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BANACH-STEINHAUS THEOREMS FOR BOUNDED
LINEAR OPERATORS WITH VALUES IN A GENERALIZED
2-NORMED SPACE
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ABSTRACT. In this paper we will prove Banach-Steinhaus Theorems
for some families of bounded linear operators from a normed space into a
generalized 2-normed space.

1. INTRODUCTION

In 1964 S.Gahler introduced the concept of linear 2-normed spaces and
he has investigated many important properties and examples for the above
spaces ([1, 2]).

DEFINITION 1.1 ([1]). Let X be a real linear space of dimension greater
than 1 and let || -, - || be a real valued function on X x X satisfying the
following four properties:

(G1) |lz,y|l =0 if and only if the vectors x and y are linearly dependent;
(G2) |z, yll = lly, =l;

(G3) ||z, ay| =] o | -||x, y|| for every real number a;
(G4) llz,y + 2|l < llz, yll + ||z, z|| for every x,y,z € X.
The function || -, - || will be called a 2-norm on X and the pair (X, || -, - )

a linear 2-normed space.

In [3] and [4] we gave a generalization of the Géhler’s 2-normed space.
Namely a generalized 2-norm need not be symmetric and satisfy the first
condition of the above definition.
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DEFINITION 1.2 ([3]). Let X and Y be real linear spaces. Denote by D
a non-empty subset of X XY such that for every x € X, y € Y the sets
D, ={yeY; (z,y) € D} and DY = {z € X; (x,y) € D} are linear
subspaces of the space Y and X, respectively.

A function || -, - ||: D — [0,00) will be called a generalized 2-norm on D
if it satisfies the following conditions:

(N1) ||z, eyl =| a | ||z, y|| = ||z, y|| for any real number « and all (z,y) €
D;
(N2) ||z, y+2] < ||z, yll+ |z, z|| forx € X, y,z €Y such that (x,y), (z,z) €
D:
(N3) o492l < o 2|+l 2]l for 2,y € X, = € Y such that (z,2), (y,2) €
D.
The set D is called a 2-normed set.
In particular, if D = X x Y, the function || -, - || will be called a
generalized 2-norm on X x'Y and the pair (X x Y| -, - ||) a generalized

2-normed space. Moreover, if X =Y, then the generalized 2-normed space
will be denoted by (X, -, - ||)-

In [3] and [4] we considered properties of generalized 2-normed spaces on
X x Y. In what follows we shall use the following results:

THEOREM 1.3 ([3]). Let (X xY, || -, - ||) be a generalized 2-normed space.
Then the family B of all sets defined by

n

(= € X5 o, yill <&},

i=1
where y1,y2,...,yn € Y,n € N and € > 0, forms a complete system of neigh-
borhoods of zero for a locally convex topology in X .

We will denote it by the symbol 7 (X,Y"). Similarly, we have the preceding
theorem for a topology 7 (Y, X) in the space Y. In the case when X =Y we
will denote the above topologies as follows: 77(X) = 7(X,Y) and 73(X) =
TV, X).

THEOREM 1.4 ([4]). Let (X xY, | -, - ||) be a generalized 2-normed space.
Let ¥ be a directed set.

(a) A net{xy;0 € X} is convergent to x, € X in (X, T(X,Y)) if and only
if for ally € Y and e > 0 there exists 0, € ¥ such that ||z, — o, y|| < €
forall o > o,.

(b) A net {y,;0 € L} is convergent to y, € Y in (Y, T (Y, X)) if and only
if for allz € X and e > 0 there exists 0, € X such that ||z, Y, —yo|| < €
for all o > o,.

THEOREM 1.5 ([4]). Let (X xY,|| -, - ||) be a generalized 2-normed space.
If the generalized 2-norm || -, - ||: X XY — [0,00) is jointly continuous and



BANACH-STEINHAUS THEOREMS FOR BOUNDED LINEAR OPERATORS 333

a sequence {(Tn,yn);n € N} C X XY is convergent, then the sequence of
2-norms {||zn,ynll; n € N} is bounded.

