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PROJECTION-INVARIANTS, GRAM-SCHMIDT
OPERATORS, AND WAVELETS

JEAN-PAUL PEMBA
Prairie View A&M University, U.S.A.

ABSTRACT. We introduce some projection-invariants for a normal-
ized sequence in a Hilbert space, based on the smallness of the mutual
projections of its elements. We then establish conditions to have the origi-
nal sequence equivalent to its Gram-Schmidt orthonormalization. In many
problems of wavelet-decomposition and reconstruction, the use of orthogo-
nal bases cannot be implemented in the construction of certain filters and
other practical features. Then, a quasiorthonormal structure for repre-
sentation may be the next best alternative by achieving new constraints
while we can still arbitrarily approximate the powerful classical orthogonal
results.

1. INTRODUCTION

In a Hilbert space H, a (normalized) sequence is said to be orthogonal
(orthonormal) if the scalar product (¢, @i yof any two distinct elements is zero
(and ||¢|| = 1). In this case, many classical theorems are proved and exten-
sively used in problems of decompositions, multiresolution representations, . . .
Starting with any normalized sequence {¢,, } of linearly independent vectors, a
Gram-Schmidt orthonormalization {(bf;} always exists, but is in general topo-
logically different from the original sequence. From stability point of view,
if the size of all the projections (¢, @)) are small enough, it is natural to
expect {¢,, } to somehow be close to {qﬁ#} and thus inherit of such properties
as unconditionality enjoyed by orthonormal bases. Our interest is to present
a functional analytic aspect with basic linear implications of the non-linear
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invariants introduced and apply to a perturbation of Mallat-Meyer’s wavelet
multiresolution analysis.
2. QUASIORTHONORMALITY

2.1. Definitions. A sequence {¢,} in a Hilbert space H is a frame if there
exist A, B > 0 such that a f||2 < S |(f, éu)|* < B||f||? for all fin H. Then,

k
A and B are called frame bounds. The frame is called tight if A = B and
e-tightif A=1—ecand B=1+4c¢. {¢,} is Riesz sequence if

AN TN <N M| < BY A2,

for any sequence of scalars {\,}. It is a Hilbert sequence if for any sequence
{A\n} in 2, the series > A\, ¢, converges in H. It is a Bessel sequence if the
n

summability of {\,} is a necessary condition for the convergence of the series
S Andn. So that {¢,} is a Riesz sequence if and only if it is both Bessel

n

and Hilbert. {¢,} is complete in H if its closed linear span span{¢,} = H.
With linear independence and the open mapping theorem, there is equivalence
between frame (ezact) and Riesz sequence (basis). A frame {¢,} gives rise to
two somewhat related bounded linear operators:

(1) the Bessel map 8 : H — H, defined by 8(f) = D ([, on)Pn-

(2) the frame operator F : H — 12, defined by F(f)n: {{f, on)}

and to a dual frame defined by ¢, = (F % F)~t¢,, (F* F can be shown to be
nonsingular) with dual Bessel map

B =32 (f:60) bn

n

F(f) = {(£.n)}-

Note that the frame operator associated with an e-tight frame is an e-isometry.
The one-to-oness is guaranteed by linear independence. For any sequence
e{¢n} of non-null vectors in H, we let

- d)n
o = 6al

and dual frame operator

(normalization of {¢,}),

oo /n—1 1/p
o= 3 (E@a) ) rnes

n=2 \k=1
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(the total projection of order p for {¢p,}),
eoo(dn) = sup | (G, )|
n#k

(the essential projection for {¢,}) and let
n—1 1/p
Eoo,p(¢n) = S:p (Z }<$nu $k>‘p> ,
. k=1 N
Ep,oo(¢n) = (Z 1r§nI§i<Xn ‘<¢n7 ¢k>’ ) )

oo _ 1 n—lN py\ 1/p
wp((bn) = (Z <¢n7 m Z¢k> ) 9
n=2 k=1
~1 ot
woo(n) = sup <¢nam;¢k> .

