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Abstract. We describe the pullback construction in the category
of Hilbert C∗-modules (with a suitable class of morphisms) in terms of
pullbacks of underlying C∗-algebras. In the second section the Busby in-
variant for extensions of Hilbert C∗-modules is introduced and it is proved
that each extension is uniquely determined, up to isomorphism, by the
corresponding Busby map. The induced extensions of the underlying C∗-
algebras as well as of the corresponding linking algebras are also discussed.
The paper ends with a Hilbert C∗-module version of a familiar result which
states that a C∗-algebra is projective if and only if it is corona projective.

1. Introduction

A (right) Hilbert C∗-module over a C∗-algebra A is a right A-module
V equipped with an A-valued inner product 〈·, ·〉 such that V is a Banach
space with the norm ‖v‖ = ‖〈v, v〉‖1/2. We refer to [6] for general facts about
Hilbert C∗-modules. The reader may also consult the corresponding chapters
in [10] and in [9].

Given two Hilbert C∗-modules V and W over A and B, respectively, a
map Φ : V → W is called a morphism of Hilbert C∗-modules if there exists
a morphism of C∗-algebras ϕ : A → B such that 〈Φ(x),Φ(y)〉 = ϕ(〈x, y〉) is
satisfied for all x and y in V . When the underlying morphism ϕ has to be
specified, the map Φ is said to be a ϕ-morphism. It is known ([2]) that each ϕ-
morphism is necessarily a linear contraction satisfying Φ(xa) = Φ(x)ϕ(a), x ∈
V, a ∈ A, such that KerΦ = VKerϕ, i.e. the kernel of Φ is the ideal submodule
of V associated to the kernel of ϕ. In particular, if V is full, then Φ is an
injection if and only if ϕ is an injection.
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Typically, morphisms of this kind arise in the following way: consider
an ideal I of A and take the corresponding ideal submodule VI = V I of a
Hilbert A-module V . Then the quotient map q : V → V/VI is a π-morphism
of Hilbert C∗-modules (with π : A → A/I denoting the quotient map on the
underlying C∗-algebra). Such morphisms, together with ideal submodules,
are discussed in more detail in [2]. Let us also note in passing that the class
of all ideal submodules of V coincides with the class of all subbimodules of
the K(V ) − A bimodule V (cf. Remark 1.15 in [2]). Alternatively, as it is
observed in the concluding Remark in [2], this class can be recognized as the
class of all ideals in the linking algebra of V .

A surjective ϕ-morphism Φ : V → W is a unitary operator of Hilbert
C∗-modules if the underlying morphism ϕ is an injection. If this is the case
we say that V and W are unitarily equivalent Hilbert C∗-modules. Unitary
equivalence of full Hilbert C∗-modules is an equivalence relation.

The present paper is a continuation of [3] and provides necessary tools for
a systematic study of extensions of Hilbert C∗-modules. The starting point
is the presence of the maximal extension Vd of a given Hilbert C∗-module
V . For the convenience of the reader we briefly recall the description and
properties of Vd from [3].

Let V be a full Hilbert C∗-module over a (non unital) C∗-algebra A.
Denote by Vd = B(A, V ) the Hilbert C∗-module over the multiplier algebra
M(A) consisting of all adjointable maps from A to V with the inner product
〈r, s〉 = r∗s. Let Γ : V → Vd be defined by Γ(v) = rv where rv : A → V
denotes the ”multiplier” rv(a) = va. Then (Vd,M(A),Γ) is an extension of
V in the following sense: if we identify v in V with Γ(v) in Vd, then V is an
ideal submodule of Vd corresponding to the ideal A of M(A). The extended
module Vd has the following universal property: Let ϕ : A → B be an injective
morphism of C∗-algebras such that ϕ(A) is an (essential) ideal in a C∗-algebra
B and let λ : B →M(A) be the resulting morphism acting as the identity on
A. Let W be a Hilbert B-module. Suppose that Φ : V →W is a ϕ-morphism
of Hilbert C∗-modules with Φ(V ) = V ϕ(A), so that (W,B,Φ) is another
(essential) extension of V . Then there exists a λ-morphism Λ : W → Vd such
that ΛΦ = Γ. Since the maps λ and Λ are injections precisely when ϕ(A) is
an essential ideal in B, this shows that Vd is the largest essential extension of
V ([3], Theorem 1.1).

Further, given an essential extension (W,B,Φ) of V , we define a (variant
of) strict topology τV on W by the family of seminorms w 7→ ‖〈Φ(v), w〉 ‖, v ∈
V and w 7→ ‖wϕ(a)‖, a ∈ A. It turns out that V is strictly dense in Vd and
that Vd is complete with respect to the strict topology τV . Moreover, each
essential extension of V complete with respect to τV is unitarily equivalent
to Vd. Note that in the case V = A the extended module Vd is nothing else
than the multiplier algebra M(A) and τV coincides with the usual (C∗) strict
topology on M(A).
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Finally, Vd coincides (up to the identification v ↔ rv) with V whenever
either A or K(V ) is a unital C∗-algebra.

We end the list of analogies with multiplier algebras with the following
property of the largest extension Vd. Given a surjective morphism of Hilbert
C∗-modules Φ : V → W , it is not hard to see that there exists Φ : Vd → Wd,
an extension of Φ in the sense Φ(rx) = rΦ(x), ∀x ∈ V . What is more, it
is proved in [1] that if V is a countably generated Hilbert C∗-module over
a σ-unital C∗-algebra, then Φ is also a surjection - a fact which serves as a
Hilbert C∗-module version of the noncommutative Tietze extension theorem
(cf. [6], Proposition 6.8).

