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ABSTRACT. This paper concerns the theory of approximate resolu-
tions and its application to fractal geometry. In this paper, we first charac-
terize a surjective map f : X — Y between compact metric spaces in terms
of a property on any approximate map f : X — Y where p: X — X
and q : Y — Y are any choices of approximate resolutions of X and Y,
respectively. Using this characterization, we construct a category whose
objects are approximate sequences so that the box-counting dimension,
which was defined for approximate resolutions by the authors, is invariant
in this category. To define the morphisms of the category, we introduce
an equivalence relation on approximate maps and define the morphisms as
the equivalence classes.

1. INTRODUCTION

The notion of approximate resolution has played important roles in many
problems in topology. In particular, it is useful when we wish to study maps
between topological spaces even if the spaces are compact metric spaces. In-
deed, if we are given a map f : X — Y between compact metric spaces
and polyhedral approximate resolutions p: X — X and g : Y — Y, it is
not possible in general to obtain a map of systems f : X — Y with strict
commutativity which represents f : X — Y. However, this becomes pos-
sible if we replace strict commutativity by approximate commutativity [2].
Moreover, the category CTOP3 5 of Tychonoff spaces and continuous maps is
in one-to-one correspondence with the category APRESpoL whose objects are
all cofinite polyhedral approximate resolutions and whose morphisms are the
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equivalence classes of approximate maps for a certain equivalence relation [2,
Theorem 8.13].

On the other hand, there has been an approach using approximate resolu-
tions to various notions in fractal geometry. In [4], the notion of box-counting
dimension was defined for approximate resolutions. This generalizes the tra-
ditional notion of box-counting dimension for subsets of Euclidean spaces [1]
and gives a useful tool for computations.

Covering dimension is invariant in the category TOP of topological spaces
and continutous maps. However, box-counting dimension is not invariant in
that category since for each nonnegative real number r there is a Cantor set
X, with box-counting dimension r [4].

This paper mainly consists of two results. In the first part, we characterize
a surjective map f : X — Y between compact metric spaces in terms of a
property on any approximate map f : X — Y where p: X — X and q :
Y — Y are any choices of approximate resolutions of X and Y, respectively.
In the second part, we construct a category whose objects are approximate
sequences so that the box-counting dimension is invariant in this category. A
category in which the box-counting dimension is invariant was earlier obtained
by the authors [5], but the morphisms were based on Lipschitz maps and bi-
Lipschitz maps. Our approach follows the one that was taken by [2]. To define
the morphisms in the category, we introduce a new equivalence relation on
the approximate maps and define the morphism as the equivalence class.

Throughout the paper, a space means a compact metric space, and a map
means a continuous map unless otherwise stated.

For any space X, let Cov(X) denote the set of all normal open coverings
of X. For U,V € Cov(X), U is said to refine V, in notation, Y < V, provided
for each U € U there is V € V such that U C V. For any subset A of
X and U € Cov(X), let st(A,U) = H{U e U : UNA # 0} and U|A =
{UNA:U eU}. If A= {z}, we write st(z,U) for st({z},U). For each
U € Cov(X), let st = {st(U,U) : U € U}. Let st" U = st(st"U) for each
n =1,2,... and st'U = stU. For any metric space (X,d) and r > 0, let
Uq4(z,7) ={y € X : d(z,y) < r}. For any U € Cov(X), two points z,z’ € X
are U-near, denoted (z,2’) < U, provided z,2’ € U for some U € U. For
any V € Cov(Y), two maps f,g: X — Y between spaces are V-near, denoted
(f,9) <V, provided (f(x),g(z)) <V for each x € X. For each U € Cov(X)
and V € Cov(Y), let fU = {f(U) : U €U} and f~1V ={f"1(V):V € V}.
For U € Cov(X), let Nyy(X) =min{n: X C iG1Ui’ U, e U}.

