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A FAN X ADMITS A WHITNEY MAP FOR C(X) IFF IT IS
METRIZABLE
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ABSTRACT. Let X be a non-metric continuum, and C(X) be the
hyperspace of subcontinua of X. It is known that there is no Whitney
map on the hyperspace 2% for non-metrizable Hausdorff compact spaces
X. On the other hand, there exist non-metrizable continua which admit
and ones which do not admit a Whitney map for C(X). In this paper we
will show that a generalized fan X admits a Whitney map for C(X) if and
only if it is metrizable.

1. INTRODUCTION

Introduction contains some basic definitions, results and notations. An
external characterization of non-metric continua which admit a Whitney map
is given in Section 2 (Theorem 2.3). In Section 3 we study hereditarily irre-
ducible mappings onto a fan. The main theorem of this paper is Theorem 4.20.

All spaces in this paper are compact Hausdorff and all mappings are
continuous. The weight of a space X is denoted by w(X). The cardinality of
a set A is denoted by card(A). We shall use the notion of inverse system as
in [3, pp. 135-142]. An inverse system is denoted by X = {X,, pap, A}.

A generalized arc is a Hausdorff continuum with exactly two non-
separating points. Each separable arc is homeomorphic to the closed interval
I=10,1].

For a compact space X we denote by 2% the hyperspace of all nonempty
closed subsets of X equipped with the Vietoris topology. C(X) and X (n),
where n is a positive integer, stand for the sets of all connected members of
2% and of all nonempty subsets consisting of at most n points, respectively,
both considered as subspaces of 2%, see [6].
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For a mapping f : X — Y define 27 : 2% — 2Y by 2/(F) = f(F) for
F € 2%. By [14, 5.10] 27 is continuous, 2/ (C(X)) C C(Y) and 2/ (X (n)) C
Y (n). The restriction 2/|C(X) is denoted by C(f).

An element {z,} of the Cartesian product [[{X, : a € A} is called a
thread of X if pap(2p) = x4 for any a, b € A satisfying a < b. The subspace of
[I{Xa : a € A} consisting of all threads of X is called the limit of the inverse
system X = {X,, pab, A} and is denoted by lim X or by lim{X,, pas, 4} [3,
p. 135].

Let X = {X,, pab, A} be an inverse system of compact spaces with the
natural projections p, : limX — X,, fora € A. Then 2X = {2Xa 2Par A}
C(X) ={C(X,),C(pap), A} and X(n) = {X4(n), 2P=*| Xp(n), A} form inverse
systems. For each F' € 2mX i e for each closed FF C lim X the set p,(F) C
X, is closed and compact. Thus, we have a mapping 2P« : 2imX _, 9Xa
induced by p, for each a € A. Define a mapping M : 2imX — 1im 2X by
M(F) = {po(F) : a € A}. Since {p.(F) : a € A} is a thread of the system
2% the mapping M is continuous and one-to-one. It is also onto since for
each thread {F, : a € A} of the system 2% the set F/ = N{p;}(F.) : a €
A} is non-empty and p,(F’) = F,. Thus, M is a homeomorphism. If P,
:1lim2%X — 2%e q € A, are the projections, then P,M = 2P+, Identifying I’
with M (F) we have P, = 2P,

LEMMA 1.1 ([6, Lemma 2.]). Let X =limX. Then 2% =1im2¥, C(X)
=lim C(X) and X (n) =limX(n).

An arboroid is an hereditarily unicoherent continuum which is arcwise
connected by generalized arcs. A metrizable arboroid is a dendroid. If X is
an arboroid and z,y € X, then there exists a unique arc [z,y] in X with
endpoints = and y. If [x,y] is an arc, then [z, y]\{z,y} is denoted by (z,y).

A point ¢ of an arboroid X is said to be a ramification point of X if ¢ is
the only common point of some three arcs such that it is the only common
point of any two, and an end point of each of them.

A point e of an arboroid X is said to be end point of X if there exists no
arc [a,b] in X such that = € [a,b]\{a,b}.

If an arboroid X has only one ramification point ¢, it is called a generalized
fan with the top t. A metrizable generalized fan is called a fan.

We say that an inverse system X = {X,, pap, A} is o-directed if for each
sequence a1, as, ..., G, ... of the members of A there is an a € A such that
a > ay, for each k € N.

In the sequel we shall use the following theorem.

THEOREM 1.2 ([7, Lemma 2.2]). Let X = {Xg, pa», A} be a o-directed
inverse system of compact spaces with surjective bonding mappings and the
limit X. Let Y be a metric compact space. Then for each surjective mapping
f X — Y there exists an a € A such that for each b > a there exists a
mapping gy : Xp — Y such that f = gypp.
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If the bonding mappings are not surjective, then we consider the inverse
system {pq(X), pas|ps(X), A} which has surjective bonding mappings. More-
over, pqo(X) = NM{pap(Xp) : b > a}. Applying Theorem 1.2 we obtain the
following theorem.

THEOREM 1.3. Let X = {X,,pap, A} be a o-directed inverse system of
compact spaces with the limit X. Let Y be a metric compact space. Then for
each surjective mapping f : X — Y there exists an a € A such that for each
b > a there exists a mapping gy : pp(X) — Y such that f = gppp.

In the sequel we shall use the following results.

LEMMA 1.4 ([3, Corollary 2.5.7]). Any closed subspace Y of the limit X
of an inverse system X = {X,, pap, A} is the limit of the inverse system
Xy ={Cl(pa(Y)), pas|Cl(ps(Y)), A}.

