the origi-
nal sequence equivalent to its Gram-Schmidt orthonormalization. In many
problems of wavelet-decomposition and reconstruction, the use of orthogo-
nal bases cannot be implemented in the construction of certain filters and
other practical features. Then, a quasiorthonormal structure for repre-
sentation may be the next best alternative by achieving new constraints
while we can still arbitrarily approximate the powerful classical orthogonal
results.

1. Introduction

In a Hilbert space H , a (normalized) sequence is said to be orthogonal
(orthonormal) if the scalar product 〈φn, φk〉of any two distinct elements is zero
(and ‖φn‖ = 1). In this case, many classical theorems are proved and exten-
sively used in problems of decompositions, multiresolution representations, . . .
Starting with any normalized sequence {φn} of linearly independent vectors, a
Gram-Schmidt orthonormalization

{
φ⊥n
}

always exists, but is in general topo-
logically different from the original sequence. From stability point of view,
if the size of all the projections 〈φn, φk〉 are small enough, it is natural to
expect {φn} to somehow be close to

{
φ⊥n
}

and thus inherit of such properties
as unconditionality enjoyed by orthonormal bases. Our interest is to present
a functional analytic aspect with basic linear implications of the non-linear
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invariants introduced and apply to a perturbation of Mallat-Meyer’s wavelet
multiresolution analysis.

2. Quasiorthonormality

2.1. Definitions. A sequence {φn} in a Hilbert space H is a frame if there

exist A,B > 0 such that a‖f‖2 ≤∑
k

|〈f, φn〉|2 ≤ B‖f‖2 for all f in H . Then,

A and B are called frame bounds. The frame is called tight if A = B and
ε-tight if A = 1− ε and B = 1 + ε. {φn} is Riesz sequence if

A
∑

n

λ2
n ≤

∥∥∥∥∥
∑

n

λnφn

∥∥∥∥∥ ≤ B
∑

n

λ2
n,

for any sequence of scalars {λn}. It is a Hilbert sequence if for any sequence
{λn} in l2, the series

∑
n
λnφn converges in H . It is a Bessel sequence if the

summability of {λn} is a necessary condition for the convergence of the series∑
n
λnφn. So that {φn} is a Riesz sequence if and only if it is both Bessel

and Hilbert. {φn} is complete in H if its closed linear span span{φn} = H .
With linear independence and the open mapping theorem, there is equivalence
between frame (exact) and Riesz sequence (basis). A frame {φn} gives rise to
two somewhat related bounded linear operators:

(1) the Bessel map β : H → H , defined by β(f) =
∑
n
〈f, φn〉φn.

(2) the frame operator F : H → l2, defined by F (f) = {〈f, φn〉}
and to a dual frame defined by φ̂n = (F ∗F )−1φn, (F ∗F can be shown to be
nonsingular) with dual Bessel map

β̂(f) =
∑

n

〈
f, φ̂n

〉
φ̂n

and dual frame operator

F̂ (f) =
{〈
f, φ̂n

〉}
.

Note that the frame operator associated with an ε-tight frame is an ε-isometry.
The one-to-oness is guaranteed by linear independence. For any sequence
ε{φn} of non-null vectors in H , we let

φ̃n =
φn
‖φn‖

(normalization of {φn}),

εp(φn) =

∞∑

n=2

(
n−1∑

k=1

∣∣∣
〈
φ̃n, φ̃k

〉∣∣∣
p
)1/p

, 1 ≤ p <∞
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(the total projection of order p for {φn}),
ε∞(φn) = sup

n6=k

∣∣∣
〈
φ̃n, φ̃k

〉∣∣∣

(the essential projection for {φn}) and let

ε∞,p(φn) = sup
n

(
n−1∑

k=1

∣∣∣
〈
φ̃n, φ̃k

〉∣∣∣
p
)1/p

,

εp,∞(φn) =

( ∞∑

n=2

max
1≤k<n

∣∣∣
〈
φ̃n, φ̃k

〉∣∣∣
p
)1/p

,

ωp(φn) =

( ∞∑

n=2

∣∣∣∣∣

〈
φ̃n,

1

n− 1

n−1∑

k=1

φ̃k

〉∣∣∣∣∣

p)1/p

,

ω∞(φn) = sup
n≥2

∣∣∣∣∣

〈
φ̃n,

1

n− 1

n−1∑

k=1

φ̃k

〉∣∣∣∣∣ .

In absence of any ambiguity, we simply denote εp(φn) = εp. Note that
0 ≤ ε∞ ≤ min{ωp, ε∞,p} ≤ ωp ≤ εp,∞ ≤ max{ε∞,p, εp,∞} ≤ εp ≤ ε1. We say
that {φn} is quasiorthogonal (of order p) if εp < ∞. It is quasiorthonormal,
if in addition it is normalized. Note that each of these projection-invariants
represents some index that measures how far {φn} is from orthogonal. For
example, {φn} is orthogonal if and only if εp = 0 and εp = ∞ if and only if
there exists an infinite subsequence

{
φnj

}
such that Inf

∣∣〈φnj , φnk

〉∣∣ > 0.
In what follows, we focus on the quadratic total projection only. In par-

ticular, we simplify notations with ε2 ≡ ε.
2.2. A Quasiorthormalization Algorithm. We exhibit the existence of intrin-
sic quasiorthonormal sequences by describing a more general procedure to
construct such structures from any arbitrary linearly independent system.