2. APPROXIMATE RESOLUTIONS AND BOX-COUNTING DIMENSION

In this section we recall the definitions and properties of approximate
resolutions and their box-counting dimensions which will be needed in later
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sections. Although approximate resolutions are defined and useful for arbi-
trary topological spaces, for our purpose they will be defined only for compact
metric spaces. For more details, the reader is referred to [2, 4].
An approzimate inverse sequence (approzimate sequence, in short) X =
{X;,U;, piir } consists of
i) a sequence of spaces X; (called coordinate spaces), i € N;
ii) a sequence of U; € Cov(Xj;), ¢ € N; and
iii) maps p; : Xy — X; for i < i’ where p; = 1x, the identity map on
X;.
It must satisfy the following three conditions:
(A1) (pizrpirir, piar) < U; for i < i’ < i";
(A2) For each i € N and U € Cov(X;), there exists ¢ > ¢ such that
(Piiy Pivio» Piiy) < U for @' < iy <ig; and
(A3) For each i € N and U € Cov(X;), there exists ¢/ > i such that U;» <
piU for i’ < i
An approzimate map p = {p;} : X — X of a space X into an approximate
sequence X = {X;,U;,p;»} consists of maps p; : X — X; for i € N with the
following property:
(AS) For each i € N and U € Cov(X;), there exists i > ¢ such that
(pii”pi”api) < U for 1" > 1.
An approximate resolution of a space X is an approximate map p = {p;} :

X — X of X into an approximate sequence X = {X;,U;, p;i } which satisfies
the following two conditions:

(R1) For each ANR P,V € Cov(P) and map f : X — P, there exist i € N
and a map g : X; — P such that (gp;, f) < V; and

(R2) For each ANR P and V € Cov(P), there exists V' € Cov(P) such that
whenever ¢ € N and g,¢' : X; — P are maps with (gp;,¢'pi;) < V',
then (gpiir, ¢'piir) <V for some ' > i.

THEOREM 2.1 ([2]). An approzimate map p = {p;} : X — X =
{Xi, Ui, piir } is an approzimate resolution of a space X if and only if it satis-
fies the following two conditions:

(B1) For each U € Cov(X), there erists ig € N such that p; 'U; < U for
1> 19; and

(B2) For each i € N and U € Cov(X;), there exists ig > i such that
piir (Xir) Cst(pi(X),U) for i’ > iy.

THEOREM 2.2 ([6]). Ewvery space X admits an approzimate resolution
p={pi}: X = X ={X,,U;,pirr} such that all X; are finite polyhedra.

Throughout the paper, approzimate resolutions are assumed to have the
property of Theorem 2.2.
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Let X = {X;,U;,pir} and Y = {Y},V;, q;;-} be approximate sequences
of spaces. An approzimate map f = {f;,f} : X — Y consists of a strictly
increasing function f : N — N (i.e., f(i) < f(j) for i < j) and maps f; :
Xy — Y, 5 € N, with the following condition:

(AM) For any j,j’ € N with j < j/, there exists ¢ € N with ¢ > f(j') such
that
(@55 Typsiryirs Fipriiyir) < stV for i’ > .

A map f: X — Y is a limit of f provided the following condition is

satisfied:

(LAM) For each j € N and V € Cov(Yj), there exists j° > j such that
(@557 firpyimysaif) <V for j" > 5",

REMARK 2.3. Following the convention from [2], we use the common
symbol f for the map f : X — Y and for the strictly increasing function
f:N—N

For each map f : X — Y, an approzimate resolution of f is a triple
(p,q, f) consisting of approximate resolutions p = {p;} : X — X =
{X;,Up,piv} of X and q = {¢;} : Y = Y = {Y;,V,,q;s} of Y and of an
approximate map f : X — Y with property (LAM).

THEOREM 2.4 ([2]). Let X and Y be spaces. For any approrimate res-
olutions p : X — X andq :Y — Y, every map f : X — Y admits an
approzimate map f : X — 'Y such that (p,q, f) is an approzimate resolution

of f.

For each approximate sequence X = {X;,U;, piir}, let st X denote the
approximate sequence {X;,stU;, p;ir}. Then there is a natural approximate
map ix = {lx,} : X — stX, where 1y, : X; — X, is the identity map.
For each approximate map p = {p;} : X — X = {X;,U;, piir }, the map
stp={pi} : X — st X = {X;,stU;,p;ir } also satisfies (AS) and hence is an
approximate map. Moreover, if p : X — X is an approximate resolution, so
isstp: X — st X.

For any approximate sequences X = {X;,U;,piv } and Y = {Y;,V;,¢;5: }
and for each approximate map f = {f;,f} : X — Y, the map st f =
{fj, [} st X — stY also satisfies (AM) and hence is an approximate map.
Moreover, if (f,p,q) is an approximate resolution of a map f : X — Y,
then st f : st X — stY also satisfies (LAM) and hence (st f, st p,stq) is an
approximate resolution of f.