LeMMA 1.5 ([3, Corollary 2.5.11]). Let X = {X,, pa», A} be an inverse
system and B a subset cofinal in A. The mapping consisting in restricting
all threads from X = limX to B is a homeomorphism of X onto the space
lim{Xb, DPbe, B}

Now we will prove some expanding theorems of non-metric compact spaces
into o-directed inverse systems of compact metric spaces.

THEOREM 1.6. If X is the Cartesian product X = [[{Xs: s € S}, where
card(S) > Ng and each X, is compact, then there exists a o-directed inverse
system X = {Yq, Pay, A} of the countable products Y, = [[{X, : p € a},
card(a) = N, such that X is homeomorphic to lim X.

PROOF. Let A be the set of all subsets of S of the cardinality Ry ordered
by inclusion. If @ C b, then we write a < b. It is clear that A is o-directed.
For each a € A there exists the product Y, = [[{X, : p € a}. If a,b € A
and a < b, then there exists the projection P, : Y, — Y,. Finally, we have
the system X = {Y,, Py, A}. Let us prove that X is homeomorphic to lim X.
Let z € X. Tt is clear that P,(z) = z, is a point of Y, and that Pp(xp) = 24
if a < b. This means that (z,) is a thread in X = {Yj, Py, A}. Set H(x) =
(z4). We have the mapping H : X — lim X. It is clear that H is continuous,
1-1 and onto. Hence, H is a homeomorphism. O

COROLLARY 1.7. For each Tychonoff cube I, m > Ry, there exists a
o-directed inverse system I = {I%, Py, A} of the Hilbert cubes I* such that I'™
is homeomorphic to lim 1.

THEOREM 1.8. Let X be a compact Hausdorff space such that w(X) > Ry.
There exists a o-directed inverse system X = {Xq, pap, A} of metric compacta
X such that X is homeomorphic to lim X.
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PROOF. By [3, Theorem 2.3.23.] the space X is embeddable in 7%(X),
From Corollary 1.7 it follows that I*(X) is a limit of T = {I?, P, A}, where
every I is the Hilbert cube. Now, X is a closed subspace of limI. Let
Xo = Pp(X), where P, : I"™ — I* is a projection of the Tychonoff cube I™
onto the Hilbert cube I*. Let p,p be the restriction of P,; on X;. We have the
inverse system X = {X,, pap, A} such that w(X,) < Ry. By virtue of Lemma
1.4 X is homeomorphic to lim X. Moreover, X is a o-directed inverse system
since I = {I% P,;, A} is a o-directed inverse system. O

2. WHITNEY MAP AND HEREDITARILY IRREDUCIBLE MAPPINGS

The notion of an irreducible mapping was introduced by Whyburn [21,
p. 162]. If X is a continuum, a surjection f : X — Y is érreducible provided
no proper subcontinuum of X maps onto all of Y under f. Some theorems
for the case when X is semi-locally-connected are given in [21, p. 163].

A mapping f : X — Y is said to be hereditarily irreducible [15, p. 204,
(1.212.3)] provided that for any given subcontinuum Z of X, no proper sub-
continuum of Z maps onto f(Z).

A mapping f : X — Y is light (zero-dimensional) if all fibers f~1(y)
are hereditarily disconnected (zero-dimensional or empty) [3, p. 450], i.e., if
f~Y(y) does not contain any connected subsets of cardinality larger that one
(dim f~%(y) < 0). Every zero-dimensional mapping is light, and in the realm
of mappings with compact fibers the two classes of mappings coincide.

LEMMA 2.1. FEvery hereditarily irreducible mapping is light.

LEMMA 2.2. If f: X — Y is monotone and hereditarily irreducible, then
fis 1-1.

Let A be a subspace of 2X. By a Whitney map for A [15, p. 24, (0.50)]
we will mean any mapping g : A — [0, +00) satisfying

a) if {A},{B} € A such that A C B, A # B, then g({A}) < g({B}) and

b) g({z}) = 0 for each x € X such that {z} € A.

If X is a metric continuum, then there exists a Whitney map for 2% and
C(X) ([15, pp. 24-26], [5, p. 106]). On the other hand, if X is non-metrizable,
then it admits no Whitney map for 2% [2]. It is known that there exist non-
metrizable continua which admit and ones which do not admit a Whitney
map for C'(X) [2]. Moreover, if X is a non-metrizable locally connected or
a rim-metrizable continuum, then X admits no Whitney map for C'(X) [9,
Theorem 8, Theorem 11]. In what follows we shall show that a generalized
fan X does not admit any Whitney map for C(X).

The first step in proving this statement is an external characterization of
non-metric continua which admit a Whitney map.

THEOREM 2.3. Let X be a non-metric continuum. Then X admits a
Whitney map for C(X) if and only if for each o-directed inverse system X =
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{Xa, pab, A} of continua which admit Whitney maps for C(X,) and X =
lim X there exists a cofinal subset B C A such that for every b € B the
projection py : lim X — X is hereditarily irreducible.

PROOF. Necessity. Consider inverse system C(X) = {C(X,), C(pab), A}
whose limit is C(X) (Lemma 1.1). If u: C(X) — [0, o0) is a Whitney map
for C(X), then, by Theorem 1.3, there exists a cofinal subset B of A such that
for every b € B there is a mapping up : C(pp)(X) — [0, 00) with p = usC(pp).
Suppose that pp is not hereditarily irreducible. Then there exists a pair F, G
of subcontinua of X with F C G, F # G, (i.e., F is a proper subcontinuum of
G) such that py(F) = pp(G). Tt is clear that C'(py)({F}) = C(ps)({G}). This
means that 1pC(py) ({F}) = wC(ps)({G}). From p = pupC(pp) it follows that
w({F}) = p({G}). This is impossible since p is a Whitney map for C(X) and
from F C G, F # G it follows pu({F}) < u({G}).