Theorem 2.1. Let {ψn} be a linearly independent sequence in a Hilbert
space H. Then, for any δ > 0, there exists a quasiorthonormal sequence {φn}
generated by {ψn} such that ε(φn) = δ.

Proof. First choose an orthonormalization {ψ⊥
n } of {ψn} and δ2 > δ3 >

· · · > 0 such that
∞∑
n=2

δn = δ. We then inductively define {φn} as follows:

φ1 = ψ⊥
1

φ2 =
√

1− δ2
2ψ

⊥
2 + δ2ψ

⊥
1 , whence ‖φ2‖ = ‖φ1‖ = 1 and |〈φ2, φ1〉| = δ2.

Assume that φ1, . . . , φq have already been defined by pairs of nonnegative

coefficients {a1, b1}, . . . , {aq, bq} such that φn = anψ
⊥
n + bn

n−1∑
k=1

ψ⊥
k , ‖φn‖ = 1,
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and
n−1∑
k=1

|〈φn, φk〉|2 = δ2
n for all n = 2, . . . , q; a1 = 1, b1 = 0. We let

bq+1 =
δq+1√∑q

n=1[an + (n− 1)bn]2
,

aq+1 =
√

1− qb2q+1,

φq+1 = aq+1ψ
⊥
q+1 + bq+1

q∑

n=1

ψ⊥
n .

Then, it is easy to check that ‖φq+1‖ = 1 and
q∑

n=1
|〈φq+1, φn〉|2 = δ2

q+1. Hence,

ε(φn) =

∞∑

n=2

(
n−1∑

k=1

∣∣∣
〈
φ̃n, φ̃k

〉∣∣∣
2
)1/2

=

∞∑

n=2

δn = δ.

Hence, {φn} is a non-orthogonal, quasiorthonormal sequence. Note that {φn}
inherits of all the topological properties of {ψn}; span{φn} = span{ψn}, and
{φn} is a basis if and only if {ψn} is a basis.

2.3. Some Properties of Quasiorthonormal Sequences. To prove our key
lemma, we first recall a classical stability theorem of Krein-Milman-Rutman
for Schauder bases, stating its orthonormal version only.

Theorem 2.2. Let {ψn} denote an orthonormal basis and {φn} a nor-

malized sequence in H. If
∞∑
n=1
‖ψn − φn‖ < 1

2 , then {φn} is a Riesz basis

equivalent to {ψn}.
This theorem shows that all essential properties of a Schauder basis sur-

vive to small perturbations. In the sequel, we denote by {φ⊥
n } the usual

Gram-Schmidt orthonormalization of {φn}; that is φ⊥1 = φ1,

φ⊥n =

φn −
n−1∑
k=1

〈φn, φ⊥k 〉

∆n
, where ∆n =

∥∥∥∥∥φn −
n−1∑

k=1

〈φn, φ⊥k 〉
∥∥∥∥∥ for n = 2, 3, . . .

Also note that

∆2
n = 1−

n−1∑

k=1

∣∣〈φn, φ⊥k
〉∣∣2 , for n = 2, 3, . . .

Lemma 2.3. If ε(φn) < 1
6

√
2, then

N∑

n=2

(
n−1∑

k=1

∣∣〈φn, φ⊥k
〉∣∣2
)1/2

≤ 2

N∑

n=2

(
n−1∑

k=1

|〈φn, φk〉|2
)1/2

, for N ≥ 2.
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Proof. For sake of simplicity, we do the calculations only in the real in-
ner product case, the complex extension being natural. Since sup

n6=k
|〈φn, φk〉| ≤

ε < 1, we inductively use relatively short Taylor expansions to get, for
n = 2, 3, . . .

∣∣〈φn, φ⊥2
〉∣∣2 =

(
1− |〈φn, φ2〉|2

)−1

|〈φn, φ2 − 〈φ2, φ1〉φ1〉|2

= |〈φn, φ2〉|2 + 2 〈φn, φ2〉 〈φn, φ1〉 〈φ2, φ1〉
+
[
|〈φn, φ2〉|2 + |〈φn, φ1〉|2 + 2 〈φn, φ2〉 〈φn, φ1〉

]
|〈φ2, φ1〉|2

+
[
|〈φn, φ2〉|2 + |〈φn, φ1〉|2

]
|〈φ2, φ1〉|4 +

∞∑

p=7

Hp
n,2

where Hp
n,k denotes the sum of all the terms of order p in

∣∣〈φn, φ⊥k
〉∣∣2. Simi-

larly, for n = 3, 4, . . . ,

∣∣〈φn, φ⊥3
〉∣∣2 = |〈φn, φ3〉|2 + 2 〈φn, φ3〉 〈φn, φ2〉 〈φ3, φ2〉

+2 〈φn, φ3〉 〈φn, φ1〉 〈φ3, φ1〉
+
[
|〈φn, φ3〉|2 + |〈φn, φ2〉|2

]
|〈φ3, φ2〉|2

+
[
|〈φn, φ3〉|2 + |〈φn, φ1〉|2

]
|〈φ3, φ1〉|2

+2 〈φn, φ3〉 〈φn, φ2〉 〈φ3, φ1〉 〈φ2, φ1〉
+2 〈φn, φ3〉 〈φn, φ1〉 〈φ3, φ2〉 〈φ2, φ1〉

+2 〈φn, φ2〉 〈φn, φ1〉 〈φ3, φ2〉 〈φ3, φ1〉+
∞∑

p=5

Hp
n,3.
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And more generally, for n > k