Iteratively, we define the approximate sequence st* X as st(st*~! X) and
similarly for the approximate maps st* p and st* f.

Let X be a compact metric space. For each approximate resolution p =
{pi} : X = X = {X;,U;, piir }, consider the following three conditions:

(U) st?U; < p;;'U; for i < j;
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(A) (pijpj,pi) <U; for i < j; and
(NR) p}l stU; < p; 'U; for i < j.
An approximate resolution p = {p;} : X — X = {X;,U;, pirr } is admissi-
ble provided it possesses properties (U), (A), (NR).

PROPOSITION 2.5. Let p = {p;} : X — X = {X;,U;, piir} be an admissi-
ble approximate resolution of X. Then the following properties hold:
1) The family Uy, = {p; *st*U; : i € N} is a normal sequence on X for
k> 0;
2) The approximate resolution st* p = {p;} : X — st? X = {X;, st*Us, pisr}
is admissible for k > 1.

For any approximate resolution p = {p;} : X — X = {X;,U;, pirr }, we
can always find an admissible approximate resolution p’ = {py,} : X — X' =
{ Xk, Uk, pr;k; } by taking a subsequence.

For each approximate resolution p = {p;} : X — X = {X;,U;, pirr }, we
define the upper and lower boz-counting dimensions of p: X — X by

— —1 ; (X
dimp(p: X — X) = lim M
1—00 7
and
1 (X
dimg(p: X — X) = lim Mv
1— 00 ?
where
Bi(X) = lim N, -1, (X;) for i € N,
j—00 Py Ui

Note here that 3;(X) < oo for each i since each ¢ admits ig > 4 such that
Np;jlui (X;) < Ny, (X) for j > io ([4, Proposition 5.1 part 1)]). If the two
values coincide, then we write dimpg(p : X — X)) for the common value and

call it the boz-counting dimension of p: X — X.

THEOREM 2.6. 1) ([4, Proposition 5.2]) If each p; is onto, the defini-
tion is simplified as
S — logs Ny (X;
dimg(p: X —» X) = lim %7.%()

1—00 1

and
logs Ny, (X;
dimp(p: X — X) = lim 28N (X0)
1— 00 ?
2) ([4, Theorem 5.3]) If p: X — X is an admissible approzimate resolu-
tion,
_ logg N -1, (X)
dimp(stp: X — st X) = lim 3 by st

1—00 1
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and

_ logs N -1, (X)
dimp(stp: X — st X) = lim S op st

1—00 1
3) ([4, Proposition 5.5]) If p : X — X is an admissible approzimate
resolution,

dimg(p: X — X) >dimg(stp: X — st X) = dimpg(st?p: X — st? X)
and

dimp(p: X — X) > dimp(stp: X — st X) = dimp(st’p: X — st? X).

3. SURJECTIVE MAPS

In this section we give a characterization of surjective maps in terms of
approximate resolutions, which will be needed in the next section.

For each approximate map f = {f;, f} : X — Y between approximate
sequences X = {X;,U;,piv} and Y = {Y;,V;,q;5}, consider the following
property:

(APS) (Vj € N)(VV € Cov(Y}))(Fjo > 7)(V5" > jo)Fiy > 5)(V5" > jo)
(Hio > f(j/))(VZ > io) :
i (Yir) C st(qjjr firpr(ni(Xi)s V).

THEOREM 3.1. Let f: X =Y be a map, and f = {f;} : X =Y be an
approzimate map such that (f,p,q) is an approximate resolution of f where
p={pi}: X = X ={X;,U;,pivr} and q ={q;}: Y =Y ={Y;,V},q;; } are
approximate resolutions of X and Y, respectively. Then f is surjective if and

only if f satisfies (APS).

PRrROOF. To show the necessity, let j € N, and let V € Cov(Y;). Take
V' € Cov(Yj;) such that st V' < V. Then, by (A3) and (A2) there exists jo > j
such that for j” > 5/ > jo,

(3.1) st? Vi < g1V,

(3.2) (45557 457) < V'

Fix j* > jo. Then, by (B2) and (LAM) there exists jj > j’ such that for
3" > jo,

(3.3) g5 50 (Yjr) € st(qj (Y), Vyr),

(34) (qj/fv QJ'J”fj”pf(]”)) < VJ/

Fix j” > jj. Then, by (3.4),

(35) q]/f(X) g St(QJ’]”f]”pf(j”)(X)7 V]/)
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Since f is surjective, (3.3) implies