In absence of any ambiguity, we simply denote €,(¢,) = €,. Note that
0 < oo <min{wp, oo pt < wp < €poo < MaxX{€co,p,Ep.oot < &p < 1. We say
that {¢,} is quasiorthogonal (of order p) if €, < co. It is quasiorthonormal,
if in addition it is normalized. Note that each of these projection-invariants
represents some index that measures how far {¢,} is from orthogonal. For
example, {¢,} is orthogonal if and only if ¢, = 0 and ¢, = oo if and only if
there exists an infinite subsequence {(bn].} such that Inf |<¢)nj , ¢nk>| > 0.

In what follows, we focus on the quadratic total projection only. In par-
ticular, we simplify notations with s = €.

2.2. A Quasiorthormalization Algorithm. We exhibit the existence of intrin-
sic quasiorthonormal sequences by describing a more general procedure to
construct such structures from any arbitrary linearly independent system.

THEOREM 2.1. Let {¢,} be a linearly independent sequence in o Hilbert

space H. Then, for any § > 0, there exists a quasiorthonormal sequence {$, }
generated by {¢n} such that e(¢,) = 6.

PROOF. First choose an orthonormalization {¢;-} of {1,,} and d5 > 3 >
.-+ > 0 such that ) §, = . We then inductively define {¢,} as follows:
n=2

¢ = Ui
¢z = \/1 = 03¢5 + Gat1, whence [[g2|| = [[¢1]| = 1 and [{¢2, d1)| = d2.
Assume that ¢1,...,¢, have already been defined by pairs of nonnegative

n—1
coefficients {a1,b1},...,{aq, by} such that ¢, = an ;- +b, S Vi, |l = 1,
k=1
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n—1
and kz {bn, di)|> =62 forallm=2,...,¢; a1 =1, by = 0. We let
=1

5q+1
Vo1 lan + (= 1P

Ag+1 = \/1_qb§+1a

q
bgt1 = aq+1¢qL+1 + b1 Z Un -

n=1

bg+1

q
Then, it is easy to check that ||¢g11]] = Land > [{(¢g+1, on)|? = 67,1 Hence,
n=1

0~ /n—1 ) 1/2 oo
o =3 (S| (@na)[) -2 -0

Hence, {¢,} is a non-orthogonal, quasiorthonormal sequence. Note that {¢, }
inherits of all the topological properties of {¢,}; span{¢,} = span{e, }, and
{¢n} is a basis if and only if {¢,,} is a basis. O

2.3. Some Properties of Quasiorthonormal Sequences. To prove our key
lemma, we first recall a classical stability theorem of Krein-Milman-Rutman
for Schauder bases, stating its orthonormal version only.

THEOREM 2.2. Let {4} denote an orthonormal basis and {¢n} a nor-

malized sequence in H. If Y |y — ¢nl| < 3, then {¢n} is a Riesz basis
n=1

equivalent to {1y }.
This theorem shows that all essential properties of a Schauder basis sur-

vive to small perturbations. In the sequel, we denote by {¢:-} the usual
Gram-Schmidt orthonormalization of {¢,}; that is ¢ = ¢y,

n—1

On — kz <¢nu ¢i_> n—1
1 =1 _ 1 _
o = A ,WhereAn_|¢>n—;<¢>n,¢>k> forn=2,3,...
Also note that
n—1
Afl :1—2 ‘<¢n,¢é‘>|2, forn=2,3,...
k=1

LEMMA 2.3. If e(¢n) < $V2, then

N n—1

n—1 1/2 N 1/2
> (Z \<¢m¢t>!2> <2y (Z |<¢n,¢k>|2> . for N >2.
k=1 n=2

k=1
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ProOF. For sake of simplicity, we do the calculations only in the real in-
ner product case, the complex extension being natural. Since sup |{¢n, ¢r)| <
n#k

e < 1, we inductively use relatively short Taylor expansions to get, for
n=23,...