Sufficiency. Suppose that there exists a cofinal subset B C A such that
for every b € B the projection p; : lim X — X} is hereditarily irreducible.
Consider inverse system C(X) = {C(X,), C(pa), A} whose limit is C(X)
(Lemma 1.1). Let pp : C(X3p) — [0, 00) be a Whitney map for C(X;), where
b € B is fixed. We shall prove that u = p,C(py) : C(X) — [0, 00) is a Whitney
map for C(X). Let F, G be a pair of subcontinua of X with F C G, F # G. We
must prove that p({F'}) < u({G}). Now, pp(F) C pp(G) and py(F) # pp(G)
since py is hereditarily irreducible. We infer that us({ps(F)}) < us({ps(G)})
since pyp is a Whitney map for C(X;). Moreover, {ps(F)} = C(ppy)({F})
and {py(G)} = Cpy)({G})M. From py({ps(F)}) < m({ps(G)}) we have
1s(Cps) {F})) < p(Cpe)({G})), ie.; mClps) {F}) < mC(py)({G}). Fi-
nally, u({F}) < u({G}) since = 1,C(py). 0

REMARK 2.4. It follows from Theorem 2.3 and Lemma 2.1 that the pro-
jections py, are light for every b € B. It is a question are the bonding mappings
Pab light mappings. The following theorem shows that it is possible to find
such inverse system which has the light bonding mappings.

THEOREM 2.5. If X is a non-metric continuum which admits a Whitney
map for C(X), then there exists a o-directed inverse system X = {Xg, Pab,
A} of metric continua X, such that the bonding mappings pay are light and
X =limX.

PrOOF. By virtue of Theorem 1.8 there exists a o-directed inverse sys-
tem Y = {Y,, qup, B} of metric compact spaces Y, such that X = limY.
From Remark 2.4 it follows that there exists a metric space Y, such that
the projection ¢, : X — Y; is light. Using [18, p. 204, Theorem 7.10] we
obtain an inverse system X = {X,, pas, A} of metric compact spaces and
zero-dimensional bonding mappings such that X = lim X. Since every zero-
dimensional mapping is light, and in the realm of mappings with compact
fibers the two classes of mappings coincide [3, p. 450], we infer that p,; are
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light. Applying Theorem 2.3 we conclude that there exists a B C A which is
cofinal in A and such that the projections p; are light for every b € B. 0

We close this section with the following theorem.

THEOREM 2.6. If X is the Cartesian product X = [[{Xs: s € S}, where
card(S) > Wg and each X is a continuum, then there is no Whitney map for
C(X).

PrOOF. By virtue of Theorem 1.6 it follows that for the Cartesian prod-
uct X = [[{Xs : s € S}, card(S) > N, there exists a o-directed inverse
system X = {Y,, Pa, A} of the products Y, = [[{X, : p € a}, card(a) =
No, such that X is homeomorphic to lim X. If every X, : s € 5, is a contin-
uum, then every bonding mapping P,; in X = {Y,, Pus, A} is monotone since
Pa_b1 (z) is the product of all X which are factors in Y}, but not factors in Y.
The statement of Theorem follows from Theorem 2.3. O

3. HEREDITARILY IRREDUCIBLE MAPPINGS ONTO ARBOROIDS

Theorem 2.3 suggests the study of hereditarily irreducible mappings. In
this section we will consider hereditarily irreducible mappings onto arboroids.

A continuum X is said to be arcwise connected provided for every two
points x,y € X,z # y, there is a generalized or a metrizable arc [z, y] C X.

LEMMA 3.1. If X is an arboroid and if Y is an arboroid which contains
finitely many ramification points, then every hereditarily irreducible mapping
f: X =Y is a homeomorphism.

PROOF. Suppose that f is not a homeomorphism. Then there exists a
point y € Y such that f~!(y) is not a single point. This means that there
exist points z1, 22 € X such that f(x1) = f(z2) = y. Since X is an arboroid
there exists the unique generalized arc Z in X such that x;, x5 are end points
of Z.

CLAIM 1. There exists a segment [a,b] of Z such that f~1(y) N (a,b) =0
and f~*(y) Na, b] = {a,b}.

It is clear that f~!(y) is not dense in Z. In the opposite case we have
that Z is a proper subcontinuum of f~*(y). This is impossible since f~1(y)
contains no continuum. It follows that there exists a segment [c, d] C Z such
that f~1(y) N Z C [c, d] and {c, d} C f~(y) N Z. It is again clear that there
exists a subinterval (a1, b1) of [¢,d] such that f=1(y) N(a1, b)) = 0. Let A
be a family of all segments (aq, b, ) which contains (a1, b1) and f~1(y) N(aa,
bo) = 0. It is clear that the union of all elements of A is a subsegment (a,
b) of [c, d]. Let us prove that a,b € f~'(y). Suppose that a ¢ f~'(y). Then
f(a) # y. There exists an open set U containing a such that f(U) does not
contain the point y. It is clear that there exists a segment (e, h) contained in
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U. Then (a, b) U (e, h) is a segment which contains (a1, by). It is clear that
(a, b) U (e, h) is not in A, a contradiction. Hence, a € f~!(y). Similarly, one
can prove that b € f~1(y).

