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LOCAL STABILITY OF THE ADDITIVE FUNCTIONAL
EQUATION

Soon-Mo Jung

Hong-Ik University, Korea

Abstract. In this paper, we prove the Hyers-Ulam stability of the
additive functional equation for a number of unbounded domains. We
moreover prove the stability of Jensen’s functional equation for a large
class of restricted domains.

1. Introduction

The starting point of studying the stability of functional equations seems
to be the famous talk of S. M. Ulam [15] in 1940, in which he discussed
a number of important unsolved problems. Among those was the question
concerning the stability of group homomorphisms:

Let G1 be a group and let G2 be a metric group with a metric
d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a map-
ping h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ
for all x, y ∈ G1, then there exists a homomorphism H : G1 →
G2 with d(h(x), H(x)) < ε for all x ∈ G1?

The case of approximately additive mappings was solved by D. H. Hyers
[3] under the assumption that G1 and G2 are Banach spaces. Later, the result
of Hyers was significantly generalized by Th. M. Rassias [12]. It should be
remarked that we can find in the books [4, 8] a lot of references concerning
the stability of functional equations (or see [2, 5, 6]).

In [13, 14], F. Skof investigated the Hyers-Ulam stability of the addi-
tive functional equation for many cases of restricted domains in R. Later,
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L. Losonczi [10] proved the local stability of the additive equation for more
general cases and applied the result to the proof of stability of the Hosszú’s
functional equation.

In Section 2, the Hyers-Ulam stability of the additive equation will be
investigated for a large class of unbounded domains. Moreover, in Section
3, we will apply the previous result to the proof of the local stability of the
Jensen’s functional equation on unbounded domains.

Throughout this paper, let E1 and E2 be a real (or complex) normed
space and a Banach space, respectively.

2. Stability of additive equation on restricted domains

Assume that ϕ : (0,∞)→ [0,∞) is a decreasing mapping for which there
exists a d > 0 such that

(2.1) ϕ(s) ≤ s

for any s ≥ d.
We may now define

B1 = {(x, y) ∈ E1\{0}×E1 : ‖y‖ < ϕ(‖x‖)} ∪ {(0, y) ∈ E2
1 : y ∈ E1}

and

B2 = {(x, y) ∈ E2
1 : ‖x+ y‖ < d}.

In the following theorem, we generalize the theorems of Skof [13, 14] and
of Losonczi [10] concerning the stability of the additive equation on restricted
domains.

Theorem 2.1. If a mapping f : E1 → E2 with ‖f(0)‖ ≤ ε satisfies the
inequality

(2.2) ‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for some ε ≥ 0 and all (x, y) ∈ E2
1 \ (B1 ∪ B2), then there exists a unique

additive mapping A : E1 → E2 such that

(2.3) ‖f(x)−A(x)‖ ≤ 39ε

for all x ∈ E1.

Proof. First, we assume that (x, y) ∈ B2 satisfies x 6= 0, y 6= 0 and
x+ y 6= 0. For this case, we can choose a z1 ∈ E1 with

‖z1‖ ≥ ϕ(‖x+ y‖), ‖z1‖ ≥ ϕ(‖x‖), ‖x+ z1‖ ≥ ϕ(‖y‖),

‖x+ y + z1‖ ≥ d, ‖x+ z1‖ ≥ d.
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Thus, the pairs (x + y, z1), (x, z1) and (y, x + z1) do not belong to B1 ∪ B2.
Hence, it follows from (2.2) that

‖f(x+ y)− f(x)− f(y)‖ ≤ ‖ − f(x+ y + z1) + f(x+ y) + f(z1)‖
+ ‖f(x+ z1)− f(x)− f(z1)‖
+ ‖f(x+ y + z1)− f(y)− f(x+ z1)‖

≤ 3ε(2.4)

for any (x, y) ∈ B2 with x 6= 0, y 6= 0 and x+ y 6= 0.
When x = 0 or y = 0, we have

‖f(x+ y)− f(x)− f(y)‖ = ‖f(0)‖ ≤ ε.
Taking this fact into account, we see that the inequality (2.4) is valid for all
(x, y) ∈ B2 with x+ y 6= 0.

We now assume that (x, y) ∈ B2 satisfies x + y = 0 and ‖x‖ ≥ d. (In
this case, ‖y‖ = ‖ − x‖ ≥ d.) In view of (2.1), both the pairs (−x,−x) and
(x,−2x) do not belong to B1 ∪ B2. Hence, it follows from (2.2) that

‖f(−2x)− 2f(−x)‖ ≤ ε
and

‖f(−x)− f(x)− f(−2x)‖ ≤ ε.
From the last two inequalities we get

‖f(x+ y)− f(x)− f(y)‖ = ‖f(0)− f(x)− f(−x)‖
≤ ‖f(0)‖+ ‖f(−2x)− 2f(−x)‖

+ ‖f(−x)− f(x)− f(−2x)‖
≤ 3ε.