(1= 1on @) (0. 62— (0.00) 61}

(6n, 62)1” + 2 (9n, 02) (n 01) ($2,61)
+ [1{0ns 62} + {6, 61)* +2 (6, 62) (@, 61)] (02, 61)

{6 2|

o [[ns 021 + (s o0} (62, 000 + D HE
p=T7

where Hp denotes the sum of all the terms of order p in |<¢)n, ¢§>‘2. Simi-
larly, for n = 3,4,.

b, 63" = [(Bns 03)1 + 2 (P, B3) (b, B2) (3, 62)
+2 <¢n7 ¢3> <¢n7 ¢1> <¢3; ¢1

+ [1{0n: 83 + {0, 6201 ] I(@s, 62

)
’
o+ [[46n, 60} +1(n, 81)] (s, o0)I?
)
)

<¢n7 ¢3> <¢n7 ¢2> <¢35 ¢1 <¢27 ¢1>
+2 <¢n7 ¢3> <¢n7 ¢1> <¢37 ¢2 <¢27 ¢1>

+2(Pn, $2) (bn, d1) (93, P2) (D3, 1) + Z Hyp 5.
p=>5
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And more generally, for n > k

k—1
(6 00" = 1ns )2 +2 3 (b 01) (Ds Sp) (S5, 65)

p=1
k— k-1
Z|<¢k,¢q>| ] (B )1+ D (s B 1{bs D)
—1 =1
Z—l p—1 ’
+2 Z Z <¢n7 ¢k> <¢n7 ¢q> <¢7€7 ¢P> <¢p7 ¢q>
=2 ¢=1
C
+2 Z Z <¢na ¢k> <¢n7 ¢P> <¢k; ¢q> <¢;D7 ¢q>
=2 g=1
:72qk71 )
+2 (Gns Gp) (Dns o) (Brs bp) (Dps bg) + Y HI
p=2q=p+1 m=>5
Hence, for any fixed n > 1,
n—1 n—1 n—1k-1
S bt = Y Hbn )P +230 Y (dns dk) (Dns bp) (1, bp)
k=1 k=1 k=2 p=1
oo n—1
+> 0N Hn.
m=4 k=1

N n—1
Now let ex = 3 [ 3 (¢, di)|%, for N = 2,3,... Note that ey ] ¢, as
n=2 k=1

N — oo. We also note the following:

n—1 1/2
(1) <Z|<¢m¢k>|> <én

n—1 k—1
(2) ( |<<z>k,¢p>|2>

IN
—
ﬁ‘ 3
LLUTIL
N
TMT
= [
—~
<
B
-
=
<
o
\—/
—
~
(V]
[
(V]
IN
™
SN
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Applying Holder’s inequality, we get

k-1
|Hs7k| = 2 <¢na ¢k> <¢na ¢;D> <¢ka ¢;D>
p=1
n—1 Y k—1
< 2( [(fn, 65)] [{&ns )| (D Ep) }
j=1 p=1
n—1 k—1 /2 1 1/2
< 2( {bn, bq) |2> ( |¢n,¢p>|2> ( bk, dp)] )
q=1 p=1 p=1
n—1 k—1 1/2
< 2( [(6n> Bp) |2>< |<¢k,¢p>|2> :
p=1 p=1
Hence,

n—1

n—1
Do HR ] <2 ( |<¢>n,¢k>|2>
k=1

and in particular

n—1 n—1 1/2
Z |H3 | <2 <Z |<¢nu¢k>|2> 2.
=1

More generally, similar reasoning yields both
n—1
> <2 (
k=1
n—1
> <2 (
k=1

for any positive integer m > 3, and

n—1

|<¢n7¢k>| ) :zn 27

k=

3
,_. —

1/2
{dn, dx)| ) en !