All of this shows that Vd can be regarded as the Hilbert C∗-module ana-
logue of the multiplier algebra. Hence in the sequel Vd will be referred to as
the multiplier module of a Hilbert C∗-module V .

Let us now take a HilbertA-module V and consider an extension (W,B,Φ)
of V , i.e. an exact sequence of Hilbert C∗-modules and their morphisms:

0 → V
Φ→ W

q→ W/Im Φ → 0. If we regard the maximal extension, namely

0 → V
Γ→ Vd

qd→ Q(V ) → 0 (with Q(V ) denoting the quotient Vd/ImΓ) as
fixed, then by the described property of Vd there exists a morphism Λ : W →
Vd and it is easy to define the Busby morphism ∆W : W/Im Φ → Q(V ) in
terms of Λ. Following the theory of extensions of C∗-algebras one may ask:
given a morphism of Hilbert C∗-modules ∆ : Z → Q(V ), does there exists an
extension (W,B,Φ) such that the induced Busby map ∆W coincides with ∆?

To answer this question we first describe the pullback construction for
Hilbert C∗-modules. The pullback of Hilbert C∗-modules is obtained in
Proposition 2.3 as their restricted direct sum over the corresponding restricted
direct sum of underlying C∗-algebras. We then in Section 2 show that the
Busby map is the invariant determining an extension uniquely, up to isomor-

phism. We also discuss, for an extension 0 → V
Φ→ W

q→ W/Im Φ → 0, the

induced extensions 0→ A φ→ B
π→ B/Imφ→ 0 and 0→K(V )

Φ+

→ K(W )
q+→

K(W/Im Φ) → 0 of underlying C∗-algebras as well as the induced extension
of the corresponding linking algebra.

At the end two applications are demonstrated. First, it is proved that
the process of forming multiplier modules preserves pullbacks. The other is a
Hilbert C∗-module version of a familiar result which states that a C∗-algebra
is projective if and only if it is corona projective.

We end this introductory section by fixing some of our notations which
will be used throughout the paper. If V and W are Hilbert A-modules, we
denote by B(V,W ) the Banach space of all adjointable operators from V to
W . The ideal of ”compact” operators (generated by all operators of the form
θx,y, θx,y(v) = x〈y, v〉) from V to W is denoted by K(V,W ). When V =
W we write B(V ) and K(V ) instead of B(V, V ) and K(V, V ), respectively.
When a C∗-algebra A is considered as a Hilbert A-module with the inner



346 D. BAKIĆ AND B. GULJAŠ

product 〈a, b〉 = a∗b, then A 'K(A) and M(A) ' B(A). The corresponding
identifications a ↔ Ta and m ↔ Tm, with Ta and Tm denoting the left
translations by a ∈ A resp. m ∈ M(A), will be used freely. Remaining
notations are defined in context.

2. Pullback diagrams of Hilbert C∗-modules

Recall from 2.2 in [8] that a commutative diagram of C∗-algebras

(2.1)
A δ2−→ A2

↓ δ1 ↓ ϕ2

A1
ϕ1−→ C

is a pullback if Ker δ1 ∩ Ker δ2 = {0} and if every other coherent pair of
morphisms λ1 : B → A1, λ2 : B → A2 (coherent in the sense ϕ1λ1 = ϕ2λ2)
from a C∗-algebra B factors throughA, i.e. there exists a morphism λ : B → A
such that λ1 = δ1λ and λ2 = δ2λ.

It is easily verified that the morphism λ is uniquely determined with the
above property. Further, given a diagram

(2.2)

A2

↓ ϕ2

A1
ϕ1−→ C

of C∗-algebras, it is known that there exists a C∗-algebra A together with
maps δ1,2 : A → A1,2 such that (1) is a pullback diagram. One easily veri-
fies that A is necessarily unique, up to isomorphism; hence A is said to be
the pullback for the triple (A1,A2, C) with linking morphisms ϕ1, ϕ2. The
pullback A is isomorphic to the restricted direct sum

(2.3) A1 ⊕C A2 = {(a1, a2) ∈ A1 ⊕A2 : ϕ1(a1) = ϕ2(a2)}
while δ1 and δ2 are identified with the projections on first and second coordi-
nates, respectively.

Suppose now that we are given a diagram

(2.4)

V2

↓ Φ2

V1
Φ1−→ W

of Hilbert C∗-modules V1, V2,W over C∗-algebrasA1,A2, C, respectively. The
above description indicates how it can be completed to a pullback diagram of
Hilbert C∗-modules. First observe that there is the induced diagram (2.2) of
C∗-algebras.

Lemma 2.1. Let Φ1 : V1 →W and Φ2 : V2 →W be morphisms of Hilbert
C∗-modules, let ϕ1 : A1 → C and ϕ2 : A2 → C denote the corresponding
morphisms of underlying C∗-algebras. Denote by V1⊕W V2 the set {(v1, v2) ∈
V1 ⊕ V2 : Φ1(a1) = Φ2(a2)}. Then V1 ⊕W V2 is a Hilbert C∗-module (with
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operations inherited from a Hilbert A1⊕A2-module V1⊕V2) over the restricted
direct sum A1 ⊕C A2.

Proof. Straightforward verification.