(3.6) gy (Vi) € st(gyr f(X), Vyr)-
By (3.5) and (3.6),
(3.7) Gy (Yjr)  st(stlgzgr fipp i) (X): Vir), Vio)-

On the other hand, by (AM) and (AS) there exists i9 > f(j”) such that for
1> i,

(3.8) (firprnyis Qg Finpypmyi) < stVir,

-1 _—1
(39) (pf(J”)7pj(j”)'Lpz) < fj// Qj/j//Vj’-
(3.9) and (3.8) then imply
Qj’j”fj”pf(j”)(X) g (Qj’j”fj”pf ”)'Lpz(X) V]/)
(310) g ( -7 //f]//pj N),L(X) V]/)
C st(st(fyprni(Xi), st Vjr), Vir).
y (3.7), (3.10) and (3.1),
qyv (Yjr) C stst(st(st(fyppi(Xi), st Vyr), Vi), Vye), Vir)
CSt( ’pf])z( ) StQV')
st(fp(i(Xa), 4 V)-
This implies
a55 ¢35 (Yir) © st(ajjr fipyiine(Xi), V).
This together with (3.2) and the fact that st V' <V implies
i (Yir) € st(qjjr firpp(i(Xa)s V),
which proves the necessity of the assertion.

To show the sufficiency, let y € Y. We must find z € X such that
f(x) =y. Write y; = q;(y) for each j.

CLAM 1. For each j and V € Cov(Y;) there exist j', " with j < j' < j”
and a point zyjny of Xyjmy such that

1) (Y5, a5 firriin g7 (z5Gm)) <V, and o

2) (fipf(i)f(j”)vqij/fj’pf j’)f("’)) < st Vz fO’f’ 1 S 1< ]/.

Let j and V € Cov(Y;) be given, and let V' € Cov(Y;) such that

(3.11) stV < V.
By (A3) and (AS) there is j' > j such that
(3.12) Ve < gV,

(3.13) (Y5, 455 (yy7)) < V.
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By (AS), (APS), (A2) and (AM), the latter yielding both (3.17) and (3.18),
there exist j”, jo with jo > j” > j' with the following properties: for k > jo,

(3.14) (Wyrs @ik (yr)) < Vir,
(3.15)
(@jrk(n)s Qg7 FimD gy (Wiy,)) < Vjo for some i > f(5”) and w;,, € X;,,
(3.16) (PrG1 £GP yin PrG) < 7 Virs
(317) (fJ,pf(]/)Zk s qj’j”fj”pf(j”)ik) < st Vj,v
(3.18) (firgaypryy Gar Firpriingim) < stV for 1 <i < j'.

Consider the sequence {p (i, (Wi, )} in Xg(;). Since Xy(;) is compact,
there is a subsequence {p(;j»ym, (W, )} which converges to some point z ;)
of Xyjny. So there is ko > jo such that

-1 -1
(319) (Zf(J”)7pf(J”)mk (U}mk)) < pf(]/)f(]”)fj/ V]/ fOY k > ko.
By (3.14), (3.15) and (3.17),

(320) (ijfj’pf(j’)mk (wmk)) < Stz Vj’ for k > Jos
By (3.20)7 (316) and (3.19),

(3.21) (irs Firprinsam (Zim)) < st Vjr

Property 1) now follows from (3.13), (3.21), (3.12) and (3.11). Property 2) is
(3.18). Thus Claim 1 has been proven.

CLAIM 2. There exists a sequence {mf(i)} such that x ;) € Xy for each
i and which satisfies the following properties:

1) For each i, x5 = lim pyeysn (7)),
2) For each i and V € Cov(Y;) there exists ig > i such that

(Yis Qiir fir (T p(ir))) <V for i > o.

For each j take j’,j” with j < j' < j” and a point zz(jiy of Xy with
properties 1) and 2) of Claim 1 with V being V;, and write n; for j”.

First, consider the sequence {pjf(1)f(n;)(2f(n;))}jen in Xpay. Since
X1y is compact, there is a cofinal subset I; of N so that the subse-
quence {pyr1)f(n,)(2f(n;))}jer, converges to some point xyqy of Xyq). In-
ductively, we obtain a cofinal subset I; of I;_; so that the subsequence
{Psei)f(ny) (Zf(ny)) }ier, converges to some point x ;) of Xy(;). We show that
the sequence {z(; }ien has the desired properties.