k=1

oo n—1 n—1 172 o .
DD HI| <2 (Z |<¢>n,¢k>|2> St <,
m=4 k=1 k=1 m=4 n

since each ¢, < e < %\/5 < % On the other hand, we can apply the mean

n—1
value theorem to f(z) = \/Z |, di)|> + = to pick some
k=1

n—1k—1 oo n—1

0<n< Y > (bn, 1) (Sns o) (br o) + D > HI

k=2 p=1 m=4 k=1



318 J.-P. PEMBA

without loss of generality such that

n—1 1/2 n—1k—1
(Z!@mw?) [D (s ) 2D (In 1) (D bp) (B bp)
k=1

k=2 p=1
oo n—1 1/2
+2 ZHer]
m=4 k=1
n—1 1/2 n—1 —-1/2
S Kbns )|+ | S 1w o) +1
k=1 k=1

n—1k—1 oo n—1 1/2
[ZZ By Ok ) (B, Dp) Dk D) +ZZHZ?;€]

k=2 p=1 m=4 k=1

This time we use the slightly sharper estimate

oco n—1 n—1 o)
> < 2(Eionont) e
m=4 k=1 k=1 m=4
252 n—1 ) n—1 )
< = <Z|<¢n,¢k>|><s<2|<¢m¢k>|>-
™ \k=1 k=1

1

. 1 . .
Since each g, < e < 53 < 3,in order to write

1 1/2 _ 1/2 1 —1/2
k=1 k= k=1

nfj k—1 1/2
l( ¢n7¢k ) ( l |<¢k7¢?>| ‘| )
k=2 Lp=1
+e (i' (bna(bk )
k=1
_ 1/2
<Z (bn, D1 ) (1+ 2e).
k=1

Hence,

i(fwmwf)m 1+2ez<z|¢n,¢k >/

n=2 \k=1 n=2 \k=1

We apply the condition 2e < 1 to complete the proof of the lemma. O
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THEOREM 2.4. Let {¢,} be a normalized linearly independent sequence
in a Hilbert space H. If

E_Z Z|¢na¢k| < \/—

then {¢n} forms a 4v/2e-tight frame in H with a 4v/2c-isometric frame oper-
ator.

PROOF. Let {¢; } denote the Gram-Schmidt orthonormalization of {¢,, }.
Then,

N n—1 2 1/2
||¢n_¢)"||:2_2 1_Z|<¢na¢k>|

k=1

for all n > 2, and using Lemma 2.3 for

n—1
0<&< > (o, o)
k=1
we can write
9 n—1 9 1 n—1 9 1/2
low = ¢all” = D [on i) + 70— (Z!<¢n,¢é>\ )
k=1 k=1

1

1
_ 4%(1— wmw)

1 _
1+ Z 1 _452 ] g ¢n7¢k

2Z}<¢n,¢k>! ,

k=1

IN
[y
+

n—1
P> [(6nr 6

IN

IN

i 1 V2
since € < 575 < g Hence,

n—1

1/2
[om — ¢ < V2 (Z |<¢n,¢é>\2> :

k=1
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Hence,

A

N N /-1 1/2
ZW dul|l < ﬁZ(anwé )

n=2 \k=1
N n—1 1/2
n=2 \k=1

N
We ﬁnally let N — oo to get E Hgbl—(an < 2V2e(y) < %, since

IN

e(on) < vz <1 \/— Hence, all the condltlons of the Krein-Milman-Rutman

theorem are satlsﬁed for {¢,} to be equivalent to its Gram-Schmidt orthonor-
malization. In order to prove the 4v/2e-tightness, fix any positive integer
N >1 and f in H; then,

N N N
STHL P = SRS < 201X [ dn — 8]
n=1 n=1

n=1

A

IN

20 £1 Y (| 6ns o] < 4v/2e]| £
n=1

Hence, apply Parseval’s identity and let N — oo in order to get

(1= 4V2e)If 17 < D fid)* = [IF (I < (1+4v20) | £
n=1

In particular, | F|| < /1 + 4v/2¢. O

COROLLARY 2.5. Every quasiorthonormal basis {¢,} contains a 4v/2¢(¢y,)
—tight frame basic subsequence.