In the remaining part of the proof we shall consider the restriction g =
flla, b]. Let us recall that g is hereditarily irreducible and that W = f([a, ]), as
a subcontinuum of Y, is an arboroid. Thus we have a hereditarily irreducible
surjection g of the arc [a,b] onto a dendroid W such that g=!(y) = {a,b}.

CLAIM 2. There exist subarcs [a,x] and [z,b] such that g([a,x]) C g([z,b])
or g(la, z]) 2 g([z,0]).

Let Uy, be a neighborhood of y such that U,\ {y} does not contain rami-
fication points. There exist segments [a, 2] and [z, b] such that g([a,x]) C U,
and ¢([z,b]) C U,. It follows that g¢([a,z]) and g([z,b]) are arcs since
g((a,z]) and g¢([z,b)) do not contain ramification points. Suppose that
g([a,z]) N g([z,b]) = {y}. Then C = g([a,z]) U g([z,b]) is a continuum. Be-
cause of Claim 1, ¢([z, z]) is a continuum not containing the point y. It follows
that C' Ng([z, 2]) is not a continuum since C' Ng([z, z]) contains {y} and two
disjoint subsets g([a, z]) N g([z,2] 2 {g(z)} and g([z,z]) N g([z,0] 2 {g()}
not containing {y}. This is impossible since is W is hereditarily unicoherent.
Hence, D = g([a,x]) N g([z,b]) is a non-degenerate continuum containing the
point {y}. It is clear that D does not contain ramification points. It follows
that g([a,z]) C g([z,b]) or g([a,x]) D g([#,b]) since in the opposite case we
obtain a triod in U,,.

CLAaM 3. We may assume that g([a, z]) 2 g([z,b]).

Now, g([a, z]) = g([a, b]) since g([a, z]) 2 g([z,b]). This is impossible since
g is hereditarily irreducible. O

COROLLARY 3.2. If X is an arboroid and if Y is a generalized fan, then
every hereditarily irreducible mapping f : X — Y is a homeomorphism.

Now we are ready to prove the following theorem.

THEOREM 3.3. Let X = {X,, pap, A} be a o-directed inverse system of
fans. If X = lim X is arcwise connected, then X admits a Whitney map for
C(X) if and only if X is metrizable.

PROOF. If X is metrizable, then it admits a Whitney map for C'(X) [15,
pp. 24-26]. Suppose now that X admits a Whitney map for C(X). From
Theorem 2.3 it follows that there exists a cofinal subset B of A such that for
every b € B the projection py is hereditarily irreducible. By Corollary 3.2 we
infer that p, is a homeomorphism. Hence, X is metrizable since each Xj is
metrizable. O
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4. AM-FANS

We say that an arboroid X is an AM-arboroid if each arc in X is metriz-
able. Now we shall prove that every arboroid is a limit of a o-directed inverse
systems of AM-arboroids.

THEOREM 4.1. Let X be an arboroid. There exists an inverse system X =
{Xa, Pab, A} such that each X, is an AM -arboroid, every pqp is monotone and
X is homeomorphic to lim X.

Proor. If X is an AM-dendroid, then it has metrizable arcs and The-
orem is obvious. If X is not an AM-dendroid, then there exists an inverse
o-system Y = {Y,, qap, A} of metric continua X, such that X is homeomor-
phic to imY (Theorem 1.8). It is clear that the projections g, are not light
since then the restrictions ¢, |L are light for every arc L in X. Then from [10,
Theorem 1] it follows that L is metrizable. Hence, ¢, is not light. Let ¢, be
the natural projection of X onto Y,. Applying the monotone-light factoriza-
tion [3, pp. 450-451] to q,, we get compact spaces X,, monotone surjections
mg : X — X, and light surjections I, : X, — Y, such that ¢, = lym,.
By [10, Lemma 8] there exist monotone surjections pg : Xp — X, such that
DPabMp = Mg, a < b. It follows that X = { X, pap, A} is an inverse system such
that X is homeomorphic to lim X. Let us prove that X, is an AM-arboroid.
The space X, is hereditarily unicoherent since m, is monotone. Moreover, X,
is arcwise connected. Namely, if z,,y, are distinct points of X,, then there
exists a pair z,y of points of X such that z, = mq(x) and y, = m4(y). Let
L be the arc with end points z and y. Now, m,(L) is a continuous image of
an arc and, consequently, arcwise connected [19]. Hence, X, is an arboroid.
Since every map [, is light, we infer that each arc in X, is metrizable ( by
[20, Theorem 1.2, p. 464] saying that if X is rim-metrizable and a surjective
mapping [ : X — Y is light, then w(X) = w(Y); compare also [10, Theorem
1]). Hence, every X, is an AM-arboroid. O

COROLLARY 4.2. Let X be a generalized fan. There exists an inverse sys-
tem X = {Xq, Pab, A} such that each X, is an AM -fan, every pqp is monotone
and X is homeomorphic to lim X.

PROOF. By Theorem 4.1 there exists an inverse system X = {X,, pap, A}
such that each X, is an AM-arboroid, every pgp is monotone and X is home-
omorphic to lim X. Let us observe that the projections p, : X — X, are
monotone [3, 6.3.16.(a), pp. 462-463]. It remains to prove that each X, is an
AM-fan. Suppose that some X, is not AM-fan. This means that X, has two
different ramification points. It follows that X, contains two different triods
Ty and Ts. Hence, there is a triod, say 75, such that p;l(Tg) is a subset of
some arc L in X since X is a generalized fan. It is clear that this impossible
since p; }(Tz) is a continuum. a
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THEOREM 4.3. If a generalized fan X admits a Whitney map for C(X),
then X is an AM -fan.