For 1), let i € N, and let # € Cov(Xy(;)). Take U’ € Cov(Xy(;)) such
that

(3.22) stU' < U.
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By (A2) there exists ¢g > ¢ such that

(323) (pf(i)f(i’)pf(i’)f(i”)apf(i)f(i”)) <U' fori”" >i' > 1.

Let ¢’ > 4g. Then the definitions of x;(;y and 2 ;) imply that there is j with
n; > 4’ such that

(3.24) (T10)> Pr(iyFny) (Zpmy))) <U',
—1
(3.25) (@10 P s ny) (2o () < Ppiaypantd
By (3.24), (3.23), (3.25) and (3.22),
(@), Py (Tpan)) <U,

which verifies 1).
To see 2), let i € N, and let V € Cov(Y;). Take V' € Cov(Y;) such that

(3.26) st3V < V.

By (AS), (A3) and (A2) there is ¢’ > 4 such that
(3.27) (i @i (i) < V',
(3.28) Vir < gV,

(3.29) (ij» qiir qivg) < V' for j > i

By Claim 1, the definition of z (), (A2), (AS) and (A3) there is j > 4" with
the following properties:

(3.30) (Y5935 TP 1 (ng) (1 (n)) < Vi
(3.31) (fippn fing)» @ FirPriny f(ng)) < st Vir,
(3.32) (@ 10y, Pr (i) f(ny) (Zp(ny))) < Fir Vs
(3.33) (g5 a3 9557) < Vir,

(3.34) (Yir, qirj(y;)) < Vir,

(3.35) V; < 47 V.

By (3.32), (3.31) and (3.33),
(3.36) (fir(@piry)s @iri @i FirD iy £ ng) (Zf(ny))) < st Vi
But by (3.30) and (3.35),
(3.37) (955 (y5): 415055 fi Py $ns) (B png))) < Vir-
By (3.34), (3.37) and (3.36),

(yir, fir(@p(iny)) < st® Vi
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This together with (3.27), (3.28) and (3.26) imply
(Wi» qiir fir (x5 iry)) <V,

as required.

It remains to show that f(z) = y for some € X. Indeed,
Claim 2 1) shows that {x;;} forms a thread of the subsequence X' =
{ X560y, Us i), Py pi+1) b of X, which determines a point x of X. We wish
to show f(z) = y. Let ¥V € Cov(Y). Then by (B1) there exist i € N and
V' € Cov(Y;) such that

(3.38) gV <.

Take V" € Cov(Y;) such that

(3.39) stV < V.

Then Claim 2 2) and (LAM) imply that there exists i’ > i such that
(3.40) (i fir(wpiny)s i) < 128

(3.41) (@ifs v fipgn) < V"

By (3.41),

(3.42) (¢if (@), qi fir () < V"

By (3.40), (3.42) and (3.39),

(4i(y),qi f(x)) < V".
This together with (3.38) implies

(y, f(x)) < V.

But since V € Cov(Y)) is arbitrary, y = f(z). This completes the proof of the
theorem. O

4. THE FRACTAL CATEGORY FRAC

In this section we construct a category, denoted FRAC, in which the box-
counting dimension is invariant.

The objects of FRAC are all admissible approximate resolutions. We wish
to define morphisms in FRAC. An approximate map f = {f;,f}: X =Y is
said to be admissible provided it satisfies the following three conditions:
(AD1) f is uniform, i.e., U@y < f;le for each j;

(AD2) There exists N € N such that |f(j +1) — f(j)| < N for each j; and
(AD3) (fipriiy (i) Qg fir) < stV for j <j'.

REMARK 4.1. 1) (AD2) means that each M € N admits N € N such
that |j — j'| < M implies |f(j) — f(j')] < N.



APPROXIMATE RESOLUTIONS AND THE FRACTAL CATEGORY 389

2) Every approximate map f : X — Y, where p : X — X and q :
Y — Y are admissible approximate resolutions, admits an admissible
approximate map f' : X’ — Y representing the same map f: X — Y
for some admissible approximate resolution p’ : X — X' such that X’

is a subsequence of X.
3) If a map of systems f : X — Y satisfies (AD3) and (AD1), then
st f :st X — stY satisfies (AM), i.e., is an approximate map.