PRrOOF. By Theorem 2.4, it suffices to show that if

N

n—1 1/2
3 (zu%w) .
k=1

then there is n1 < no < ... such that

>

J

j—1 1/2 ]
;9 n7L < —=.
(Zlorenif) <5

Indeed, choose €1 > €2 > ... | 0 such that ) ¢; <
j=1

6\/5, choose ny such that

n1—1
kz e, d)|* < €2. Let Ny = {1,2,...,n1}. Then choose ny > n; such
=1
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’n2—1

that > [{¢n,, dx)|” < €2. Let Ny = Ny U {ny}. Then choose ng > ny such
k=1

’n,gfl

that Z gy d1)|> < 2. Let N3 = Ny U {ns}. Inductively continue this

process indefinitely to get U N; ={n;, j=1,2,...} (by renaming) so that
J_

’ﬂj—l

< Z |<¢nj,¢k>‘2 <ejforall j=2,3,...
k=1

j—1 )
> | bn,s n.)
=1

And thus

o /i1 1/2 -
aﬁn—z(z«%,%»?) R
j=1

j=2 \i=1

O

REMARK 2.6. From Corollary 2.5, it follows that a subsymmetric (equiv-
alent to each of its infinite subsequences) quasiorthonormal basis is always a
Riesz basis.

THEOREM 2.7. Let {¢,} be a normalized linearly independent sequence

00 n—1
in a Hilbert H. If 37 ([ > {bn, o) =€ < Gﬂ’ then for any A = {\,} in
n=2 k=1

12, the series Y An¢n converges to an element f of H such that
n

(1) (1=2v2e) Al < [IF]l < (1 +2v2e) ||
(2) A= F(f)] <2v2e (1 +14/1 +4\/§5> Il

PROOF. Let fn = E /\k(bk Then,

k=1
n+p n+p n+p
[ fnto = Fall = || D Ano > wor > Melor — or) |
k=n-+1 k=n+1 k=n-+1
netp 1/2 ntp
( > Ai) 1+ > Hsbk—qble]
k=n+1 k=n+1

by Parseval theorem and Cauchy-Schwarz inequality. Both series on the right
converge absolutely. Hence, the Cauchy sequence of partial sums must con-
verge to some f = Z Aoy in H. By Riesz-Fischer theorem, f = Z A @i

also converges in H and the Fourier coefficients are < ft, ¢L> =\ for all n,



322 J.-P. PEMBA

1/2
and || f| = [|All = (E |)\n|2> . Hence, for any positive integer N,

N N /2 N
> Anldn — o)l < (ZA%) > llgn — |-
n=1 n=1 n=1

Using the estimate Z l¢n — || < 2v/2¢ and letting N — oo, we get

If— i < 2\/_5||)\|| and (1) follows.
On the other hand,

A = (o dnd| = [ b0 — 0| < M [ én — o1t ||

and
[e'e] 1/2 o0

IA=F(H)]| = (Z |An = (£, ¢n>\2> <A [ én — o] < 2v2e]|AlL
n=1 n=1

Hence,

A= FOI < A= FUD|[+FC = £ < 2v2el]A[+2v2e\/ 1 + 4v/2¢|A|
since || F|| < /1 + 4v/2¢. This completes the proof of the theorem. O

It is a theorem of Benedetto [1] that a frame in H is exact if and only
if the frame operator is a topological isomorphism. In the context of qua-
siorthonormality, we prove

THEOREM 2.8. A quasiorthonormal basis {¢,} of H generates a bounded
linear operator v on H and a bilinear form ®., on H for which {¢,} is or-
thonormal.