∣∣〈φn, φ⊥k
〉∣∣2 = |〈φn, φk〉|2 + 2

k−1∑

p=1

〈φn, φk〉 〈φn, φp〉 〈φk, φp〉

+

[
k−1∑

q=1

|〈φk, φq〉|2
]
|〈φn, φk〉|2 +

k−1∑

p=1

|〈φk , φp〉|2 |〈φn, φp〉|2

+2

k−1∑

p=2

p−1∑

q=1

〈φn, φk〉 〈φn, φq〉 〈φk, φp〉 〈φp, φq〉

+2

k−1∑

p=2

p−1∑

q=1

〈φn, φk〉 〈φn, φp〉 〈φk, φq〉 〈φp, φq〉

+2

k−2∑

p=2

k−1∑

q=p+1

〈φn, φp〉 〈φn, φq〉 〈φk , φp〉 〈φp, φq〉+
∞∑

m=5

Hm
n,k.

Hence, for any fixed n > 1,

n−1∑

k=1

∣∣〈φn, φ⊥k
〉∣∣2 =

n−1∑

k=1

|〈φn, φk〉|2 + 2

n−1∑

k=2

k−1∑

p=1

〈φn, φk〉 〈φn, φp〉 〈φk, φp〉

+

∞∑

m=4

n−1∑

k=1

Hm
n,k.

Now let εN =
N∑
n=2

√
n−1∑
k=1

|〈φn, φk〉|2, for N = 2, 3, . . . Note that εN ↑ ε, as

N →∞. We also note the following:

(1)

(
n−1∑

k=2

|〈φn, φk〉|2
)1/2

≤ εn

(2)
n−1∑

k=2

(
k−1∑

p=1

|〈φk, φp〉|2
)
≤



n−1∑

k=2

(
k−1∑

p=1

|〈φk, φp〉|2
)1/2




2

≤ ε2
n.
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Applying Holder’s inequality, we get

∣∣H3
n,k

∣∣ = 2

∣∣∣∣∣

k−1∑

p=1

〈φn, φk〉 〈φn, φp〉 〈φk , φp〉
∣∣∣∣∣

≤ 2



n−1∑

j=1

|〈φn, φj〉|2



1/2
k−1∑

p=1

|〈φn, φp〉| |〈φk, φp〉}

≤ 2

(
n−1∑

q=1

|〈φn, φq〉|2
)1/2(k−1∑

p=1

|〈φn, φp〉|2
)1/2(k−1∑

p=1

|〈φk, φp〉|2
)1/2

≤ 2

(
n−1∑

p=1

|〈φn, φp〉|2
)(

k−1∑

p=1

|〈φk, φp〉|2
)1/2

.

Hence,
n−1∑

k=1

∣∣H3
n,k

∣∣ ≤ 2

(
n−1∑

k=1

|〈φn, φk〉|2
)
εn,

and in particular

n−1∑

k=1

∣∣H3
n,k

∣∣ ≤ 2

(
n−1∑

k=1

|〈φn, φk〉|2
)1/2

ε2
n.

More generally, similar reasoning yields both

n−1∑

k=1

∣∣Hm
n,k

∣∣ ≤ 2

(
n−1∑

k=1

|〈φn, φk〉|2
)
εm−2
n ,

n−1∑

k=1

∣∣Hm
n,k

∣∣ ≤ 2

(
n−1∑

k=1

|〈φn, φk〉|2
)1/2

εm−1
n

for any positive integer m > 3, and

∣∣∣∣∣

∞∑

m=4

n−1∑

k=1

Hm
n,k

∣∣∣∣∣ ≤ 2

(
n−1∑

k=1

|〈φn, φk〉|2
)1/2 ∞∑

m=4

εm−1
n <

2ε4
n

1− εn
< ε3

n,

since each εn ≤ ε < 1
6

√
2 < 1

3 . On the other hand, we can apply the mean

value theorem to f(x) =

√
n−1∑
k=1

|〈φn, φk〉|2 + x to pick some

0 < η <

n−1∑

k=2

k−1∑

p=1

〈φn, φk〉〈φn, φp〉〈φk , φp〉+
∞∑

m=4

n−1∑

k=1

Hm
n,k
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without loss of generality such that

(
n−1∑

k=1

∣∣〈φn, φ⊥k
〉∣∣2
)1/2

=

[ n−1∑

k=1

|〈φn, φk〉|2 + 2

n−1∑

k=2

k−1∑

p=1

〈φn, φk〉〈φn, φp〉〈φk , φp〉

+

∞∑

m=4

n−1∑

k=1

Hm
n,k

]1/2

=

[
n−1∑

k=1

|〈φn, φk〉|2
]1/2

+

[
n−1∑

k=1

|〈φn, φk〉|2 + η

]−1/2

·

·
[
n−1∑

k=2

k−1∑

p=1

〈φn, φk〉〈φn, φp〉〈φk , φp〉+
∞∑

m=4

n−1∑

k=1

Hm
n,k

]1/2

This time we use the slightly sharper estimate
∣∣∣∣∣

∞∑

m=4

n−1∑

k=1

Hm
n,k

∣∣∣∣∣ ≤ 2

(
n−1∑

k=1

|〈φn, φk〉|2
) ∞∑

m=4

εm−2
n

<
2ε2
n

1− εn

(
n−1∑

k=1

|〈φn, φk〉|2
)
< ε

(
n−1∑

k=1

|〈φn, φk〉|2
)
.