DEFINITION 1.6 ([4]). Let (X xY,| -, - ||) be a generalized 2-normed
space. A sequence {xn,;n € N} C X is called a Cauchy sequence if for every
y €Y and € > 0 there exists a number n, € N such that inequality n,m > n,
implies ||Tn — Tm,y|| < €.

DEFINITION 1.7 ([4]). Let (X xY,| -, - ||) be a generalized 2-normed
space. A space (X, T(X,Y)) is called sequentially complete if every Cauchy
sequence in X is convergent in this space.

By analogy we obtain definitions of a Cauchy sequence in the space Y
and the sequential completeness of the space (Y, 7 (Y, X)).

In what follows L(X,Y") stands for the linear space of all linear operators
from X with values in Y, where X, Y are real linear spaces.

DEFINITION 1.8 ([5]). Let X be a real normed space and Y CY xY be
a 2-normed set, where Y denotes a real linear space. A set M is defined as
follows:

M = {(f.9) € L(X,Y)*Vaex(f(z),g(x) € Y
AnrsoVeex|If (@), g(@)|| < M - |||}

The set M defined in Definition 1.8 has the following property:
For every f,g € L(X,Y) the sets

M9 ={f € L(X,Y);(f ,g9) € M} and My ={g € L(X,Y);(f,g) € M}

are linear subspaces of the space L(X,Y).
For (f,g) € M we introduce the number

(L.1) I1f, gl = inf{M > 0;Vaex| f(2), g(z)| < M - ||z|*}.
Then
(1.2) £ (), g(@)| < | f, 9l - l|lz||? for all z € X;

x

1f, 91l = sup{[| f (), g(2)[|; = € X A[lzf| = 1}
sup{[|f(z), g(2)[l; = € X Allz] <1}
(@@

Moreover, the set M is a 2-normed set with the 2-norm defined by the formula

(1.1) (cf. [5]).

(1.3)
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DEFINITION 1.9 ([5]). Let X be a real normed space and Y CY xY be
a 2-normed set, where Y denotes a real linear space. A set N is defined as
follows:

N = {19 € LX) Vayex(f@).9(y) € Y

Arr>0Ve yex |1 f(2), g()| < M - |z - IIyII}-

The set N defined in Definition 1.9 has similar properties:
For every f,g € L(X,Y) the sets

N9 ={f e L(X,Y)(f,9) e N} and Ny ={g € L(X,Y);(f.g) € N'}

are linear subspaces of the space L(X,Y).
For (f,g) € N we introduce the number

(1.4) 1f, gll = inf{M > 0; Y, yex|| f(z), g(W)|| < M - [z - [[yl[}.
Then
(1.5) 1f(@), g < £, 90 - 1zl - ly] for all z,y € X;

I1f; 9l = sup{[[f (), g(W)[; =,y € X Afl] = [yl = 1}
= sup{[[f(2),9(W)l; z,y € X Azf| < 1, [lyll <1}

=sup{%; .y € X Azl £0, o] #o}.

Moreover, the set A is a 2-normed set with the 2-norm defined by the formula

(1.4) (cf. [5]).

2. BANACH-STEINHAUS THEOREMS FOR BOUNDED LINEAR OPERATORS

(1.6)

In this section we will consider properties of sequences of operators, which
are contained in M9, My or N9, Ny for some f,g € L(X,Y). Moreover
we will investigate sequences {(fn,gn);n € N} from M or N. In every
case we will formulate Banach-Steinhaus Theorems. Because any theorem for
sequences of operators from MY or N9 is also true (after making necessary
changes) for sequences of operators from My or Ny, we will give only one
version of theorems.

THEOREM 2.1. Let (X,]| - ||) be a normed space, (Y, -, - ||) a generalized

2-normed space and g € L(X,Y). Then:

(a) If a sequence {fn,n € N} C MY and the sequence of 2 -norms
{Ifn,gll;n € N} is bounded, then for every x € X the sequence
{||fn(x), g(z)|l,n € N} is bounded.