Remark 2.2. (a) V1 ⊕W V2 is called the restricted direct sum of Hilbert
C∗-modules. If V1 and V2 are full, then V1 ⊕ V2 is a full A1 ⊕A2-module and
one easily conclude that V1 ⊕W V2 is also a full module over A1 ⊕C A2.

(b) Let us define ∆1 : V1 ⊕W V2 → V1 and ∆2 : V1 ⊕W V2 → V2 by
∆1(v1, v2) = v1 and ∆2(v1, v2) = v2, respectively. Then, obviously, ∆i is a
δi-morphism of Hilbert C∗-modules where δi : A1 ⊕C A2 → Ai, i = 1, 2 are
the corresponding projections.

Proposition 2.3. Let V1, V2,W be Hilbert C∗-modules with linking mor-
phisms Φ1 and Φ2 as in (2.4). Then

(2.5)
V1 ⊕W V2

∆2−→ V2

↓ ∆1 ↓ Φ2

V1
Φ1−→ W

with the maps ∆1, ∆2 from Remark 1.2(b) is a pullback diagram of Hilbert C∗-
modules in the sense: Φ1∆1 = Φ2∆2, Ker∆1 ∩Ker∆2 = {0} and every other
coherent pair of morphisms Λ1 : X → V1, Λ2 : X → V2 (where coherence
means Φ1Λ1 = Φ2Λ2) from a full Hilbert C∗-module X factors through V1⊕W
V2, i.e. there exists a morphism Λ : X → V1 ⊕W V2 such that Λ1 = ∆1Λ and
Λ2 = ∆2Λ.

Proof. Assume that X is a full Hilbert B-module and that Λ1 : X →
V1, Λ2 : X → V2 is a coherent pair of morphisms; let the underlying mor-
phisms of C∗-algebras be denoted by λ1 : B → A1, λ2 : B → A2, re-
spectively. For x in X we then have ϕ1λ1(〈x, x〉) = 〈Φ1Λ1(x),Φ1Λ1(x)〉 =
〈Φ2Λ2(x),Φ2Λ2(x)〉 = ϕ2λ2(〈x, x〉). Since X is by supposition full, this shows
that (λ1, λ2) is a coherent pair of morphisms of C∗-algebras; here coherence
is understood with respect to the corresponding diagram of underlying C∗-
algebras. Let λ : B → A1 ⊕C A2 be the resulting morphism. Thus we have
the following diagram of C∗-algebras

(2.6)

A1
δ1
↗

ϕ1

↘
B λ−→ A1 ⊕C A2 C

δ2
↘

ϕ2

↗
A2

Observe that λ is defined by λ(b) = (λ1(b), λ2(b)) and satisfies λ1 = δ1λ,
λ2 = δ2λ. Let us now define Λ : X → V1 ⊕W V2 by Λ(x) = (Λ1(x),Λ2(x)) to
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obtain a diagram corresponding to the above diagram (2.6):

(2.7)

V1
∆1

↗
Φ1

↘
X

Λ−→ V1 ⊕W V2 W
∆2

↘
Φ2

↗
V2

It remains to see that Λ is a λ-morphism of Hilbert C∗-modules and to verify
(evident) equalities Λ1 = ∆1Λ and Λ2 = ∆2Λ. We omit the details.

Remark 2.4. Since unitary equivalence is an equivalence relation only
when applied to full Hilbert C∗-modules, we must assume that V1 and V2

are full in order to ensure uniqueness in the above construction. Indeed, if
V1 and V2 are full Hilbert C∗-modules then the pullback V1 ⊕W V2 for the
triple (V1, V2,W ) with linking morphisms Φ1 and Φ2 as in (2.4) is by Remark
2.2 also a full Hilbert C∗-module, hence uniquely determined, up to unitary
equivalence.

3. The Busby invariant

Let V be a full Hilbert C∗-module. Consider an arbitrary extension
(W,B,Φ) of V such that W is a full Hilbert B-module. By definition ([3]), Φ
is a ϕ-morphism where ϕ : A → B is an injective morphism of C∗-algebras
such that Imϕ is an ideal in B and Im Φ = W Imϕ. Thus, we have an exact

sequence of Hilbert C∗-modules 0 → V
Φ→ W

q→ W/Im Φ → 0 supported by

the corresponding exact sequence of C∗-algebras 0→ A ϕ→ B π→ B/Imϕ→ 0.
We say that (W,B,Φ) is an essential extension if Imϕ is an essential ideal
in B. Now take the largest essential extension Vd of V ; that is the sequence

0→ V
Γ→ Vd

qd→ Q(V )→ 0 where Γ(x) = rx, rx : A → V, rx(a) = xa.
By Theorem 1.1 from [3] there exists a morphism of Hilbert C∗-modules

Λ : W → Vd satisfying ΛΦ = Γ. Observe that Λ is a λ-morphism where
λ : B → M(A) is the unique morphism of C∗-algebras such that λϕ is the
identity on A. We start this section with two comments concerned with the
morphism Λ.

First, it is known that Vd need not be a full Hilbert C∗-module over
M(A). In the sequel, we shall often regard Vd as a full Hilbert C∗-module over
〈Vd, Vd〉 ⊆ M(A) (where 〈Vd, Vd〉 denotes the closed twosided ideal in M(A)
generated by all products 〈r, s〉, r, s ∈ Vd). However, we still may regard Λ as
an λ-morphism since Imλ = λ(〈W,W 〉) = 〈Λ(W ),Λ(W )〉 ⊆ 〈Vd, Vd〉 ⊆M(A).