Since each εn ≤ ε < 1
6
√

2
< 1

3 , in order to write

(
n−1∑

k=1

∣∣〈φn, φ⊥k
〉∣∣2
)1/2

≤
[
n−1∑

k=1

|〈φn, φk〉|2
]1/2

+

[
n−1∑

k=1

|〈φn, φk〉|2
]−1/2

·

·
[(

n−1∑

k=1

|〈φn, φk〉|2
)

n−1∑

k=2

[
k−1∑

p=1

|〈φk , φp〉|2
]1/2




+ε

(
n−1∑

k=1

|〈φn, φk〉|2
)]

≤
(
n−1∑

k=1

|〈φn, φk〉|2
)1/2

(1 + 2ε).

Hence,

N∑

n=2

(
n−1∑

k=1

∣∣〈φn, φ⊥k
〉∣∣2
)1/2

≤ (1 + 2ε)

N∑

n=2

(
n−1∑

k=1

|〈φn, φk〉|2
)1/2

.

We apply the condition 2ε < 1 to complete the proof of the lemma.
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Theorem 2.4. Let {φn} be a normalized linearly independent sequence
in a Hilbert space H. If

ε =

∞∑

n=2

√√√√
n−1∑

k=1

|〈φn, φk〉|2 <
1

6
√

2
,

then {φn} forms a 4
√

2ε-tight frame in H with a 4
√

2ε-isometric frame oper-
ator.

Proof. Let
{
φ⊥n
}

denote the Gram-Schmidt orthonormalization of {φn}.
Then,

∥∥φ⊥n − φn
∥∥ = 2− 2

[
1−

n−1∑

k=1

∣∣〈φn, φ⊥k
〉∣∣2
]1/2

for all n ≥ 2, and using Lemma 2.3 for

0 < ξ <
n−1∑

k=1

∣∣〈φn, φ⊥k
〉∣∣2

we can write

∥∥φ⊥n − φn
∥∥2

=

n−1∑

k=1

∣∣〈φn, φ⊥k
〉∣∣2 +

1

4
(1− ξ)−3/2

(
n−1∑

k=1

∣∣〈φn, φ⊥k
〉∣∣2
)1/2

≤


1 +

1

4

1√(
1−∑n−1

k=1

∣∣〈φn, φ⊥k
〉∣∣2
)3



n−1∑

k=1

∣∣〈φn, φ⊥k
〉∣∣2

≤
[
1 +

1

4

1√
(1− 4ε2)3

]
n−1∑

k=1

∣∣〈φn, φ⊥k
〉∣∣2

≤ 2

n−1∑

k=1

∣∣〈φn, φ⊥k
〉∣∣2 ,

since ε < 1
6
√

2
<

√
2

6 . Hence,

∥∥φ⊥n − φn
∥∥ ≤
√

2

(
n−1∑

k=1

∣∣〈φn, φ⊥k
〉∣∣2
)1/2

.
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Hence,

N∑

n=1

∥∥φ⊥n − φn
∥∥ ≤

√
2

N∑

n=2

(
n−1∑

k=1

∣∣〈φn, φ⊥k
〉∣∣2
)1/2

≤ 2
√

2

N∑

n=2

(
n−1∑

k=1

|〈φn, φk〉|2
)1/2

.

We finally let N → ∞ to get
N∑
n=1

∥∥φ⊥n − φn
∥∥ ≤ 2

√
2ε(φn) < 1

2 , since

ε(φn) < 1
6
√

2
< 1

4
√

2
. Hence, all the conditions of the Krein-Milman-Rutman

theorem are satisfied for {φn} to be equivalent to its Gram-Schmidt orthonor-

malization. In order to prove the 4
√

2ε-tightness, fix any positive integer
N > 1 and f in H ; then,

N∑

n=1

|〈f, φn〉|2 −
N∑

n=1

∣∣〈f, φ⊥n
〉∣∣2 ≤ 2‖f‖

N∑

n=1

∣∣〈f, φn − φ⊥n
〉∣∣

≤ 2‖f‖2
∞∑

n=1

∥∥φn, φ⊥n
∥∥ ≤ 4

√
2ε‖f‖2.

Hence, apply Parseval’s identity and let N →∞ in order to get

(1− 4
√

2ε)‖f‖2 ≤
∞∑

n=1

|〈f, φn〉|2 ≡ ‖F (f)‖2 ≤ (1 + 4
√

2ε)‖f‖2.

In particular, ‖F‖ ≤
√

1 + 4
√

2ε.

Corollary 2.5. Every quasiorthonormal basis {φn} contains a 4
√

2ε(φn)
–tight frame basic subsequence.

Proof. By Theorem 2.4, it suffices to show that if

N∑

n=2

(
n−1∑

k=1

|〈φn, φk〉|2
)1/2

<∞,

then there is n1 < n2 < . . . such that

∞∑

j=2

(
j−1∑

i=1

∣∣〈φnj , φni

〉∣∣2
)1/2

<
1

6
√

2
.