(b) If a sequence {fn,n € N} C N9 and the sequence of 2 -norms

{Ifn,gll;n € N} is bounded, then for every xz,y € X the sequence
{Ifn(@),g@W)|l,n € N} is bounded.
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PRrOOF. (a) Let || fn, g|| < M for every n € N. Then for z € X we have

1£n (@), @)l < [l fargll - 2ll* < M - [l

Hence for every z € X the sequence {|fn(x),g(x)|;n € N} is bounded by
the number M - ||z|2.
(b) If || fn, g]| < M for every n € N, then for z,y € X we have

1fn (), g < N[ fs gll - Nl - Myl < M- ] - [yl

Thus for every z,y € X the sequence {||fn(z),g(y)|;n € N} is bounded by
the number M - ||z|| - ||y]|. O

THEOREM 2.2. Let (X,|| - ||) be a Banach space, (Y,|| -, - ||) a generalized
2-normed space and {fn;n € N} a sequence of elements from N9 for some
g € L(X,Y). Then the following conditions are equivalent:

(a) The sequence of 2-norms {|| fn,gl;n € N} is bounded;
(b) Inr>0Va yex,|z)<1,|yl<1Vnen | fn(z), g(w)|| < M;
(¢) The following conditions are true:

()

(1) VeexIn,>0Vyex,|y<1Vnen|lfu(@), 9(y)| < My;
(i) VyexInm,>oVaex z)<1Vnen || fa(2), g(W)l < My.

PROOF. At first let us suppose that the sequence of 2-norms {|| f,, g||;n €
N} is bounded. From this it follows that there exists a positive number M
such that || fn,g|| < M for each n € N. Thus for z,y € X, |jz|| < 1,|lyl| <1
and n € N we have || fu(z), g(W)[l < [, gll - ll2] - [lyll < M.

Now, let the condition (b) be satisfied. We fix © € X \ {0}. Then for each
y € X, |lyll <1 and n € N we obtain the inequalities:

a9 =|| (o 1) 9| = el 4 (57 ) o) | < 24

If we choose M, = M - ||z||, then we have the condition (i). Moreover, for
x = 0 the condition (i) is satisfied for every positive number M,. Analo-
gously, taking M, = M - |ly|| for each y € X \ {0} and any positive number
for y = 0 we obtain (ii).

Conversely, let (i) and (ii) be satisfied. In X x X let us define a norm by
the formula:

1z 9)ll« = llzll + [lyl| for each (z,y) € X x X.
It is easy to verify that (X x X, || - ||+) is a Banach space. Put
Apm = {(,y) € X x X5 | ful2), 9(y)|| < m}

and -
n=1

for m,n € N. We shall show that sets B,, are closed in (X x X, | - ||4) for
each m € N.
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At first we shall show that sets A, are closed in this space. Let m,n € N
and let {(zx,yr); k € N} C Ay, be a sequence converging to (z',y') € X x X
Then

1 Fn(xn)s gy < m and || (@x, yx) = (29[« — 0,k — oc.

The last condition is equivalent to the following: ||zx—2 || — 0 and ||yr—y || —
0, which implies the convergence of the sequences {zx;k € N}, {yx; k € N}.
As a consequence these sequences are bounded. There exists K > 0 such that
the inequalities ||zx| < K, ||yx|| < K are true for each k¥ € N. Using these
results we get

[ fn(@ ), g )l <mA4+K - | fu,gll - lzx =2 | + K- || fa, gl - llux =y |l
+ s gl - e —2 || lye — v [I-

Letting k — oo we obtain || f,(z'),g(y)|| < m, which means that (z',y") €
Apn. Therefore the sets A, are closed for each n,m € N, and hence the
sets By, are also closed in (X x X, | - ||«)-

Now, we shall show that the equality

XxX=|]J Bn
m=1
is true. Let z,y € X,z # 0. Then H”;”—HH = 1. By virtue (ii) there exists
M, > 0 such that

x
— < .
f"(||:c||>’g(y)H < M, for each n € N

Thus || fn(2), 9(y)|| < My - ||z|| for each n € N.

If z = 0, then [lz]| < 1 and |[fn(2),9(y)ll = [10,9(y)| = 0 = M, - [|0]|.
As a consequence, for every z,y € X the sequence {| fn(z),g9(y)|l;n € N} is
bounded. From this it follows that for any point (z,y) € X x X there exists
n € N such that || fn(z), g(y)|| < m for every m € N, i.e.