Another property of the map Λ we state in an independent lemma.
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Lemma 3.1. Let V be a full Hilbert C∗-module, let (W,B,Φ) be an ex-
tension of V and let Λ : W → Vd be the resulting morphism of Hilbert C∗-
modules. Then Λ is uniquely determined by the property ΛΦ = Γ.

Proof. Suppose that there is another morphism of Hilbert C∗-modules
Λ′ : W → Vd such that Λ′Φ = Γ. First observe that the last equality implies
that Λ′ is also a λ-morphism since λ : B →M(A) is the only morphism such
that λϕ is the identity on A.

By Proposition 1.2 from [3] the ideal submodule W Im Φ is strictly dense
in W . Explicitely: if (ej) is an approximate unit for A, then w = limj wϕ(ej)
is satisfied for each w in W . Now we observe that each morphism of Hilbert
C∗-modules is strictly continuous (this can be seen as in the proof of Propo-
sition 3 in [1]). Note also that, since wϕ(ej) belongs to the ideal submod-
ule W Imϕ = Im Φ we may write wϕ(ej) = Φ(xj) for (necessarily unique)
xj ∈ V . Therefore, Λ′(w) = limj Λ′(wϕ(ej)) = limj Λ′(Φ(xj)) = limj Γ(xj) =
limj Λ(Φ(xj)) = limj Λ(wϕ(ej)) = Λ(w).

Let us now take again an arbitrary extension (W,B,Φ) of a full Hilbert
C∗-module V . Comparing it with the maximal extension Vd one obtains the
following diagrams of Hilbert C∗-modules and C∗-algebras, respectively:
(3.1)

V
Φ−→ W

q−→ W/Im Φ A ϕ−→ B π−→ B/Imϕ
↓ Λ ↓ ∆ ↓ λ ↓ δ

V
Γ−→ Vd

qd−→ Q(V ) A −→ 〈Vd, Vd〉 πd−→ 〈Vd, Vd〉/A
Here δ : B/Imϕ → 〈Vd, Vd〉/A ⊆ Q(A) denotes the Busby invariant corre-
sponding to the extension B of A defined by δ(π(b)) = πd(λ(b)), b ∈ B.

In an analogous way we define (belatedly) ∆ : W/Im Φ → Q(V ) by
∆(q(w)) = qd(Λ(w)), w ∈ W . First observe that the definition is unam-
biguous: if q(w) = 0 then w = Φ(v) ∈ Im Φ; hence Λ(w) = ΛΦ(v) = Γ(v)
and, finally, qd(Λ(w)) = 0. Secondly, we claim that ∆ is a δ-morphism of
Hilbert C∗-modules. Indeed, 〈∆(q(w)),∆(q(w))〉 = 〈qd(Λ((w)), qd(Λ((w))〉 =
πdλ(〈w,w〉) = δπ(〈w,w〉) = δ(〈q(w), q(w)〉), ∀w ∈W .

Definition 3.2. Let V be a full Hilbert C∗-module. The morphism ∆
from the preceding discussion is called the Busby invariant corresponding to
an extension (W,B,Φ) of V .

Proposition 3.3. Let (W,B,Φ) be an extension of V such that W is a
full Hilbert B-module. Then the Busby invariant ∆ is an injection if and only
if W is an essential extension of V .

Proof. By [3], Theorem 1.1, W is an essential extension of V if and only
if Λ is an injection (and if and only if λ is an injection). Assume first that
Λ is injective. Then ∆(q(v)) = 0 ⇒ qd(Λ(w)) = 0 ⇒ Λ(w) = Γ(v) for some
v ∈ V ⇒ Λ(w) = ΛΦ(w))⇒ w = Φ(v)⇒ q(w) = 0.
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Conversely, if ∆ is an injection then Λ(w) = 0 ⇒ qd(Λ(w)) = 0 ⇒
∆(q(w)) = 0 ⇒ q(w) = 0 ⇒ w = Φ(v) for some v ∈ V and now 0 = Λ(w) =
ΛΦ(v) = Γ(v)⇒ v = 0; in particular w = Φ(v) = 0.

Proposition 3.4. Let V be a full Hilbert A-module and let ∆ : Z → Q(V )
be a morphism of full Hilbert C∗-modules. Then there exists an extension W
of V whose Busby invariant ∆W coincides with ∆.

Proof. Let us assume, just to make our notations simpler, 〈Vd, Vd〉 =
M(A) (keeping in mind the possibility 〈Vd, Vd〉 6= M(A); however it is evident
that the argument below does not depend on the assumed equality). Observe
that in this case the quotient 〈Vd, Vd〉/A is equal to the corona algebra Q(A).
Let ∆ be a δ-morphism where δ : C → Q(A) (so that Z is a full Hilbert
C-module). Consider a diagram of Hilbert C∗-modules together with the
corresponding diagram of underlying C∗-algebras:

(3.2)

C Z
↓ δ ↓ ∆

A −→ M(A)
πd−→ Q(A) V

Γ−→ Vd
qd−→ Q(V )

After performing the pullback constructions in both categories we get

(3.3)
M(A)⊕Q(A) C κ2−→ C Vd ⊕Q(V ) Z

p2−→ Z
↓ κ1 ↓ δ ↓ p1 ↓ ∆

M(A)
πd−→ Q(A) Vd

qd−→ Q(V )

Now consider the extension 0 → V
Γ′

→ Vd ⊕Q(V ) Z
p2→ Z → 0 with Γ′(v) =

(Γ(v), 0). Denote the corresponding Busby invariant by ∆′. We claim ∆′ = ∆.
Let Λ′ : Vd⊕Q(V )Z → Vd be the associated map into the multiplier module

Vd. Note that Λ′Γ′ = Γ and p1Γ
′ = Γ. It follows by Lemma 3.1 Λ′ = p1. This

means that the action of ∆′ is in fact described in terms of p1. Explicitly: for
(r, z) ∈ Vd ⊕Q(V ) Z we have ∆′p2(r, z) = ∆′(z) = qdp1(r, z) = qd(r1) = ∆(z).
(The last equality is obtained by the definition of the restricted direct sum).