Indeed, choose ε1 > ε2 > . . . ↓ 0 such that
∞∑
j=1

εj <
1

6
√

2
; choose n1 such that

n1−1∑
k=1

|〈φn1 , φk〉|2 < ε2
1. Let N1 = {1, 2, . . . , n1}. Then choose n2 > n1 such
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that
n2−1∑
k=1

|〈φn2 , φk〉|2 < ε2
2. Let N2 = N1 ∪ {n2}. Then choose n3 > n2 such

that
n3−1∑
k=1

|〈φn3 , φk〉|2 < ε2
3. Let N3 = N2 ∪ {n3}. Inductively continue this

process indefinitely to get
∞⋃
j=1

Nj = {nj , j = 1, 2, . . . } (by renaming) so that

j−1∑

i=1

∣∣〈φnj , φni

〉∣∣2 <
nj−1∑

k=1

∣∣〈φnj , φk
〉∣∣2 < ε2

j for all j = 2, 3, . . .

And thus

ε(φn) =

∞∑

j=2

(
j−1∑

i=1

∣∣〈φnj , φni

〉∣∣2
)1/2

< ε2
1 ≤

∞∑

j=1

εj <
1

6
√

2
.

Remark 2.6. From Corollary 2.5, it follows that a subsymmetric (equiv-
alent to each of its infinite subsequences) quasiorthonormal basis is always a
Riesz basis.

Theorem 2.7. Let {φn} be a normalized linearly independent sequence

in a Hilbert H. If
∞∑
n=2

√
n−1∑
k=1

|〈φn, φk〉|2 ≡ ε < 1
6
√

2
, then for any λ ≡ {λn} in

l2, the series
∑
n
λnφn converges to an element f of H such that

(1) (1− 2
√

2ε)‖λ‖ ≤ ‖f‖ ≤ (1 + 2
√

2ε)‖λ‖
(2) ‖λ− F (f)‖ ≤ 2

√
2ε

(
1 +

√
1 + 4

√
2ε

)
‖λ‖.

Proof. Let fn =
n∑
k=1

λkφk . Then,

‖fn+p − fn‖ =

∥∥∥∥∥

n+p∑

k=n+1

λkφk

∥∥∥∥∥ ≤
∥∥∥∥∥

n+p∑

k=n+1

λkφ
⊥
k

∥∥∥∥∥+

∥∥∥∥∥

n+p∑

k=n+1

λk(φk − φ⊥k )

∥∥∥∥∥

≤
(

n+p∑

k=n+1

λ2
k

)1/2 [
1 +

n+p∑

k=n+1

∥∥φk − φ⊥k
∥∥
]

by Parseval theorem and Cauchy-Schwarz inequality. Both series on the right
converge absolutely. Hence, the Cauchy sequence of partial sums must con-
verge to some f =

∑
n
λnφn in H . By Riesz-Fischer theorem, f⊥ =

∑
n
λnφ

⊥
n

also converges in H and the Fourier coefficients are
〈
f⊥, φ⊥n

〉
= λn for all n,
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and
∥∥f⊥∥∥ = ‖λ‖ =

(∑
n
|λn|2

)1/2

. Hence, for any positive integer N ,

∥∥∥∥∥

N∑

n=1

λn(φn − φ⊥n )

∥∥∥∥∥ ≤
(

N∑

n=1

λ2
n

)1/2 N∑

n=1

‖φn − φ⊥n ‖.

Using the estimate
∞∑
n=1

‖φn − φ⊥n ‖ < 2
√

2ε and letting N → ∞, we get

‖f − f⊥‖ < 2
√

2ε‖λ‖ and (1) follows.
On the other hand,

∣∣λn −
〈
f⊥, φn

〉∣∣ =
∣∣〈f⊥, φn − φ⊥n

〉∣∣ ≤ ‖λ‖
∥∥φn − φ⊥n

∥∥

and

∥∥λ− F (f⊥)
∥∥ =

( ∞∑

n=1

∣∣λn −
〈
f⊥, φn

〉∣∣2
)1/2

≤ ‖λ‖
∞∑

n=1

∥∥φn − φ⊥n
∥∥ < 2

√
2ε‖λ‖.

Hence,

‖λ− f(f)‖ ≤
∥∥λ− F (f⊥)

∥∥+
∥∥F (f − f⊥)

∥∥ ≤ 2
√

2ε‖λ‖+2
√

2ε

√
1 + 4

√
2ε‖λ‖

since ‖F‖ ≤
√

1 + 4
√

2ε. This completes the proof of the theorem.

It is a theorem of Benedetto [1] that a frame in H is exact if and only
if the frame operator is a topological isomorphism. In the context of qua-
siorthonormality, we prove

Theorem 2.8. A quasiorthonormal basis {φn} of H generates a bounded
linear operator γ on H and a bilinear form Φγ on H for which {φn} is or-
thonormal.