(z,y) € U B,,.
m=1

Thus -
XxX =] Bn.

m=1
By the well known Baire theorem there exists a set B, with non-empty
interior. Therefore B,,, contains some closed ball with the center (z,,¥,)
and radius r. Denote it by K((zo,¥,),7). Thus for each n € N and (x,y) €
K((2o,Y0),) we have || fn(x), g(y)[| < mo.
Let us take x,y € X such that ||| < § and [|y|| < §. Then

1@z, )l = [zl + lyll <7 and [[(z, y)ll« = (& + 2o,y + Yo) = (€0, Yo) [« <7
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Therefore || fr(z 4+ %0), 9(y + Yo)|| < mo. In particular || frn(20), 9(yo)|| < mo.
Thus
(@), g < N[ fnlz + 20), 9(y + yo) | + [ fnlz + 20), (w0l
+ 1fn(@o), 9(y + o)l + [ fn(za), 9(wo) |
<2mo + || fa(®) + fal2o), 9(Yo) || + || fr(zo). g
< Amo + || fn(@), 9(Wo) | + 1 fn(z0) g(W)-

So we have shown that the inequalities ||z|| < § and |[y|| < § imply the
condition

) + 9ol

(@), 9@ < dmo + [ fn(2), 9(wo) | + [[fn(20), g(W)]]-
Now, let z,y € X, [|z|| < 1 and |y|| < 1. Because |[5z| < § and [|5y| < 3,
then

1250, 95 < 4o+ 1fa(G2), 9(wo) | + fa(we) 9(G0)1l-

As a consequence we obtain

17 (@), 9 < 20 4 21 fata), 9wl + (), 901

for each n € N. Applying (i) we have that there exists M, > 0 such that for
every y € X, |ly|| <1 and n € N the inequality || fn (o), 9(y)|| < My, is true.
However the assumption (ii) implies there exists M,, > 0 such that for every
z € X,|z]] <1 and n € N the inequality ||fn(x),g(yo)l| < M,, is satisfied.
So

16m, 2
||fn(‘r);g(y)|| S ,,,_2 + ; ’ (Myo + Mwo)

for each n € N and z,y € X such that ||z|| < 1,|y|| < 1. Therefore

Ifnsgll = sup{llfn(z), 9(W)Il; =y € X Aflef <1, [yl <1}
16me + 2r(My, + M,,)
< 2
for each n € N. So the sequence {|| fn,gl/;n € N} is bounded and the proof
is completed. O

Let g € L(X,Y). A sequence {f,;n € N} C NY is pointwise convergent to
feLX,Y), if
VoexVaey lim || fu(x) — f(z).2] =0

(cf. [4]). However, if g is the operator from X on Y, then the sequence { fn;n €
N} C NY is pointwise convergent to f € L(X,Y), if

We will use the above note in the following theorem.
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THEOREM 2.3. Let (X, || - ||) be a Banach space, (Y,|| -, - ||) a generalized
2-normed space and g a linear operator from X on'Y. If {fn;n € N} C NY
is pointwise convergent to f € L(X,Y') and satisfies one of the conditions (a),
(b), (¢) from Theorem 2.2, then f € N.

PRrROOF. From Theorem 2.2 the sequence of 2-norms {|| fn,gll;n € N} is
bounded. Thus there exists M > 0 such that ||f,,g| < M for each n € N.
For points z,y € X we have

[fn(@); g < ([ fs gll - Nl - Nyl < M- flf] - [yl

So [[£(x), g)Il < |If () = fu(@), g(w)|| + M - ||z[| - [|y[]. Letting n — oo in the
above inequality we obtain

1f (@), g@)ll < M - [=]] - lyll,
which implies f € N9Y. O

DEFINITION 2.4 ([6]). A set A of elements of a normed space X is said
to be linearly dense in X, if the set X, of all linear combinations of elements
from A is dense in X.

THEOREM 2.5. Let A be a linearly dense set in a Banach space (X, | - ||),
(Y|l -, - |I) a generalized 2-normed space such that (Y, 71(Y)) is a Hausdorff
sequentially complete space. Let g be a linear operator from X on Y and
{fa;n € N} C N9. The following conditions are equivalent:

(a) The sequence {fn;n € N} is pointwise convergent to f € L(X,Y) and
the conditions (i),(ii) from Theorem 2.2 are satisfied.