PROOF. By the proof of Theorem 2.4, quasiorthonormality generates
three linear maps: the frame operator F' : H — [2 for {¢,} defined by
F(f) = {{f,én)}, the frame operator F* : H — [? for {¢.} defined by
FL(f) = {<f, ¢#>}, and a linear isomorphism v : H — H we call Gram-
Schmidt operator defined by (¢, ) = ¢ such that FLoy = F. Clearly, under

the bilinear form ‘b’)’(fv g) = <7(f)77(g)>7 we have (I)'Y(d)n, ¢k) = < #a ¢kl> =
Ok (Kronecker).

REMARK 2.9. Most classical orthogonal results are easy to establish by
perturbation arguments in the case of quasiorthogonality. For example, if
e(tn) < —= then

(1) There is equivalence between weak and strong unconditional conver-
gence of the series Y ¢, and the absolute convergence Y ||é, /2.
n n
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(2) For any {\,} € 12, A(f) = > A\ (f, dn)dndefines a compact operator
on H. .

2.4. Iterative Reconstruction Algorithms. By the very nature of quasiorthog-
onality, a certain flexibility can be enjoyed in signal recovery schemes. In
problems such as signal compression, edge detection, vision analysis,... we
must avoid orthogonality under which many natural constraints cannot be
satisfied. Then, a quasiorthogonal structure may be the very best next thing
for a good enough decomposition and reconstruction. An intrinsic algorithm
can be written from a general frames point of view or one would rather use
an e-perturbation of orthogonal methods. In either case, we have control
over the error tolerance through quasiorthonormalization as described in sec-
tion I, theorem 2.1. For instance, if (¢,) = ¢ < ﬁ then {¢,} must be

44/2e-tight. Hence, we can use the bounds of the Bessel map F*F = §,
(1—-4+v2¢)1d < 3 < (144+/2¢)1Id in order to get Hf —SUf, ) Pn|| < 4V/2¢,

a near perfect decomposition and reconstruction from the frame coefficients
(f, ¢n) which are associated with the Fourier coefficients (f, ¢;-) by the global
estimates

Z\mn (f.6m)] <||f||ZH¢n || < 4v2e| |-

Otherwise, we can follow the general frame approach as in Daubechies [4]
using the bounded inverse B! of the Bessel map with bounds 1+4—1\/—2€ Id <

Bl < T 4f Id to first find the dual frame gbn = 37 '¢,. In this case, we will
approximate ¢, by (bp (Id — 5P+1)¢)n, where § = Id -8 with ||§]| < 4v/2¢.
Whence, || f — Z(f, qbn)qSPH < (4v/2¢)PH1||f|| P is chosen so as to obtain any

desired degree of accuracy. Iteratively, using o0 = ¢, and ¢F = ¢, +6(dF 1)
we get

oL = b= (b bni)bm
ni#n
3721 = ¢n— Z <¢nu¢n1>¢n1 + Z |<¢n7¢n1>|2 On

niF#En niF#n

0D (D b ) (Bnys b )by -

ni1#n ne#n,ny
It is easy to Verify that ||¢n oLl < e, ||¢n— @2 < e+¢2, and more generally
| ¢n — ¢P|\<Zs_a " for all P > 1.
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Another approach is to consider the Gram-Schmidt operator v(¢,) = ¢:-
on H such that if f = > Ayédp, then Y |A\,12 = [[v(f)|I* and ||v(f)] <

1
Vi ]

||f—7(f)|§<zki> ZH% ¢L||<\/2\/_7€\/_|f||

satisfying the Feichtinger-Grochenig condition [5] for a recovery of f from
~v(f) by the following algorithm

fo=~(f)
fot1 = fu +7(f = fn) forall n>0.

|, and thus

n+1
Then, f = lim f, with error ||f — fn] < (&) IIf |l after n itera-
n—oo 1-4+/2¢

tions.