Proor. It follows from Corollary 4.2 that there exists an inverse system
X = { X4, pab, A} such that each X, is an AM-fan, every p,p is monotone and
X is homeomorphic to limX. If X admits a Whitney map for C(X), then
there exists a cofinal subset B of A such that p; is hereditarily irreducible for
every b € B (Theorem 2.3). From Lemma 2.2 we infer that p; is 1-1. Hence,
pp is a homeomorphism. This means that X is an AM-fan. O

Now we shall expand every non-metric AM-fan into inverse system of a
metric finite fan. This is done in Theorem 4.19. The proof of this Theorem
requires some preliminary definitions and results which are straightforward
modifications of [4].

A chain, in a topological space, is a collection & = {E, ...E,,} of open
sets E; such that E; N E; # 0 if and only if |i — j| < 1. The elements of
& are links. Let U be an open cover of a space X. We say that a chain
& ={F,...E;} is aU-chain if each link FE; of £ is contained in some member
Uofl.

Let &€ = {E1,...En} be a chain; frequently we denote £ by E(1,m) and
denote U{E; : 1 < i < m} by E*(1,m) or by £*.

DEFINITION 4.4. If [a,b] is an arc and € = E(1,m) is a chain covering
[a,b] then [a,b] is straight in € provided:
1. £ is a chain from a tob i.e. a € E1N\CI Fs, b€ E,\CIl E,,_1,
2. (OFE; N[a,b]) is a one point set if i =1 or i =m and a two point set
otherwise.

LEMMA 4.5. Suppose that X is an AM -arboroid, Y is a finite tree, Y C X
and p €Y. Let K = {K : K is a component of YN\{p}}. Then for each open
set U such that p € U there exists an open set V such that p € V C U and
card(Y N 9V) = card(K).

PROOF. The proof is the same as the proof of Lemma 1 of [4] since X
has metrizable arcs and Y is metrizable. Namely, K is a finite set, since
each component of YN\ {p} contains an end point of Y. This follows from
the fact that if K € K, then K is arcwise connected, because Y is locally
connected. The end points of Y are precisely the end points of maximal arcs
in Y. Since K U {p} is a tree and K is arcwise connected, then if A is a
maximal arc in K U {p}, at least one end point of A is an end point of Y.
Suppose K = {K3, ..., K,,}. According to [21, p. 88] there is a set V', open in
Y such that p € V/ C U, and dy V', the boundary of V' relative to Y, contains
exactly n points. Now V'’ must be connected, since if V" is the component
of V' containing p, then V" is open in Y and 9y V" C 9y V’. Since we may
assume that for each i, K; g Cl U, 0y V" contains a point from each K;.
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Since Oy V' contains only n points, V' = V”. Thus Y\ dy V' is the union of
two separated sets, one of which is V’ and the other contains Y\ U. There
are disjoint sets S and T, open in X, such that V' C S and Y\ U C T. Now
let V.=UNCIT. Then (OV)NY = (0T)NY = 0yV’, an n-point set. O

LEMMA 4.6. Suppose [a,b] is straight in £ = E(1,m) and W is an open
set containing [a,b]. Then [a,b] is straight in {E1 "W, Es "W, ..., E,, NW}.

PRrROOF. This is Lemma 2 of [4]. It is clear from the definition of straight-
ness that for each ¢, (E; NW) contains at least as many points of [a, b] as OF;
does. Conversely, since (E;NW) C (OFE;)N(0W) and [a,b] C W, (0(E;NW))
N [a,b] C (OE;) N [a,b]. Thus O(E; N W) contains exactly as many points of
[a,b] as OF; does. That is, [a,b] is straight in {Ey "W, E2 "W, ..., E,, NW}.

0

We now show that each arc in AM-arboroid can be covered by chains in
which that arc is straight.

LEMMA 4.7. If [a,b] is an arc in an AM-dendroid X and U an open

covering of X, then there an chain & = E(1,m) of sets open in X such that
E =E(1,m) refinesU and [a,b] is straight in E.

PROOF. The proof is a straightforward modification of the proof of [4,
Proposition 1]. Suppose, to the contrary, that there is an arc [a, b] in X such
that [a,d] is not straight in any chain which refines ¢/. For fixed & and fixed
arc [a,b], we say that a subarc [a, V'] of [a, b] has property P iff [a’,b'] is not
straight in any chain which refines U. Clearly [a, b] has property P. We now
show that property P is inductive. Let £L = {L, : @ < w;} be a transfinite
sequence such that, for each ordinal o < w,, L, has property P and Lg C L,
if a < 8 < w,;. We must show that L = N{L,, : @ < w;} has property P. If
it does not, then L is not degenerate, hence it is a subarc [c, d] of [a, b]. Since
[a, b] has property P, [¢,d] # [a,b]. Without loss of generality, we may assume
that @ < ¢ < d < b, < denoting the usual order from a to b on [a,b]. Since
[¢, d] does not have property P, there is a chain F = F(1,n) of open sets in
X such that [c, d] is straight in F and F refines Y. Let U be an open set such
that ¢ € U and Cl U C 1\ CI F». According to Lemma 4.5, there is an open
set V such that ¢ € V. C U and (0V) N [c,d] is degenerate. Similarly, there
is an open set R such that d € R C Cl R C F,\CI F,,_1 and (OR) N|c,d] is
degenerate. Now (V U[e,d]UR)N][a,b] is open in [a, b] and contains L. Hence
there is an @ < w, such that L, C (V U [e,d] U R) N [a,b]. If Ly = [aa,bal,
then we may assume that a, € V and b, € R, since L,\[¢,d] C VUR. Since
V c IIN\Cl Fy and R C F;,\Cl F,,_1, F is a chain from a, to ag covering
[, ba]. Since, for each a, (OF,)N(VUR) =0, 0F, N[ay,bs] = OF, N e, d],
which is degenerate if F,, is an end link of F and a two point set otherwise.
Thus Ly = [@a,bs] is straight in F. This is impossible, for L, was assumed
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to have property P. It follows that [c,d] must have property P, hence that
property P is inductive.