(b) The sequence {fn;n € N} is pointwise convergent to f € N9 on the
set A and the sequence of 2-norms {||fn,gll;n € N} is bounded.

PRrROOF. If the sequence {f,(z);n € N} is convergent to f(z) € Y for
each x € X, then it is convergent also for + € A C X. Moreover - this
follows from Theorem 2.2 and Theorem 2.3 - the sequence {||f»,¢g|;n € N}
is bounded and f € N/9.

Now, we will suppose that the sequence {f,;n € N} is pointwise conver-
gent to f € N9 on the set A and the sequence of 2-norms {||fn, g|l;n € N} is
bounded. By Theorem 2.2 the conditions (i),(ii) hold. Let X, be the vector
subspace of the Banach space X generated by A. So X, is a normed space.

Let x,y € X,. Then x = a1x1 + -+ - 4+ agTr, y = biy1 + - - - + by, where
ai,b; € R,xi,y; € Ai=1,2,...,k,j=1,2,...,t,k,t € N. Thus, it follows
from assumptions on fy, f, g that

[ () = f(x), 9(y)|| =
= [lar(fulz1) = f(21)) + -+ ap(falzr) — f(@r)), brg(yr) + -+ bug(ye) ||
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Using properties of 2-norms we get:

koot
I fn(@) = F@), 9@ <D0 T aiby ||l fal@i) = F(@:), 9(u;)-
i=1 j=1
Because
lim || fn(z:) — f(2:), 9(y;)|| = 0 for each x;,y, € A,

n—oo

then
T [1a(2) = F), 9w =0,

i.e. the sequence {f,;n € N} is convergent to f on X,.

Let || fn,gl| < M for every n € N. Let us take a number ¢ > 0,2 € X
and y € X such that y # 0. Since X, is a dense set in X, we can choose
T, € Xy, T, # 0 such that

o = | < =
T—x —_.
T 6M - lyll
Moreover there exists y, € X, with the property
€
— Yol < =———.

The sequence { fn(z,);n € N} is convergent in (Y,7;(Y)), so it is a Cauchy
sequence in this space. Therefore there exists a number n, such that

| a(w0) = Fin(w0), 9(wo)l| < 5 for each n,m > n,

As a consequence we obtain

1fn() = Fn(@), gW)I| <
< 1fa(@) = (@), @) | + (o) = fin(@o), 9w
Hfm (o) = fin(@), 9w
< N fwngll - Nz = oll - Iyl + 11 Fa(o) = Fn(20), 9y — ) + 9o
s gl - Nl = o]l - 1y
< 2M | — ol - yll + [l fulo) — finlzo), gy — o)
+||fn(5170) - fm(zo)ag(yo)n
< 2Mla = ol - Iyl + | fu) 9 = yo)ll + I fm(@o): 9y = o)l + 5
g
6M]ly]
s gl - Noll - lly = oll + 5

<2M lyll + [ fns gl - ol - 11y = yoll

E p—
6M |||l

for n,m > n,. If y = 0, then the inequality ||fn(x) — fm(2),9(¥)|| =0 < e is
also true.

2 2
< e Mz -y = wol < Se + 2M Jao| .
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Hence we have shown that {f,(z);n € N} is a Cauchy sequence in
(Y, 7.(Y)) for every x € X. Because (Y,71(Y)) is a sequentially complete
space, then the sequence {f,;n € N} is pointwise convergent.

Let us denote

h(z) = lim f,(z) for every z € X.

The fact that (Y,771(Y)) is a Hausdorff space implies h(x) = f(z) for « € A,
ie. (h — f)(x) =0for xz € A. The operator h— f is linear, thus (h— f)(z) =0
for every x € X,. Using Theorem 2.3 we see that h € NY9. Because NY is
a linear subspace, then h — f € AN'9. Thus there exists a positive number K
such that

[(h = F)(@), (W) < K - |[z] - [ly]| for every z,y € X.
Let € > 0,z,y € X,y # 0. Since the set X, is dense in X we can choose
z, € X, such that