3. A RELATED EPSILONIZED MULTIRESOLUTION ANALYSIS IN L?(R)

Wavelet theory can be viewed as a derivative of the more classical Fourier
analysis, where the complex exponential ¢ (x) = e’ or sinusoidal wave has
been used to generate every 2m-periodic square-integrable function as a linear
combination of shifts and integral dilations of ¥ (z). In essence, ¥ (z) is said
to be a (dyadic) wavelet in L?(R) if it satisfies certain conditions that make
Yo (r) = 27 2%)(2 "2 — k) form a Riesz basis for L2(R). For years, there
was no systematic way of finding a wavelet until the advent of multiresolution
analysis in 1985-86. Loosely speaking, the multiresolution analysis is a method
of construction of a wavelet basis based on subspace decomposition, where the
orthogonal projections provide coarser and coarser approximations of original
functions, signals, ... In its original setting as introduced by Mallat [8] and
Meyer [10], a multiresolution of L?(R) is defined by a nested sequence - - - D
Voo D Vo1 DV DVi D ... of closed subspaces and a square integrable
function ¢ such that

(3.1) U Ve =L®)

nez
(3.2) () Vo ={0}
nez
(3.3) flr)eV, & f2 ") eV
(3.4) flryeVy & flx—k)eV, forallkeZ
(3.5) {bo,x : k € Z} is an orthonormal basis for V;.

Condition (3.5) guarantees the orthonormality of the basis {1, 1} generated.
Denoting by W,, the orthogonal complement of V,, in V,,_1, (3.1) and (3.2)
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imply

(3.6) L*(R) =P Wa

neZ

a decomposition of L?(R) into mutually orthogonal subspaces.

In what follows, we modify condition (3.5) and write a correspond-
ing MRA for e-perturbations of orthonormal bases, more general than qua-
siorthonormal.

We start with a normalized function ¢ in L?(R) such that:

(I) a Gram-Schmidt operator 7 exists on L?(R) such that v(¢o.,) = ¢

and ||[I —v|| <e
(I1) ¢(x) = V2 hnd(2x —n), where Y |h,|? < 00

(I1I) (E(w) is bounded, continuous at 0 and g/b\(()) =0.
LEMMA 3.1. Under hypothesis (I), we have

~ 2
(T 1—J1rs <SS ldw+2nl)| <1+4c¢€ ae.
l€z

PROOF. Let v denote the Gram-Schmidt operator for on L?(R). Then
il

any sequence of scalars. Note that ﬁ < |77 € 14 e Hence,

1=l < < < 7 for

1/2 1/2
& (SP) < [Saten| <o (Sp) . B
2 27 2 2
—inw " w
St = [ e | S [+ 2m)| 52,
n 0 n leZ
1 2 2
—inw _ 2
o > Ane dw =" |\l
0 n n
We then use the Gaussian functions g,(w) = 2\/1@6’“’2/40‘, in place of
S Ane”™ and let @ — 0, in order to complete the proof of the lemma.

n

O

Let V,, = span{¢y, i : k}. Then, (I) = NV, = {0} and (III) = YV, =

L?(R). Note that (II) & ¢ € V_; < V,,_1 DV, for all n.

It is our goal to show how (I’), (II) and (IIT) generate the construction of a
Riesz basis {tn k : k} of L?(R) from a wavelet ) which is an e-isometric image
of another wavelet, depending on the properties of ¢. First, we establish an
easy consequence of (I’)
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LEMMA 3.2. Let ¢ € L2(R) satisfy (I’) and (II). Let mo(w) =
%zﬂ:hne’im". Then,

(1) 12+E<Z|h > <2r(1+e¢)
2) ﬁ_m( W)+ fmo(w + ) < (14 ).