PrOOF. By (AD3), for j < j/,

(fipsyranys g fir) < stV
Let ¢ > f(j'). Then this implies

(4.1) (iP5 £GnPs Gy i FirPs(iryi) < st Vi
By (A1),
(PG £GHP1Gi PG < Up()-
This together with (AD1) implies
(4.2) (FiP sy rGnPrGi FiPsyi) < Vi
By (4.1) and (4.2),

(fipreyis G5 Firppne) < stV
which proves (AM) for st f : st X — stY. O

For any admissible approximate resolutionsp: X — X andqg:Y — Y,
let AP(X,Y") denote the set of all admissible approximate maps from X to
Y. Forany f={f;,f},f = {f;, f'} € AP(X,Y), we write f ~ f’ provided
there exist m, N € N with the property that each j admits ig > f(j), f'(§)
such that

7;0 - f(j) S m,
7;0 - fl(j) S m,
(fjpf(j)ia f;l'pf’(j)i) < stV Vj for each ¢ > 1.

PROPOSITION 4.2. For any admissible approximate resolutions p : X —
X andq:Y =Y, ~ is an equivalence relation on AP(X,Y).

PrOOF. It suffices to show the transitivity. Suppose f = {f;, f},f =
{5, 70" ={f],f"} € AP(X,Y) and f ~ f and f' ~ f”. Then there
exist m/,m”, N', N € N such that each j admits i > f(j), f'(j) and i§ >
F/), () such that # — f(j) < m, if - £1G) < wls @ - F'G) < m,
iy~ 1) < m” and

(4.3) (fipsGiyis Fippr (i) < stV V; for i > ig,
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Now let i = max{ip,ig} and m = m' +m”. Then ig — f(j) < m and
io — f"(5) < m. By (4.3) and (4.4), for i > iy,

(Fipsiyis £ ppriyi) <st™ V;
where N = max{N',N"} + 1. O

Now let HD(X,Y) = AP(X,Y)/ ~. Since f ~ f' implies st f ~ st f’,
there is a well-defined direct sequence

AP(X,Y) — AP(st X,stY) — --- — AP(st" X, st"Y) — - - -.

For any admissible approximate resolutions p: X - X andq:Y — Y,
let the set FRAC(p, q) of morphisms in FRAC be the limit of this sequence.

Now we wish to define the composition. For ¢ € FRAC(p,q) and ¢ €
FRAC(qg,r) where p: X — X ={X;,U;,piir},q:Y =Y ={Y;,V;,q;; } and
r:Z — Z = {Zk, Wi, i } are admissible approximate resolutions, the com-
position ¥ o ¢ € FRAC(p, r) is defined as follows: let ¢ and 1) be represented
by f ={f;,f} € AP(st" X,st"Y) and g = {gk, g} € AP(st" Y ,st" Z), re-
spectively. Then, let h = fg and for each k let hx, = grfor) * Xsge) — Zk,
and we have a map of systems h = {hy,h} : X — Z.

PROPOSITION 4.3. The map of systems h = {hy, h} defines an admissible
approzimate map h = {hy, h} : st"™2 X — st"2 Z.

PrROOF. We must verify (AM), (AD1), (AD2) and (AD3) for h
st X — st"*2Y. For simplicity, we may assume n = 0. (AD1) holds
since by (AD1) for f and g, Usgm) < fq_(,lc)gk_lwk for each k, which implies

st? Usgey) < fq_(llc)gk_1 st? W, for each k. By (AD2) for g, there exists M € N

such that |g(k + 1) — g(k)| < M for each k, and hence by (AD2) for f there
exists N € N such that |fg(k+ 1) — fg(k)| < N for each k, verifying (AD2)
for h. It remains to verify (AD3) and (AM). For k < k/, (AD3) for g implies

(4’5) (ngg(k)g(k’)u Trk' Gk ) < St Wh,
and (AD3) for f implies
(46) (f‘](k)pfq(k)fq(k’)a qg(k)g(k’)fg(k’)) < st V‘](k) .
But (AD1) for g implies
st Vg(k) < gk_l st Wh..
This together with (4.6) implies
(4.7) (9rLak)Pratk) ratk')s GrAa(k)g (k') Fa(kry) < St Wh.
By (4.5) and (4.7),

(L) P g(k) fo (k) Thk Gir Fo(rry) < St2 Wi
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This means (AD3) for h : st X — st Z, which together with (AD1) for h :
st X — st Z implies (AD3) and (AM) for h : st> X — st> Z by Remark 4.1
3). O

The admissible approximate resolution b = {hy, h} : st"™2 X — st"t2Y
is denoted by g f.