€
|z — x| < =——.
Kyl

Then

0<i(h=N)@) gl = lI(h = f)lx—z0)+ (h = f)(xo), g()ll =

= (= Hle—wo), g < K -llz — | - lyll <e
This gives ||[(h — f)(z),9(y)| = 0 for each z € X,y € X \ {0}. Thus h(z) =

f(z) for every x € X. As a consequence we have shown that the sequence
{fn;n € N} is pointwise convergent to f, which finishes the proof. O

THEOREM 2.6. Let (X,|| - ||) be a Banach space, (Y,|| -, - |) a
generalized 2-normed space such that (Y, T1(Y)) is a Hausdorff sequentially
complete space. Let g be a linear operator from X on Y. If a sequence
{fn;m € N} C N9 is pointwise convergent to f € N9 on a linearly dense
set A in X and the sequence of 2-norms {||fn,gll;n € N} is bounded, then
{fn;n € N} is pointwise convergent to f and || f, gl < sup{||fn,gll;n € N}.

PROOF. It follows from Theorem 2.5 that the sequence {f,(z);n € N} is
convergent in Y to f(z) for every z € X. Let us denote M = sup{||fn, gll;n €
N}. Then for every n € N and z,y € X such that ||z|| < 1,|y|]| <1 we have
[/ (), g(y)|| < M. Thus
1), gl < 1 fn(2) = £ (@), g1+ (@), 9| < [ fn () = f (), 9 () ][+ M.

By letting n — co we obtain

1f(@),9)|| < M for z,y € X, ||z <1,[ly| < 1.
This implies || f, g|| < M, which finishes the proof. O
Now, let us consider sequences {(f,gn);n € N} from M or N. Using analo-

gous arguments as in proofs of the foregoing theorems we can show that the
following theorems are true.
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THEOREM 2.7. Let (X,|| - ||) be a normed space and (Y,|| -, - ||) a
generalized 2-normed space.
(@) If {(fn,gn);n € N} C M and the sequence of 2-norms {||fn, gnll;n €
N} is bounded, then for every x € X the sequence {|| fn(x), gn(x)|;n €
N} is bounded.
(b) If {(fn,gn);n € N} C N and the sequence of 2-norms {|| fn,gnll;n €
N} is bounded, then for every x,y € X the sequence {|| frn(z), gn(y)|l;
n € N} is bounded.

THEOREM 2.8. Let (X, || - ||) be a Banach space, (Y, -, - ||) a generalized
2-normed space and {(fn,gn);n € N} a sequence of elements from N. Then
the following conditions are equivalent:

(a) The sequence of 2-norms {|| fn, gnl;n € N} is bounded;
(b) Inr>0Ve yex,zl<1,lyl<1VneN | fn(®), gn(¥) || < M;
(¢) The following conditions are satisfied:
(1) vaXHMI>Ovy€X,||y||§1vn€N||fn(x)7gn(y)” < Mm;
(i) VyexInm,>0Vaex o<1 Vnen || fu(z), gn(y)]] < M,

THEOREM 2.9. Let (X, || - ||) be a Banach space, (Y,|| -, - ||) a generalized
2-normed space with the continuous 2-norm. If a sequence {(fn,gn);n € N} C
N is pointwise convergent to (f,g) € L(X,Y)? and one of three conditions
(a), (b), (¢) of Theorem 2.8 is true, then (f,g) € N.

PRrOOF. Using Theorem 2.8 we have that the sequence of 2-norms
{l|fn, gnll;» € N} is bounded, i.e. there exists M > 0 such that || fp, gn| < M
for each n € N. Let z,y € X be arbitrary. Then

1 (@) gn I < [ fns gull - 2] - lyll < Ml - [|y[]-

Since the 2-norm is continuous, then

17 g = 1 1fa(@), 50} < Ml - Iyl
ie. (f,g9) e N. i

From Theorem 1.5 the following follows

THEOREM 2.10. Let (X,]| - ||) be a normed space, (Y,| -, - |) a gen-
eralized 2-normed space. If a sequence {(fn,gn);n € N} C N is pointwise
convergent to (f,g) € L(X,Y) x L(X,Y) and the 2-norm is continuous, then
the sequence {|| fn (), gn(y)|l;n € N} is bounded for each z,y € X.
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