PRrOOF. From (II), we get

2 2

]

0

1=|l¢l* =2 n®(2x —n)

Z R, e~ e

n

2
3 ’$(w+2w1)’2dw

IeZ

and from (I’)7 it follows that

Z Ry, e—znw

which yields (1) through Parseval.
For the proof of (2), we note that ¢(w) = mo(w/2)¢(w/2). Hence, (T')
implies

2 2

w§1§(1+5)/

0

2
dw

Z hne—inw

n

1+s

1
1+4+¢

~ 2
< Z|m0(w+7r1)|2}¢(w+w1)] <l+4c ae.
l

We then split the sum into even and odd [’s, use the 2w-periodicity of mg

~ 2 ~ 2
and Y ’(b(w + 27rl)} => ’(b(w + (214 1)71')} a.e. in order to write ﬁ <
1 l

~ 2
[|m0(w)|2 + |mo(w + 7T)|2} > ’(b(w + 27rl)} <1+ ¢ a.e. Then, we apply the
1

estimates of Lemma 3.1 to conclude. O

Define ¢ by $(w) = ¢ *mo(w/2+ M)o(w/2). Let [ =3 fad-1n € W
and my(w) = % > fne” ™. Then the next lemma follows dlrectly from (I)
and (II)

LEMMA 3.3. If ¢ € L%(R) satisfies (I) and (II), then

LI ||f||
UL < (Sunr) <
||f||

Il
@ Tl <lmi < A
where f =Y fup_1,, € W.
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Now, since f( ) =mys(w/2)¢ (w /2), we essentially follow classical calcu-
lations [4] to write

[mj(w/Q)m+mj(w/2+7r)mo w/2+7r}2‘ w/2+27rl‘ =0
1

2
for any f € Wo = V_1Vy (i.e f Lo, for all n). But 5= < Z‘ (w/2+27rl)‘
]

from Lemma 3.1. Hence,
my(w/2)mo(w/2) + my(w/2 + m)mo(w/2 + m) = 0.

On the other hand, since (1+ 7 < [mo(w)|*+|mo(w + 7)|%, mo(w) and mo(w+
7) cannot vanish together on a set of nonzero measure; choose a 2w-periodic
function A(w) such that ms(w) = A(w)mo(w + 7) a.e. and A(w) + AMw +
7) = 0 ae. Set v(w) = e"“A\(w/2). Then, v is 27- periodic and f(w) =

/2 mo(w/2 + Mr(w)é(w/2). Hence, f(w) = v(w)ih(w) with f lv(w)|* dw =

2w
2 [ Aw)]? dw.
0

We are now in position to prove the following result

THEOREM 3.4. Let ¢ € L*(R), ||¢]| = 1, and 0 < e < 1 satisfy (I’), (1)
and (III). Then there exist ¥, € L*(R), and a Gram-Schmidt operator ~
for {¢on} such that

(1) {Wnx} is a Riesz basis for L*(R).
(2) ¥ =), where

b= ()" honabin, bt =D (1) hon gy

n

and y(¢) = ¢o.n, with the sequence {hy} defined in (1I).

PROOF. In view of the above calculations and remarks, it remains only
to show that {1} is a Riesz basis for Wy. We prove that every f € W has
a unique decomposition f = > futbo,, where > |fn|> < oo or equivalently

n n

show that f(w) = g(w)(w), where g is a 2m-periodic function in L2(0, 27).
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Indeed, let g = v as defined above. Then,

2

27
/|u(w)|2dw < 2(1+6)2/|)\(w)|2 (Imo(@)P? +lmolew +m)P?) de
0

0

IN

27
2(1 4 ¢)? / IAw)]? [mo(w + 7)|? dw
0

1—c¢

21 2
= 21 [y o < (1 “) T
0

follows from Lemma 3.3. Finally, note that 1(w) = ¢™/%mq(w/2 + 7)p(w/2)
is equivalent to ¥(z) = V23 (=1)""*h_,_1¢(2z — n). Also, 3 |h,|? <

and the orthonormality of {¢:-} imply that ¢+ € L%(R). a

1 2
REMARK 3.5. When the admissibility condition Cy. = 27 Ik %dw <

oo is satisfied (for eg. if 1~ € L?(R) with Wl(w)} < K|w|* or equivalently
L (0) = 0 or Z(—l)"’lh,n,lai(()) = 0; same if ¢ = gbg’n, where ¢f is

another scaling function), then 11 generates an orthonormal wavelet.

(1]

(10]
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