Now we fix a Hilbert C∗-module V . Let (W,B,Φ) be an extension of V
and denote by Z the quotient W/Im Φ. Then we say that (W,B,Φ) (or W )
is an extension of V by Z. An extension (W,B,Φ) is said to be full if W is a
full Hilbert B-module. We introduce an equivalence relation in the set of full
extensions of V by Z in the standard way.

Definition 3.5. Let V be a full Hilbert C∗-module. We say that the full
extensions (W,B,Φ) and (W ′,B′,Φ′) of V by Z are equivalent if there exists
a unitary operator of Hilbert C∗-modules Ψ : W → W ′ such that the following
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diagram commutes:

(3.4)

V
Φ−→ W

q−→ Z
↓ id ↓ Ψ ↓ id

V
Φ′

−→ W ′ q′−→ Z

Theorem 3.6. Let V be a full Hilbert A-module. Then the set of equiv-
alence classes of full extensions of V by a full Hilbert C∗-module Z is in a
bijective correspondence with the set of all morphisms of Hilbert C∗-modules
∆ : Z → Q(V ).

Proof. It only remains to prove the following assertion: let (W,B,Φ)

be a full extension of V by Z with the Busby invariant ∆ and let 0 → V
Γ′

→
Vd ⊕Q(V ) Z

p2−→ Z → 0 be the extension from the proof of Proposition 3.4.
Then there exists a unitary operator of Hilbert C∗-modules Θ : W → Vd⊕Q(V )

Z making the following diagram commutative:

(3.5)

V
Φ−→ W

q−→ Z
↓ id ↓ Θ ↓ id

V
Γ′

−→ Vd ⊕Q(V ) Z
p2−→ Z

Denote by C the underlying algebra of Z. Observe that we already have
the corresponding commutative diagram of C∗-algebras (again the equality
〈Vd, Vd〉 = M(A) will be assumed for simplicity) with the isomorphism θ :
B →M(A)⊕Q(A) C:

(3.6)

A ϕ−→ B π−→ C
↓ id ↓ θ ↓ id

A ι′−→ M(A)⊕Q(A) C
i2−→ C

If we again denote by λ : B →M(A) the only morphism such that λϕ is the
identity on A, then the above isomorphism θ is defined by θ(b) = (λ(b), π(b)).

Let us now define analogously Θ(w) = (Λ(w), q(w)) (with Λ : W → Vd as
in diagram (3.1)). This is well defined in the sense that Θ does take values in
Vd ⊕Q(V ) Z by definition of the Busby invariant: qdΛ(w) = ∆q(w), w ∈W .

Obviously, Θ is a θ-morphism and the diagram (3.5) is commutative by
the definition of the restricted direct sum. Hence it only remains to see that
Θ is a surjection.

Let (r, q(v)) ∈ Vd ⊕Q(V ) Z be given; note qd(r) = ∆q(w). We first claim
that r−Λ(w) ∈ Im Γ. This is indeed true because Ker qd = and qd(r−Λ(w)) =
qd(r) − qdΛ(w) = qd(r) −∆q(w) = 0. Thus r − Λ(w) = Γ(v) for a uniquely
determined v ∈ V . Finally, Θ(Φ(v) + w) = (Λ(Φ(v) + w), q(Φ(v) + w)) =
(r, q(v)).

We end the general discussion by a comment on split extensions.
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Definition 3.7. An extension W of V by Z is called a split extension if
there is a morphism of Hilbert C∗-modules Ψ : Z → W such that qΨ = idZ .

Remark 3.8. Consider a split extension W of V by Z and the corre-
sponding diagram

(3.7)
V

Φ−→ W
Ψ q←→ Z

↓ id ↓ Λ ↓ ∆

V
Γ−→ Vd

qd−→ Q(V )

Obviously, we can define ∆0 : Z → Vd by ∆0 = ΛΨ and it turns out that ∆0

is a lift for ∆.
Conversely, given a morphism of Hilbert C∗-modules ∆0 : Z → Vd, define

∆ : Z → Q(V ) by ∆ = qd∆0. Now apply Proposition 3.4 to obtain the
extension Vd ⊕Q(V ) Z whose Busby invariant is ∆. By a routine verification
(which we omit) one sees that the map Ψ : Z → Vd⊕Q(V )Z, Ψ(z) = (∆0(z), z)
makes this extension split.

One should also note that, given a full split extension of a full Hilbert C∗-
module, the corresponding extension of underlying C∗-algebras is also split.

In the sequel we show that an extension of Hilbert C∗-modules produces
an exact sequence of the corresponding linking algebras. We first need to
describe how morphisms of Hilbert C∗-modules induce morphisms of the cor-
responding algebras of ”compact” operators.