Since [a,b] has property P, there is a subcontinuum of [a,b] which is
irreducible with respect to having property P. This subcontinuum must be
non-degenerate; we shall simply assume that [a, b] is irreducible with respect
to having property P. Let x be a non-end point of [a, b]. Since [a,x] and [z, D]
are proper subarcs of [a, b], neither has property P. Hence there are U-chains
G =G(1,7) and H = H(1, k) of open sets in X such [a, z] is straight in G and
[z, b] is straight in H.

Using regularity and Lemma 4.5, we obtain an open set ) such that
z€Q CClQ C (Gj\Cl Gj_1)N(H\CI Hy) and (0Q) N [a,b] contains
exactly two points, one in [a,z], the other in [x,b]. Clearly, [a,z]\Q and
[z, 0]\ Q are disjoint closed sets. It follows that X\ Q is the union of two
disjoint closed sets A and B, with [a,2]\Q C A and [z,0]\ Q@ C B. From
the normality of X we infer that there exist open sets S and T such that
ACS, BCTand Cl SNCIT = (. We now define chains G’ = G'(1, j)
and H' = H'(1, k), one-to-one refinements of G and H, respectively, by G} =
G,N(SUQ), H = H;Nn(TUQ). Lemma 4.6 shows that [a,z] is straight
in G’ and [z,b] is straight in H’. Since the only points in a link of G’ and a
link of H' are those in @, we may define a chain & = E(1,m) by E; = G}, if
1<i<j;Gi=H[_; if j+1<4i<j+k Onecan prove (see [4, p. 116])
that [a, b] is straight in £. O

Lemma 4.7 shows that one can cover each arc from the top of an AM-fan
to an end point by a chain in which the arc is straight and a finite collection of
these chains cover the AM-fan. However, different chains may intersect very
badly. In order to cut them apart, we will need some control over boundaries
of the links. Hence we establish

LEMMA 4.8. Suppose X is an AM-fan, t is the top of X and W is the set
of end points of X . For each cover U of X and each w € W there is a U-chain
E = E(1,m) of sets open in X such that [t,w] is straight in &= E(1,m) and
OE*(2,m) C E;.

Given an AM-fan X and an open cover U of X we want to cover X with
a U-tree chain whose nerve is a triangulation of a finite fan as does Figure 3
in [4]. The following Lemma shows that we can do this for a finite subfan YV’
of X.

LEMMA 4.9 ([4, Proposition 3]). Suppose X is an AM-fan, Y is a finite
subfan of X, the top of X, t, is the top of Y and each end point w of Y,
w # t, is an end point of X. If Y = U{[t,w;] : i € {1,2,...,n}} and U is a
cover of X, then there exists a finite collection F1, Fa, ..., Fpn such that:

(i) each F; = Fj(1,r;) = {Fj1, Fja2, ..., Fjr; } is a U-chain consisting of

at least 3 links,
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(ii) for each j, [t,w;] is straight in F;,
(iil) for each j, OF*(2,r;) C Fj,
(iv) for each j, Fj1 = Fi1,
(v) if i # 7 then ([t,w;] UF*(2,7;))N CL F*(2,r;) = 0.

Let U be a cover of a space X. We shall write (z,y) < U if there is an
element U € U such that z,y € U.

Once we have covered the AM-fan X as in Figure 3 of [4], we use the cover
to construct the retraction. To do this, we will piece together the retractions
of chains onto straight arcs. We therefore prove

LEMMA 4.10. Let a compact space X contain an arc [a,b] that is straight
in aU-chain € = E(1,m), E* C X, 0E*(2,m) C Ey and p = (0FE1) N [a,b].
Then there is a continuous function f : (E¥\E1) — [p,b] such that f is a
retraction onto [p,b], f[(OF1) N E2] = p and for each v € EX\E1, (z, f(x)) <
Uu.

PRrROOF. This is actually Proposition 4 of [4] whose proof is valid in the
case of AM-fans.

Since 9£*(2,m) C E1, E*\ F; is compact and for each i € {2,...,m — 1},
OF; is the union of two disjoint closed sets, (0F;) N F;_1 and (OF;) N Eiiq.
Since [a, b] is straight in &, for each ¢ € { 1,...,m — 1}, (OF;) N Ei11 N[a,b] is
a single point, ;. Then p = ry. Let b = r,,,. Again, straightness guarantees
that p =11 <719 < ... <1y = b, where < denotes the usual order from a to b
on [a,b]. For each i € {1,...,m — 2}, we define a function

9i + ((OE;) N Eiy1) U [ri, ripa] U ((OEit1) N Eig2) — [ri,Tis1]
by
T if T € (3EZ) n Ei+1,
gi(x) = z if x € [ri,Tit1]s
Tit1 if ze€ ((9EH_1) NE;is.

Clearly, each g; is a continuous retraction onto [r;, r;41]. Since metric arcs
are absolute retracts, for each ¢ there is a continuous extension h; of g;, h; : Cl
E;+1\E; — [ri,rit+1]. The function f = hy Uhg U ... U hy—1 is a continuous
retraction of E*\ E; onto [p,b] such that, for each x € EX\ E1, (z, f(z)) <U.