Proof. By the proof of Theorem 2.4, quasiorthonormality generates
three linear maps: the frame operator F : H → l2 for {φn} defined by
F (f) = {〈f, φn〉}, the frame operator F⊥ : H → l2 for {φ⊥n } defined by
F⊥(f) =

{〈
f, φ⊥n

〉}
, and a linear isomorphism γ : H → H we call Gram-

Schmidt operator defined by γ(φn) = φ⊥n such that F⊥◦γ = F . Clearly, under
the bilinear form Φγ(f, g) = 〈γ(f), γ(g)〉, we have Φγ(φn, φk) =

〈
φ⊥n , φ

⊥
k

〉
=

δn,k (Kronecker).

Remark 2.9. Most classical orthogonal results are easy to establish by
perturbation arguments in the case of quasiorthogonality. For example, if
ε(φn) < 1

6
√

2
then

(1) There is equivalence between weak and strong unconditional conver-
gence of the series

∑
n
φn and the absolute convergence

∑
n
‖φn‖2.
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(2) For any {λn} ∈ l2, A(f) =
∑
n
λn〈f, φn〉φndefines a compact operator

on H .

2.4. Iterative Reconstruction Algorithms. By the very nature of quasiorthog-
onality, a certain flexibility can be enjoyed in signal recovery schemes. In
problems such as signal compression, edge detection, vision analysis,. . . we
must avoid orthogonality under which many natural constraints cannot be
satisfied. Then, a quasiorthogonal structure may be the very best next thing
for a good enough decomposition and reconstruction. An intrinsic algorithm
can be written from a general frames point of view or one would rather use
an ε-perturbation of orthogonal methods. In either case, we have control
over the error tolerance through quasiorthonormalization as described in sec-
tion I, theorem 2.1. For instance, if ε(φn) ≡ ε < 1

6
√

2
then {φn} must be

4
√

2ε-tight. Hence, we can use the bounds of the Bessel map F ∗F = β,

(1− 4
√

2ε) Id ≤ β ≤ (1+4
√

2ε) Id in order to get

∥∥∥∥f −
∑
n
〈f, φn〉φn

∥∥∥∥ < 4
√

2ε,

a near perfect decomposition and reconstruction from the frame coefficients
〈f, φn〉 which are associated with the Fourier coefficients 〈f, φ⊥

n 〉 by the global
estimates

∑

n

∣∣〈f, φn〉 − 〈f, φ⊥n 〉
∣∣ ≤ ‖f‖

∑

n

∥∥φn − φ⊥n
∥∥ < 4

√
2ε‖f‖.

Otherwise, we can follow the general frame approach as in Daubechies [4]
using the bounded inverse β−1 of the Bessel map with bounds 1

1+4
√

2ε
Id ≤

β−1 ≤ 1
1−4

√
2ε

Id to first find the dual frame φ̂n = β−1φn. In this case, we will

approximate φ̂n by φ̂Pn = (Id−δP+1)φ̂n, where δ = Id−β with ‖δ‖ < 4
√

2ε.

Whence,

∥∥∥∥f −
∑
n
〈f, φn〉φ̂Pn

∥∥∥∥ ≤ (4
√

2ε)P+1‖f‖ P is chosen so as to obtain any

desired degree of accuracy. Iteratively, using φ̂0
n = φn and φ̂Pn = φn+δ(φ̂P−1

n )
we get

φ̂1
n = φn −

∑

n1 6=n
〈φn, φn1〉φn1

φ̂2
n = φn −

∑

n1 6=n
〈φn, φn1〉φn1 +


∑

n1 6=n
|〈φn, φn1〉|2


φn

+
∑

n1 6=n

∑

n2 6=n,n1

〈φn, φn1〉〈φn1 , φn2〉φn2 · · ·

It is easy to verify that ‖φn− φ̂1
n‖ < ε, ‖φn− φ̂2

n‖ < ε+ε2, and more generally

‖φn − φ̂Pn ‖ <
P∑
k=1

εk = ε 1−εP

1−ε for all P ≥ 1.
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Another approach is to consider the Gram-Schmidt operator γ(φn) = φ⊥n
on H such that if f =

∑
n
λnφn, then

∑
n
|λn|2 = ‖γ(f)‖2 and ‖γ(f)‖ <

1√
1−4

√
2ε
‖f‖, and thus

‖f − γ(f)‖ ≤
(
∑

n

λ2
n

)1/2∑

n

‖φn − φ⊥n ‖ ≤
2
√

2ε√
1− 4

√
2ε
‖f‖

satisfying the Feichtinger-Grochenig condition [5] for a recovery of f from
γ(f) by the following algorithm

f0 = γ(f)

fn+1 = fn + γ(f − fn) for all n ≥ 0.

Then, f = lim
n→∞

fn with error ‖f − fn‖ ≤
(

2
√

2ε√
1−4

√
2ε

)n+1

‖f‖ after n itera-

tions.