PROPOSITION 4.4. Let f, f' € AP(X,Y) and g,g' € AP(Y, Z). Then

1) if f~ f', then gf ~gf’, and

2) ifg~g' thengf ~g'f.

PrOOF. For 1), let f = {f;, f}, f' = {fj,f'y + X — Y, and suppose
f ~ f’. Then there exist m, M € N such that each j admits ig > f(j), f'(§)
such that ig — f(j) <m, ip — f'(j) < m and

(Fipsyir Figyi) < st V),
and (AD1) for g implies st™ V) < gy 'st™ Wi, So each k admits ig >
fa(k), f'g(k) such that ig — fg(k) < m, ig — f'g(k) < m and
(9k Lom)Psa(kyir Gk Ly Prrg(ryi) < st™ Wy for i > ig.

This shows gf ~ gf’.

For 2), let g = {gx,9},9' ={9}..9'} : Y — Z, and suppose g ~ g’. Then
there exist n, N € N with the property that each k admits jo > g(k), ¢’ (k)
such that jo — g(k) <n, jo — ¢'(k) <n and

(4.8) (gkqg(k)j,g;qg/(k)j) < st W, for j > jo.
Fix k, and let ig = f(jo). By (AD3) for f and (AD1) for g,
(4.9) (9k Lok Psg(kyior Ihg(kjo fio) < 5t Wi
Similarly,

(4.10) (91 for )P (kyios Tl (K)o fio) < St Wi

By (4.9), (4.8) and (4.10),

(4.11) (9r F gD ro(kyiar S g ()P rg (ki) < st T W

(AD2) for f implies that there exists m € N such that ig — fg(k) < m and
io—fg'(k) < m (see Remark 4.1 1)). Let i > ip. Then by (Al) forp: X — X,

(4.12) (Prg(kyis Prg(kyioPioi) < Urg(r),
(4.13) (Dro (k)is Prg ()ioPioi) < Usg (k)
By (4.12), (4.11), (4.13) and (AD1) for g,

(kL) g(kyis Gefor P rgr (b)) < St T2 W,
which proves gf ~ g’ f. O
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PROPOSITION 4.5. 1) Let ¢ € FRAC(p,q), ¥ € FRAC(q,r), p €
FRAC(7,s). Then (pot)op=wo(thop).

2) For each ¢ € FRAC(p,q), polp, = ¢ and 140 ¢ = ¢, where 1, €
FRAC(p, q) is the morphism represented by 1x € AP(X,Y).

PROOF. For 1), suppose @, 1, p are represented by

f = {fi, [} e AP(st" X,st"Y),

g = {gk,g} €AP(st"Y st" Z),

h = {h,h} € AP(st" Z,st" W),
respectively. Herep: X - X, q:Y =Y, r:Z - Zands: W - W
are admissible approximate resolutions. Then (¢ o) o p and @ o (1) o p) are
both represented by the approximate map of the form {hignu fonq), foh},

and hence these are the same morphism. 2) is proven similarly to Proposition
4.4. O

THEOREM 4.6. FRAC is a category.

PROOF. Propositions 4.3 and 4.4 show that the composition of morphisms
is well-defined, and Proposition 4.5 shows the associativity and the existence
of the identity morphism. Hence FRAC forms a category. o

LEMMA 4.7. Let p = {p;} : X — X = {X;,U;,piiv1} and g = {q;} :
Y —Y ={Y;,V;,q;,;+1} be admissible approzimate resolutions of X andY,
respectively. Let f : X — Y be an admissible approximate map such that f
satisfies (APS) and there is m € N with f(j) < j+m for any j. Then

dimg(stq:Y —stY) < dimg(stp: X — st X)
and
dimp(stq:Y —stY) <dimp(stp: X — st X).

ProoF. Let i € N. Take jo > i as in (APS), and fix j > jo. Then there
exists j > j with the property that each j' > j{ admits ig > i +m, f(j) such
that
(4.14) a5 (Y5r) C stqiz [ips(iyin (X

), V;) for i’ > .
Fix j' > j{ and ¢’ > 4. By hypothesis, f(i) < i+ m, and by (A1),

(4.15) (s (i) itmPitm,irs Priiyir) < Ugiy-

By (4.15) and (AD1),

(4.16) pi_-l-lm,i’p;(li),i-i-muf(i) < p;(li)i’ stUpiy < p;(li)i’ ftsty;.
By (AD3),