O

The final step is the following theorem.

THEOREM 4.11. Suppose X is an AM-fan and U is a cover of X. Then
there is a finite fan Y C X and a retraction r : X — Y such that if v € X,
then (z, f(x)) < U.

PROOF. Let t denote the top of X and let W denote the set of end points
of X. Then X = U{[t,w] : w € W}. For each w € W, we apply Lemma 4.8 to
obtain a chain &, such that [t,w] is straight in &, and 9(Ey\Ew1)* C Eu1.
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There is a finite subset W’ C W such that {€f : w € W'} covers X.
If W = {wy,...,w,}, let us relabel the corresponding chains &1,&s, ..., En.
For each j € {1,2,..,n} let & = {Ej, Ejo,..., Ejm,;} = Ej(1,m;). As
in Step III of the proof of Theorem 1 of [4] one can construct the new
Z/I-chains K:l = {Kll,Klg, ...,K1p1}7 ICQ = {Kgl,Kgg, ...,Kgpz}, ceey K:n =
{Kn1, Kna, ..., Kpnp, } such that:

(1) UK, :j€{1,2,....,n}} covers X,

(2) For each j € {1,2,...,n} the arc [t,w,] is straight in K},

(3) Ifj S {172, ...,n}, then Kjl = K1, and

(4) If j # i, then K;(2,p;) N K5 (2,p;) = 0.
See Figure 3 in [4, p. 124]. We now construct a retraction r of X onto
Y = U{[t,w;] : j € (1,...,n)}. We will assume that each K; has more that
one link; if this is not true, the needed modifications in the definition of r are
obvious.

For each j € {1,2,...,n}, there exists a point s; € [t,w;] such that
(0K 1)N[t,w;] = (0K;1)NY NK 2 = {s;}. Since each [t, w,] is straight in the
U-chain K;, we apply Lemma 4.10 to obtain a retraction f; : (K;-‘\Kjl) —
[sj,w;] such that f;[(0K;1) N Kj2] = {s;} and f; moves each point less than
U. Tf i # j, then (domain f;) N (domain f;) C K (2,pi) N K;(2,p;) = 0.
Hence we may define f = U{f; : 4 € {1,2,...,n}}. Clearly, f is a retraction of
X\ K11 onto U{[s;, w;] : 7 € {1,2,...,n}} moving each point less than U.

Now Y N Ky, = U{[t78i) NS {172, ,n}} and (CZKH) ny = U{[t, Si] :
i €{1,2,...,n}} since each [t, w;] is straight in ;. We define g : (0K11)U((CI
Kin)NY) - (Cl K1) NY by gz) =z itz € YV and g(z) = s; if x €
(0K11) N Ky2. Since (Cl K1) NY is a metric tree, it is an absolute retract.
Hence g can be extended to a map h: Cl K1; — (Cl K11)NY. Since Cl K11
is contained in some member of U, f moves each point less than Y. Finally,
let » = hU f. Since f and h agree on the intersection of their domains, K11,
r is well-defined and continuous. Obviously, r is a retraction of X onto Y.
Since neither f nor h moves any point as much as U, neither does r. o

REMARK 4.12. Theorem 4.11 is a modification of Theorem 1 of [4]. The
proof is valid for AM-fans. Let us observe that from the proof of this Theorem
it follows that if ¢ is the top of X, then r(t) = t.

In the case that X is a fan, we obtain [4, Theorem 2].
THEOREM 4.13. Fach fan is an inverse limit of a sequence of finite fans.

Given an open covering U of a compact space X, we say that a mapping
f X — Y is a U-mapping provided there is an open covering V of Y such
that f~1(V) refines U, written as f~1(V) > U.

Let P be a class of compact polyhedra. We say that a compact space X is
‘P-like provided for every open covering U of X there is a polyhedron P € P
and a U-mapping f : X — P which is surjective.
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Now let F be a class of finite metrizable fans. From Lemmas 4.5-4.10 and
Theorems 4.11-4.13 it follows the following theorem.

THEOREM 4.14. FEvery AM-fan is F-like.

In what follows we shall use the notion of approximate inverse systems in
the sense of S. Mardesi¢ [11]. Cov(X) is the set of all normal coverings of a
topological space X. If 4, V € Cov(X) and V refines U, we write V< U.

An approzimate inverse system is a collection X = {Xg, pap, A}, where
(A, <) is a directed preordered set, X,,a € A, is a topological space and
Dab © Xp — Xg,a < b, are mappings such that p,, = id and the following
condition (A2) is satisfied:

(A2) For each a € A and each normal cover U € Cov(X,) there is an index
b > a such that
(PacPed, Pad) < U, whenever a < b < ¢ <d.

An approzimate map [13, Definition (1.9), p. 592] p = {p, : a € A} :
X — X into an approximate system X = { X, pay, A} is a collection of maps
Do : X — Xg,a € A, such that the following condition holds

(AS) For any ¢ € A and any U € Cov(X,) there is b > a such that
(PacPe, Pa) < U, for each ¢ > b.

Let X = {X,, pab, A} be an approximate inverse system and let p ={p, :
a € A} : X — X be an approximate map. We say that p is a limit of X,
written as lim X, provided it has the following universal property:

(UL) For any approximate map q ={q, : @ € A} : Y — X of a space Y there
exists a unique map g : Y — X such that p,g = q,-

Let X = {Xg,pap, A} be an approximate system. A point z = (z,) €
[I{Xa : a € A} is called an approzimate thread of X provided it satisfies the
following condition:

(L) (Va e A)(VU € Cov(X,))(Tb > a)(Ve > b) pac(z.) Est(zq,U).