3. A Related Epsilonized Multiresolution Analysis in L2(R)

Wavelet theory can be viewed as a derivative of the more classical Fourier
analysis, where the complex exponential ψ(x) = eix or sinusoidal wave has
been used to generate every 2π-periodic square-integrable function as a linear
combination of shifts and integral dilations of ψ(x). In essence, ψ(x) is said
to be a (dyadic) wavelet in L2(R) if it satisfies certain conditions that make
ψn,k(x) = 2−n/2ψ(2−nx − k) form a Riesz basis for L2(R). For years, there
was no systematic way of finding a wavelet until the advent of multiresolution
analysis in 1985-86. Loosely speaking, the multiresolution analysis is a method
of construction of a wavelet basis based on subspace decomposition, where the
orthogonal projections provide coarser and coarser approximations of original
functions, signals, . . . In its original setting as introduced by Mallat [8] and
Meyer [10], a multiresolution of L2(R) is defined by a nested sequence · · · ⊃
V−2 ⊃ V−1 ⊃ V0 ⊃ V1 ⊃ . . . of closed subspaces and a square integrable
function φ such that

⋃

n∈Z

Vn = L2(R)(3.1)

⋂

n∈Z

Vn = {0}(3.2)

f(x) ∈ Vn ⇔ f(2nx) ∈ V0(3.3)

f(x) ∈ V0 ⇔ f(x− k) ∈ V0, for all k ∈ Z(3.4)

{φ0,k : k ∈ Z} is an orthonormal basis for V0.(3.5)

Condition (3.5) guarantees the orthonormality of the basis {ψn,k} generated.
Denoting by Wn the orthogonal complement of Vn in Vn−1, (3.1) and (3.2)
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imply

(3.6) L2(R) =
⊕

n∈Z

Wn

a decomposition of L2(R) into mutually orthogonal subspaces.
In what follows, we modify condition (3.5) and write a correspond-

ing MRA for ε-perturbations of orthonormal bases, more general than qua-
siorthonormal.

We start with a normalized function φ in L2(R) such that:

(I) a Gram-Schmidt operator γ exists on L2(R) such that γ(φ0,n) = φ⊥n
and ‖I − γ‖ < ε

(II) φ(x) =
√

2
∑
n
hnφ(2x− n), where

∑
n
|hn|2 <∞

(III) φ̂(ω) is bounded, continuous at 0 and φ̂(0) = 0.

Lemma 3.1. Under hypothesis (I), we have

(I’) 1
1+ε ≤

∑
l∈Z

∣∣∣φ̂(ω + 2πl)
∣∣∣
2

≤ 1 + ε a.e.

Proof. Let γ denote the Gram-Schmidt operator for on L2(R). Then

‖I − γ‖ < ε,
∥∥γ−1

∥∥−1
∥∥∥∥
∑
n
λnφ

⊥
n

∥∥∥∥ ≤
∥∥∥∥
∑
n
λnφ0,n

∥∥∥∥ ≤
∥∥γ−1

∥∥
∥∥∥∥
∑
n
λnφ

⊥
n

∥∥∥∥ for

any sequence of scalars. Note that 1
1+ε ≤ ‖γ−1‖ ≤ 1 + ε. Hence,

1
1+ε

(∑
n
|λn|2

)1/2

≤
∥∥∥∥
∑
n
λnφ0,n

∥∥∥∥ ≤ (1 + ε)

(∑
n
|λn|2

)1/2

. But,

∥∥∥∥∥
∑

n

λnφ0,n

∥∥∥∥∥

2

=

2π∫

0

∣∣∣∣∣
∑

n

λne
−inω

∣∣∣∣∣

2∑

l∈Z

∣∣∣φ̂(ω + 2πl)
∣∣∣
2 dω

2π
,

1

2π

2π∫

0

∣∣∣∣∣
∑

n

λne
−inω

∣∣∣∣∣

2

dω =
∑

n

|λn|2.

We then use the Gaussian functions gα(ω) = 1
2
√
πα
e−ω

2/4α, in place of∑
n
λne

−inω and let α → 0, in order to complete the proof of the lemma.

Let Vn = span{φn,k : k}. Then, (I’) ⇒ ⋂
n
Vn = {0} and (III) ⇒ ⋃

n
Vn =

L2(R). Note that (II) ⇔ φ ∈ V−1 ⇔ Vn−1 ⊃ Vn for all n.
It is our goal to show how (I’), (II) and (III) generate the construction of a

Riesz basis {ψn,k : k} of L2(R) from a wavelet ψ which is an ε-isometric image
of another wavelet, depending on the properties of φ. First, we establish an
easy consequence of (I’)
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Lemma 3.2. Let φ ∈ L2(R) satisfy (I’) and (II). Let m0(ω) =
1√
2

∑
n
hne

−inω. Then,

(1)
2π

1 + ε
≤
∑

n

|hn|2 ≤ 2π(1 + ε)

(2)
1

(1 + ε)2
≤ |m0(ω)|2 + |m0(ω + π)|2 ≤ (1 + ε)2.

Proof. From (II), we get

1 = ‖φ‖2 = 2

∥∥∥∥∥
∑

n

hnφ(2x− n)

∥∥∥∥∥

2

=

2π∫

0

∣∣∣∣∣
∑

n

hne
−inω

∣∣∣∣∣

2∑

l∈Z

∣∣∣φ̂(ω + 2πl)
∣∣∣
2

dω

and from (I’), it follows that

1

1 + ε

2π∫

0

∣∣∣∣∣
∑

n

hne
−inω

∣∣∣∣∣

2

dω ≤ 1 ≤ (1 + ε)

2π∫

0

∣∣∣∣∣
∑

n

hne
−inω

∣∣∣∣∣

2

dω

which yields (1) through Parseval.

For the proof of (2), we note that φ̂(ω) = m0(ω/2)φ̂(ω/2). Hence, (I’)
implies

1

1 + ε
≤
∑

l

|m0(ω + πl)|2
∣∣∣φ̂(ω + πl)

∣∣∣
2

≤ 1 + ε a.e.