Consider the quotient A/I-module V/VI of a Hilbert A-module V over
the ideal submodule VI = V I associated with an ideal I of A and denote as
before by q : V → V/VI the quotient morphism of Hilbert C∗-modules.

Take an arbitrary adjointable operator T ∈ B(V ). Since VI is obvi-
ously invariant for T (because T is A-linear), there is a well defined operator
∧
T on V/VI given by

∧
T (q(v)) = q(Tv). Note also

∧
θx,y= θq(x),q(y), x, y ∈

V . It is proved in Corollary 1.18 from [2] that the map β : B(V ) →
B(V/VI), β(T ) =

∧
T is a morphism of C∗-algebras such that β(K(V )) =

K(V/VI). In particular, if V is countably generated, then K(V ) is a σ-
unital C∗-algebra ([6], Proposition 6.7), and by the noncommutative Tietze
extension theorem, β is a surjection. In the following remark we denote by β
the restriction of the above described map to ”compact” operators.

Remark 3.9. Let VI be an ideal submodule of a Hilbert C∗-module V .
Then the quotient map q : V → V/VI induces a surjective morphism β of the
corresponding C∗-algebras of ”compact” operators. By [2], Proposition 1.17,
the kernel of the map β : K(V )→K(V/VI) coincides with K(VI).

Consequently, each surjective morphism Φ : V → W induces a surjective
morphism Φ+ : K(V ) → K(W ) such that Φ+(θx,y) = θΦ(x),Φ(y), ∀x, y ∈ V .
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Since unitarily equivalent Hilbert C∗-modules have naturally isomorphic C∗-
algebras of ”compact” operators, this follows from the preceding assertion
after passing through the quotient V/KerΦ.

In our next proposition the hypothesis in the concluding assertion of above
remark, namely that Φ should be a surjection, will be omitted. First observe
that by a result of D. Blecher (see [4], Theorem 3.8) the ideal of all ”com-
pact” operators on a Hilbert A-module V , K(V ), can be written in the form
K(V ) = V ⊗hA V ∗. Here ⊗hA denotes the Haagerup tensor product and V ∗

stands for the antilinear version of V (cf. equation (3.15) below where V ∗ is
identified with the space of ”compact” operators K(V,A)).

Proposition 3.10. Let Φ : V →W be a morphism of Hilbert C∗-modules.
Then there is a unique morphism Φ+ : K(V )→K(W ) satisfying Φ+(θx,y) =
θΦ(x),Φ(y), ∀x, y ∈ V .

Proof. By the preceding observation we can write K(V ) = V ⊗hA V ∗

and K(W ) = W ⊗hB W ∗. Now one easily verifies that the map Φ+ : V ⊗hA
V ∗ →W⊗hBW ∗ given on elementary tensors by Φ+ : x⊗Ay

∗ 7→ Φ(x)⊗BΦ(y)∗

is well defined and contractive.

Recall that there is a natural left Hilbert C∗-module structure on each
right Hilbert C∗-module V . Namely, V is a natural left K(V )-module with
the K(V )-valued inner product on V is defined by [x, y] = θx,y. Observe that
the resulting norm coincides with the original norm on V .

Corollary 3.11. Let Φ : V →W be a morphism of Hilbert C∗-modules
and let Φ+ be the morphism from the preceding proposition. Then Φ is a Φ+-
morphism of left Hilbert C∗-modules V and W . The map Φ is an injection if
and only if Φ is an injection.

Proof. [Φ(x),Φ(y)] = Φ+([x, y]) is just the assertion Φ+(θx,y) =
θΦ(x),Φ(y) from the preceding proposition. In particular, we note that Φ is

necessarily Φ+-linear in the sense Φ(Tx) = Φ+(T )Φ(x), T ∈K(V ), x ∈ V .
Since V is a full left K(V )-module, the second assertion follows from

Theorem 2.3 in [2].

Theorem 3.12. Let (W,B,Φ) be a full essential extension of a full Hilbert
A-module V . Consider the diagram

(3.8)
V

Φ−→ W
q−→ W/ImΦ

↓ id ↓ Λ ↓ ∆

V
Γ−→ Vd

qd−→ Q(V )

Then the sequence

(3.9) 0 −→K(V )
Φ+

−→K(W )
q+−→K(W/ImΦ) −→ 0
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induced by the first row in (3.8) is an extension of K(V ). Further, there
exists a well defined morphism ∆+ : K(W/ImΦ) → K(Q(V )) such that
∆+(θq(x),q(y)) = θqdΛ(x),qdΛ(y), ∀x, y ∈ W . The map ∆+ is the Busby invari-
ant corresponding to the extension (3.9).

Proof. Since W is an essential extension, Λ and the Busby map ∆ are
injections by Proposition 3.3. The induced maps Φ+ and q+ are ensured by
Proposition 3.10.

Note that, by the definition of an extension, Im Φ is an ideal submodule
of W which implies that Im Φ+ is an ideal in K(W ); one easily concludes
Im Φ+ = Ker q+. Since by Corollary 3.11 Φ+ is an injection and since q+

is surjective by Remark 3.9, (3.9) is an exact sequence. Further, again by
Remark 3.9, we may write K(W/Im Φ) = K(W )/Im Φ+, thus (3.9) can be
rewritten as

(3.10) 0 −→K(V )
Φ+

−→K(W )
q+−→K(W )/Im Φ+ −→ 0.

Analogously, the second row in (3.8) induces the sequence

(3.11) 0 −→K(V )
Γ+

−→K(Vd)
q+d−→K(Vd)/Im Γ+ −→ 0.