If X, is a Ts.5-space, then the sets st(z,,U), U € Cov(X,), form a basis
of the topology at the point z,. Therefore, for an approximate system of
Tychonoff spaces condition (L) is equivalent to the following condition:

(L)* (Va € A) lim{pac(xc) : ¢ > a} = x4.

The existence of the limit of any approximate system was proved in [13,

(1.14) Theorem)].

THEOREM 4.15. Let X = { X4, pap, A} be an approzimate inverse system.
Let X C T[{X, : a € A} be the set of all threads of X and let p, : X — X, be
the restriction p, = mq|X of the projection 7y : [[{Xa:a € A} — Xq4,a € A.
Then p={p,:ac A}: X — X} is a limit of X.

We call this limit the canonical limit of X = {X4, pab, A}. In the sequel
limit means the canonical limit.
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A preordered set (A, <) is cofinite provided each a € A the set of all
predecessors of a is a finite set.
We shall use the following theorem from [12, Theorem 3].

THEOREM 4.16. Let P be a class of polyhedra with no isolated points.
Let X be a compact Hausdorff space which is P - like. Then there exists an
approzimate inverse system of compact polyhedra P = {P,, e, pap, A} such
that P, € P, all the bonding mappings pap are surjective and the limit lim P
is homeomorphic to X. Moreover, A is cofinite and card(A4) < w(X).

THEOREM 4.17. For every AM-fan X there exists an approximate inverse
system ¥ = {F,, &4, pap, B} of finite metric fans such that F, € F, all the
bonding mappings pap are surjective and the limit lim P is homeomorphic to
X.

PROOF. Theorem follows from Theorems 4.14 and 4.16. O

REMARK 4.18. Let us observe that from the proof of [12, Theorem 3], in
particular, from the proof [12, Lemma 2] it follows that p.y : P, — P, is a
simplicial map such that pup(ry(t)) = 74(t), where t is the top of the fan X
and r, : X — P, is a retraction from Theorem 4.11.

Now we shall expand each non-metrizable AM-fan into usual inverse sys-
tems of metric fans.

THEOREM 4.19. For every AM-fan X there exists a o-directed inverse
system X = {X,, pab, A} of metric fans such that all the bonding mappings
Pap are surjective and the limit lim X is homeomorphic to X.

Proor. By Theorem 4.17 there exists an approximate inverse system
F = {F,,ca, qab, B} of finite metric fans such that F, € F, all the bonding
mappings qqp are surjective and the limit lim F is homeomorphic to X. By
forgetting the meshes €, [13, (1.7) Definition] and using Corollary 1 of [8] we
obtain a usual o-directed inverse system X = {X,, pa», A}, where each X,
is the limit of an approximate inverse subsystem {Fy, ¢ag, P}, card(®) = Ry,
of the system F* = {F,, qu, B}. Let us prove that every X, is a metric
fan. Firstly, each X, is arcwise connected since there exists the projection
Pa : X — X, and X is arcwise connected. Now we shall prove that X is
hereditarily unicoherent. From Lemma 3 of [8] it follows that we may assume
that ® is order isomorphic to the set of natural numbers N. Then from
Proposition 8 of [1] it follows that there exists an inverse sequence { F,,, ¢,,., N}
such that lim{Fy, ¢os, @} is homeomorphic to im{F,, ¢},,, N}. It is known
that im{F,, ¢},,, N} is hereditarily unicoherent [16, Corollary 1, p. 228] since
each F), is hereditarily unicoherent. It remains to prove that im{F,, ¢, N}
is a fan. For each n € N let t,, be the top of F;,. From Remark 4.12 it
follows that ¢t = (¢,) is a point of lim{F,, ¢%,,,N}. It is clear that ¢ is a
ramification point of im{ F,,, ¢,,,, N}. Suppose that there exists a ramification
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point u of lim{F,,¢},,,N} such that u # ¢. Then there exists a triod T
in lim{F),,q},,, N} which contains u and ¢ ¢ T. There exists an n € N
such that T, = ¢*(T) contains no ¢, = ¢%(¢t). This means that T, is an
arc since F,, is a fan. Now, lim{7,,¢}|T,,,m > n} is chainable. Hence,
Um{T,, q}|Tm,m > n} is atriodic [17, Theorem 12.4]. This is impossible
since T = Um{T,, ¢%|Tjn,m > n}. Thus, im{F,,q},,.N} contains only one
ramification point t. Hence, lim{F,, ¢*,,,N} is a fan. O

Now we are ready to prove the main result of this paper.

THEOREM 4.20. A generalized fan X admits a Whitney map for C(X) if
and only if it is metrizable.

PRrROOF. If X is metrizable, then X admits a Whitney map for C(X).
Conversely, if X admits a Whitney map for C(X), then, by Theorem 4.3 X
is an AM-fan. From Theorem 4.19 it follows that there exists a o-directed
inverse system X = { X, pap, A} of metric fans such that all the bonding map-
pings pqp are surjective and the limit lim X is homeomorphic to X. Theorem
3.3 completes the proof. O

Let AM be a class of AM-arboroids. From Theorem 4.1 it follows that
each arboroid is AM-like. Using Theorem 4.14 we obtain the following result.

COROLLARY 4.21. FEach generalized fan is F-like.

By a similar method of proof as in the proof of Theorem 4.19 we obtain
the following theorem.

THEOREM 4.22. For every generalized fan X there exists a o-directed
inverse system X = {Xq, pap, A} of metric fans such that all the bonding
mappings pqp are surjective and the limit lim X is homeomorphic to X.
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