(4.17) (fipsiyf0)» 265 f5) < stVi,
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and by (A1) for p,

(4.18) (Pray s Proyir s Preyi) < Upey-
So, by (4.18), (AD1) and (4.17),

(4.19) (fiprayirs @ij Fipsiyir) < st® Vi
Also by (U) for p,

(4.20) $t° Uitm < DyGsy iy mUsGi)-

Hence by (4.20), (4.16) and (4.19),
Picpm,iv S8 Uiem < 7,0 555" t° Vi
This implies that

(4.21)
Npo s X) 2 Ny g o, (Xir) = Neo v, (633 fipgayw (X))

Since qi; fipyiyir (X)) CV1U---UV, for some open subsets Vi, ..., V,, implies
that

st(qij fip ey (Xir), Vi) Cst(Vi, Vi) U---st(Vi, Vy),
then

(4.22) Nys v, (Gij [i gy (Xir)) = Negay, (8t(qi5 fipy0 (Xir ), Vi)
But by (4.14),

(4.23) Nowa v; (st(qis fipsoyir (Xir), Vi) 2 Novav, (@i (Yir)) = No-t gy, (Yi0)-

(4.21),(4.22) and (4.23) show that each j > jj admits 4o such that for each
i > 10,

Np;jm,i, 62 Us o (Ki7) 2 Nq;.} s v (Y5),

and hence Biim(st? X) > Bi(st?Y) for each i. This implies dimpg(st?p :
X — st?2X) > dimg(st*q : Y — st?Y). But dimg(st?p : X — st?2 X) =
dimp(stp : X — st X) and dimg(stq : ¥ — st*Y) = dimpg(stq : ¥ —
stY) by Theorem 2.6 3), and hence we have the first assertion. The second
assertion is similarly obtained. O

Now, for any admissible approximate resolution p : X — X, we define
the upper and lower star boz-counting dimensions Dimp and Dimp as

Dimg(p: X — X) =dimg(stp: X — st X)

and

Dimp(p: X — X) =dimp(stp: X — st X).
If these values coincide, the common value is called the star box-counting
dimension of p : X — X and denoted by Dimp(p : X — X). Then we have

THEOREM 4.8. Dimg and Dimp are invariant in the category FRAC.
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PRrOOF. It suffices to show that if ¢ € FRAC(p, q) and ¥ € FRAC(q, p)
satisfy ¢ o ¢ = 15, then

(4.24) dimg(stq:Y —stY) <dimg(stp: X — st X)
and
(4.25) dimp(stq:Y —stY) <dimp(stp: X — st X).

Let ¢ and 1) be represented by f € AP(st™ X ,st"Y) and g €AP(st" Y, st" Z),
respectively, and g f ~ 1gn+2 x. So there exists m € N such that fg(i) < i+m
for each i. Then ¢(i) < i+m for each i. Moreover, our equivalence relation ~
implies the equivalence relation ~ in the sense of [2, §. 7]. So, gf represents
the identity map 1x : X — X, and by [2, Lemma 8.8] gf also represents
the map gf where f: X — Y and g : ¥ — X are the maps represented by
f:st" X —st"Y and g : st Y — st™ X, respectively. Thus gf = 1x. So
g is onto, which implies by Theorem 3.1 that g satisfies (APS). Now Lemma
4.7 implies that

dimp (st q: Y — st™Y) < dimp(st" p: X — st™ X).

This together with Theorem 2.6 part 3) implies (4.24). Similarly we obtain
(4.25). O

REMARK 4.9. There is an obvious functor from FRAC to the category
APRESpo_ of approximate resolutions which was introduced by Mardesi¢ and
Watanabe [2]. The latter category is equivalent to the category CTOPj3 5 of
Tychonoff spaces and maps. FRAC is strictly finer than CTOP3 5. Indeed,
for each » > 0 there exist a Cantor set X, and an admissible approximate
resolution p, : X, — X, = {X;,U;,p; i+1} such that dimp(p, : X, — X,) =
r where for each i the coordinate space X; is the discrete space consisting of
a finite number of points, and the open covering U; consists of the discrete
points. So, stp, : X, — st X, is nothing but p, : X, — X,, and hence
Dimp(p, : X, — X,) =dimg(p, : X, — X,)=7r. Forr #s,p, : X, —» X,
and p, : X; — X are distinct objects in FRAC in view of Theorem 4.8 but
the same object in APRESpo| since X, and X are Cantor sets ([4, §. 8]).
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