We are going to adjust the above sequence in two steps. First, replace K(Vd)
with M(K(Vd)) = B(Vd). Namely, Γ+ obviously can be regarded as the
map from K(V ) into B(Vd). Concerning q+

d , we can take its canonical

extension (again denoted by q+
d ) to multiplier algebras q+

d : M(K(Vd)) →
M(K(Vd)/Im Γ+). Now observe: if I is an ideal in a C∗-algebra A, then A/I
is an essential ideal in M(A)/I, hence M(A/I) ⊆ M(A)/I. Consequently,
we may write q+

d : M(K(Vd)) → M(K(Vd))/Im Γ+. After all, (3.11) can be
rewritten in the form

(3.12) 0 −→K(V )
Γ+

−→ B(Vd)
q+d−→ B(Vd)/ImΓ+ −→ 0.

The final modification is enabled by Theorem 2.2 in [3] which asserts that
for each Hilbert C∗-module V the C∗-algebras B(V ) and B(Vd) are natu-
rally isomorphic. Thus, (3.12) is recognized as (we write B(V ) in the form
M(K(V )))

(3.13) 0 −→K(V )
Γ+

−→M(K(V ))
q+d−→M(K(V ))/Im Γ+ −→ 0.

Consider now sequences (3.10) and (3.13) together; let us additionally
insert suitable vertical maps.

(3.14)

K(V )
Φ+

−→ K(W )
q+−→ K(W )/Im Φ+

↓ id ↓ ν ↓ η
K(V )

Γ+

−→ M(K(V ))
q+

d−→ M(K(V ))/Im Γ+
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Here η is the Busby invariant and ν : K(V ) → M(K(V )) is the only map
with the property νΦ+ = Γ+. What is obtained is precisely the Busby picture
of the sequence (3.10) (i.e (3.9)).

Now observe that the Λ : W → Vd from diagram (3.8) is an injection and
satisfies ΛΦ = Γ, hence Λ is an essential morphism. By Proposition 3.10 we
have well defined (injective, by 3.11!) morphism of C∗-algebras Λ+ : K(V )→
K(Vd) ⊆M(K(V )). Having in mind all identifications we made, we now find
Λ+Φ+ = Γ+ (it suffices to verify this equality on all operators of the form
θx,y - and this is obvious). This is enough to conclude ν = Γ+.

Finally, we claim η = ∆+. First, as before, we may write K(W/Im Φ) =
K(W )/Im Φ+. The same argument gives K(Vd/V ) = K(Vd)/ImΓ+ ⊆
B(Vd)/Im Γ+; replacing in passing B(Vd) with B(V ) = M(K(V )), we shall
recognize ∆+ as the map ∆+ : K(W )/Im Φ+ → M(K(V ))/Im Γ+. Now the
desired conclusion η = ∆+ follows immediately from the (obvious) equality
η(θq(x),q(y)) = θqdΛ(x),qdΛ(y), ∀x, y ∈W .

We now turn to the induced extensions of linking algebras. Let V be a full
Hilbert A-module. Recall from Lemma 2.32 and Corollary 3.21 in [9] that the
linking algebra L(V ) of V can be described in terms of a Hilbert A-module
A⊕ V :

(3.15) L(V ) =K(A⊕ V ) =

[
K(A) K(V,A)
K(A, V ) K(V )

]
.

Since each operator in K(A, V ) is of the form rx for some x ∈ V , we have

(3.16) L(V ) = {
[
Ta r∗y
rx T

]
: a ∈ A, x, y ∈ V, T ∈K(V )}.

We shall also need the following well known property of the linking algebra
L(V ): if VI is the ideal submodule of V corresponding to an ideal I in A,
then the linking algebra of the quotient V/VI is equal to the quotient of the
corresponding linking algebras:

(3.17) L(V/VI) = L(V )/L(VI).

Suppose that Φ : V → W is a ϕ-morphism of Hilbert C∗-modules such
that there exists the induced morphism Φ+ : K(V )→K(W ). Then there is
a map ΦL of the corresponding linking algebras;

(3.18) ΦL : L(V )→ L(W ), ΦL(

[
Ta r∗y
rx T

]
) =

[
Tϕ(a) r∗Φ(y)

rΦ(x) Φ+(T )

]
.

It is proved in Theorem 2.15 in [2] that ΦL is a morphism of C∗-algebras. In
fact, it turns out that ΦL is the restriction of the map (ϕ⊕Φ)+ to ”compact”
operators, where ϕ ⊕ Φ : A ⊕ V → B ⊕W is a ϕ-morphism of Hilbert C∗-
modules obtained by applying ϕ and Φ componentwise.
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Let us again fix a full essential extension (W,B,Φ) of a full Hilbert A-
module V . Consider the underlying extension

0 −→ A ϕ−→ B π→ B/Imϕ −→ 0

and also the induced extension of K(V ) from Theorem 3.12:

0 −→K(V )
Φ+

−→K(W )
q+−→K(W )/Im Φ+ −→ 0.

By the preceding interpretation of linking algebras there is a sequence of the
corresponding linking algebras

(3.19) 0 −→ L(V )
ΦL

−→ L(W )
qL

−→ L(W/Im Φ) −→ 0.

Comparing (3.19) with two sequences above and using (3.17) applied to the
ideal submodule Im Φ of W , we conclude that (3.19) is an extension of the
linking algebra L(V ):

(3.20) 0 −→ L(V )
ΦL

−→ L(W )
qL

−→ L(W )/L(Im Φ) −→ 0.