We then split the sum into even and odd l’s, use the 2π-periodicity of m0

and
∑
l

∣∣∣φ̂(ω + 2πl)
∣∣∣
2

=
∑
l

∣∣∣φ̂(ω + (2l + 1)π)
∣∣∣
2

a.e. in order to write 1
1+ε ≤

[
|m0(ω)|2 + |m0(ω + π)|2

]∑
l

∣∣∣φ̂(ω + 2πl)
∣∣∣
2

≤ 1 + ε a.e. Then, we apply the

estimates of Lemma 3.1 to conclude.

Define ψ by ψ̂(ω) = eiω/2m0(ω/2 + π)φ̂(ω/2). Let f =
∑
n
fnφ−1,n ∈ W

and mf (ω) = 1√
2

∑
n
fne

−inω. Then the next lemma follows directly from (I)

and (II)

Lemma 3.3. If φ ∈ L2(R) satisfies (I) and (II), then

(1)
‖f‖
1 + ε

≤
(
∑

n

|fn|2
)
≤ ‖f‖

1− ε ,

(2)
‖f‖

(1 + ε)
√

2
≤ ‖mf‖ ≤

‖f‖
(1− ε)

√
2
,

where f =
∑
n
fnφ−1,n ∈ W .
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Now, since f̂(ω) = mf (ω/2)φ̂(ω/2), we essentially follow classical calcu-
lations [4] to write

[
mf (ω/2)m0(ω/2) +mf (ω/2 + π)m0(ω/2 + π)

]∑

l

∣∣∣φ̂(ω/2 + 2πl)
∣∣∣
2

= 0

for any f ∈ W0 = V−1V0 (i.e f⊥φ0,n for all n). But 1
1+ε ≤

∑
l

∣∣∣φ̂(ω/2 + 2πl)
∣∣∣
2

from Lemma 3.1. Hence,

mf (ω/2)m0(ω/2) +mf (ω/2 + π)m0(ω/2 + π) = 0.

On the other hand, since 1
(1+ε)2 ≤ |m0(ω)|2+|m0(ω + π)|2, m0(ω) andm0(ω+

π) cannot vanish together on a set of nonzero measure; choose a 2π-periodic

function λ(ω) such that mf (ω) = λ(ω)m0(ω + π) a.e. and λ(ω) + λ(ω +

π) = 0 a.e. Set ν(ω) = e−iωλ(ω/2). Then, ν is 2π-periodic and f̂(ω) =

eiω/2m0(ω/2 + π)ν(ω)φ̂(ω/2). Hence, f̂(ω) = ν(ω)ψ̂(ω) with
2π∫
0

|ν(ω)|2 dω =

2
2π∫
0

|λ(ω)|2 dω.

We are now in position to prove the following result

Theorem 3.4. Let φ ∈ L2(R), ‖φ‖ = 1, and 0 ≤ ε < 1 satisfy (I’), (II)
and (III). Then there exist ψ, ψ⊥ ∈ L2(R), and a Gram-Schmidt operator γ
for {ψ0,n} such that

(1) {ψn,k} is a Riesz basis for L2(R).
(2) ψ = γ(ψ⊥), where

ψ =
∑

n

(−1)n−1h−n−1φ−1,n, ψ⊥ =
∑

n

(−1)n−1h−n−1φ
⊥
n

and γ(φ⊥n ) = φ0,n, with the sequence {hn} defined in (II).

Proof. In view of the above calculations and remarks, it remains only
to show that {ψ0,n} is a Riesz basis for W0. We prove that every f ∈ W has
a unique decomposition f =

∑
n
fnψ0,n where

∑
n
|fn|2 < ∞ or equivalently

show that f̂(ω) = g(ω)ψ̂(ω), where g is a 2π-periodic function in L2(0, 2π).
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Indeed, let g ≡ ν as defined above. Then,

2π∫

0

|ν(ω)|2 dω ≤ 2(1 + ε)2

2π∫

0

|λ(ω)|2
(
|m0(ω)|2 + |m0(ω + π)|2

)
dω

≤ 2(1 + ε)2

2π∫

0

|λ(ω)|2 |m0(ω + π)|2 dω

= 2(1 + ε)2

2π∫

0

|mf (ω)|2 dω ≤
(

1 + ε

1− ε

)2

‖f‖2

follows from Lemma 3.3. Finally, note that ψ̂(ω) = eiω/2m0(ω/2 + π)φ̂(ω/2)

is equivalent to ψ(x) =
√

2
∑
n

(−1)n−1h−n−1φ(2x − n). Also,
∑
n
|hn|2 < ∞

and the orthonormality of {φ⊥
n } imply that ψ⊥ ∈ L2(R).

Remark 3.5. When the admissibility condition Cψ⊥ = 2π
∫ |ψ⊥(ω)|2

|ω| dω <

∞ is satisfied (for eg. if ψ⊥ ∈ L2(R) with
∣∣∣ψ̂⊥(ω)

∣∣∣ ≤ K|ω|α or equivalently

ψ̂⊥(0) = 0 or
∑
n

(−1)n−1h−n−1φ̂
⊥
n (0) = 0; same if φ⊥n = φ]0,n, where φ] is

another scaling function), then ψ⊥ generates an orthonormal wavelet.
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