Now we can state a corollary concerning induced extensions of linking algebras
analogous to (and derived from) Theorem 3.12.

Corollary 3.13. Let (W,B,Φ) be a full essential extension of a full
Hilbert A-module V . Consider the diagram

V
Φ−→ W

q−→ W/ImΦ
↓ id ↓ Λ ↓ ∆

V
Γ−→ Vd

qd−→ Q(V )

Then the sequence (3.20) induced by the first row of the above diagram is
an extension of L(V ). Further, there exists a well defined morphism ∆L :
L(W )/L(ImΦ)→ L(Q(V )) induced by the maps ∆ and ∆+. The map ∆L is
the Busby invariant corresponding to the extension (3.20).

Proof. Consider the induced diagram of linking algebras

(3.21)

L(V )
ΦL

−→ L(W )
qL

−→ L(W )/L(ImΦ)
↓ id ↓ ΛL ↓ ∆L

L(V )
ΓL

−→ L(Vd)
qL

d−→ L(Vd)/L(Im Γ)

and compare it with the Busby picture of the extension (3.20)

(3.22)
L(V )

ΦL

−→ L(W )
qL

−→ L(W )/L(Im Φ)
↓ id ↓ ξ ↓ ζ
L(V )

ΓL

−→ M(L(V ))
π−→ Q(L(V ))
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We only need to introduce the map ∆L and to show that it is equal to the
above Busby map ζ. But this is already done in Theorem 3.12 - up to the
following observation: since Vd = B(A, V ), we can write L(Vd) in the form

(3.23) L(Vd) =

[
〈Vd, Vd〉 B(V,A)
B(A, V ) K(Vd)

]
⊆
[

B(A) B(V,A)
B(A, V ) B(Vd)

]

and now we once again appeal Theorem 2.2 from [3] (B(Vd) = B(V )) to write

L(Vd) ⊆
[

B(A) B(V,A)
B(A, V ) B(Vd)

]
=

[
B(A) B(V,A)
B(A, V ) B(V )

]
= B(A⊕ V ) =

(3.24) = M(K(A⊕ V )) = M(L(V )).

This shows that ΛL can be regarded as a map from L(W ) into M(L(V )).
Now we conclude ΛL = ξ since ξ is the only morphism satisfying ξΦL = ΓL.
The remaining equality, namely ∆L = ζ, then follows easily.

We end the paper with two additional results concerned with pullbacks
of Hilbert C∗-modules. The first one shows that process of forming multiplier
modules preserves pullbacks, thus serves as a Hilbert C∗-module version of
Proposition 7.2 from [8].

Proposition 3.14. Let

V
∆2−→ V2

↓ ∆1 ↓ Φ2

V1
Φ1−→ W

be a pullback diagram of full Hilbert C∗-modules in which all morphisms are
surjective. Then the extended diagram on the multiplier modules

Vd
∆2−→ (V2)d

↓ ∆1 ↓ Φ2

(V1)d
Φ1−→ Wd

is also a pullback diagram of Hilbert C∗-modules.

Proof. Recall from the proof of Proposition 1 in [1] that, given a surjec-
tive morphism of Hilbert C∗-modules Ψ : X → Y over a morphism ψ : A → B
of the underlying C∗-algebras, the extension Ψ : Xd → Yd is given by
Ψ(r)(ψ(a)) = Ψ(r(a)), r ∈ Xd. Therefore KerΨ = {r ∈ Xd : Im r ⊆ KerΨ}.

Another general observation we need is that Xd is the largest essential
extension of a Hilbert C∗-module X .

Now the proof follows by repeating, mutatis mutandis, the argument from
7.2 in [8].
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The following theorem may be usefully in a study of various notions of
projectivity. It is a Hilbert C∗-module version of a result which states that
a C∗-algebra is projective if and only if it is corona projective ([7], Theorem
10.1.9). Again, the proof below follows the proof for C∗-algebras without
changes.

Theorem 3.15. Let q : V → Z be a surjective morphism of full Hilbert
C∗-modules, denote Ker q by X. Suppose that a full Hilbert C∗-module P has
the property that for each morphism Ψ : P → Q(X) there exists a morphism

Ψ̃ : P → Xd such that Ψ = qdΨ̃. Then for each diagram of the form

(3.25)

P
↓ Φ

V
q−→ Z

there exists a morphism Φ̃ making the diagram

(3.26)

P
Φ̃

↙ ↓ Φ

V
q−→ Z

commutative.

Proof. Consider diagram (3.25) and the extension 0 → X
ι→ V

q→
Z −→ 0 with the corresponding Busby invariant ∆ : Z → Q(V ) to obtain the
following diagram

(3.27)

P
↓ Φ

X
ι−→ V

q−→ Z
↓ id ↓ Λ ↓ ∆

X
Γ−→ Xd

qd−→ Q(X)

By assumption applied to the map ∆Φ, there exists a morphism Ψ̃ : P → Xd

such that ∆Φ = qdΨ̃. By Theorem 3.6 V is (unitarily equivalent to) the
pullback for the triple (Xd, Z,Q(x)). Applying the pullback property to the

coherent pair of morphisms Φ and Ψ̃ we get the map Φ̃ which serves as a lift
for Φ.
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Department of Mathematics
University of Zagreb
P.O.Box 335
10002 Zagreb
Croatia
E-mail : guljas@math.hr

Received : 26.11.2002.

Revised : 09.01.2003.