Considering all the previous inequalities including (2.2), we may conclude that
f satisfies the inequality

(2.5) ‖f(x+ y)− f(x)− f(y)‖ ≤ 3ε

for all (x, y) ∈ E2
1 \(B1 ∪ B2) ∪ {(u, v) ∈ B2 : ‖u‖ ≥ d}.

Now, let (x, y) ∈ E2
1 be arbitrarily given with ‖x‖ ≥ d and ‖y‖ ≥ d. Since

ϕ is decreasing, we see by (2.1) that

ϕ(‖x‖) ≤ ϕ(d) ≤ d ≤ ‖y‖,
and this implies that (x, y) 6∈ B1. If, moreover, the given pair (x, y) belongs to
B2, then (x, y) ∈ {(u, v) ∈ B2 : ‖u‖ ≥ d}. Otherwise, (x, y) ∈ E2

1\(B1 ∪B2).
Hence, it follows from (2.5) that

(2.6) ‖f(x+ y)− f(x)− f(y)‖ ≤ 3ε

for all (x, y) ∈ E2
1 with ‖x‖ ≥ d and ‖y‖ ≥ d.
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Assume that (x, y) ∈ E2
1 with ‖x‖ < d and ‖y‖ ≥ 4d. In this case, we

may choose a z2 ∈ E1 with 2d ≤ ‖z2‖ < 3d. Then, it holds that

(2.7)

‖x− z2‖ ≥ d and ‖y + z2‖ ≥ d,
‖x− z2‖ ≥ d and ‖z2‖ ≥ 2d,

‖ − z2‖ ≥ 2d and ‖y + z2‖ ≥ d,
‖z2‖ ≥ 2d and ‖ − z2‖ ≥ 2d.

It then follows from (2.6) and (2.7) that

‖f(x+ y)− f(x)− f(y)‖ ≤ ‖f(x+ y)− f(x− z2)− f(y + z2)‖
+ ‖ − f(x) + f(x− z2) + f(z2)‖
+ ‖ − f(y) + f(−z2) + f(y + z2)‖
+ ‖f(0)− f(z2)− f(−z2)‖+ ‖ − f(0)‖

≤ 13ε(2.8)

for (x, y) ∈ E2
1 with ‖x‖ < d and ‖y‖ ≥ 4d.

Combining (2.6) and (2.8), we have

(2.9) ‖f(x+ y)− f(x)− f(y)‖ ≤ 13ε

for all (x, y) ∈ E2
1 with ‖y‖ ≥ 4d. Since the Cauchy difference f(x + y) −

f(x)− f(y) is symmetric with respect to x and y, we may conclude that the
inequality (2.9) is true for all (x, y) ∈ E2

1 with ‖x‖ ≥ 4d or ‖y‖ ≥ 4d.
If (x, y) ∈ E2

1 satisfies ‖x‖ < 4d and ‖y‖ < 4d, then we can choose a
z3 ∈ E1 with ‖z3‖ ≥ 8d. Then, we have ‖x+ z3‖ ≥ 4d. Since the inequality
(2.9) holds true for all (x, y) ∈ E2

1 with ‖x‖ ≥ 4d or ‖y‖ ≥ 4d, we get

‖f(x+ y)− f(x)− f(y)‖ ≤ ‖ − f(x+ y + z3) + f(x+ y) + f(z3)‖
+ ‖f(x+ z3)− f(x)− f(z3)‖
+ ‖f(x+ y + z3)− f(y)− f(x+ z3)‖

≤ 39ε

for any (x, y) ∈ E2
1 with ‖x‖ < 4d and ‖y‖ < 4d.

The last inequality, together with (2.9), yields

‖f(x+ y)− f(x)− f(y)‖ ≤ 39ε

for all x, y ∈ E1.
According to [1], there exists a unique additive mapping A : E1 → E2

that satisfies the inequality (2.3) for each x in E1.

Corollary 2.2. Let d > 0 and ε ≥ 0 be given. If a mapping
f : E1 → E2 with ‖f(0)‖ ≤ ε satisfies the inequality (2.2) for all x, y ∈ E1

with max{‖x‖, ‖y‖} ≥ d and ‖x+ y‖ ≥ d, then there exists a unique additive
mapping A : E1 → E2 that satisfies the inequality (2.3) for each x ∈ E1.
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Proof. Because of the symmetry property of the Cauchy difference with
respect to x and y, we can without loss of generality assume that f satisfies
the inequality (2.2) for all x, y ∈ E1 with ‖y‖ ≥ d and ‖x+ y‖ ≥ d.

For a constant mapping ϕ(s) = d (s > 0), let us define

B1 = {(x, y) ∈ E1\{0}×E1 : ‖y‖ < d} ∪ {(0, y) ∈ E2
1 : y ∈ E1}

and

B2 = {(x, y) ∈ E2
1 : ‖x+ y‖ < d}.

Since

E2
1 \B1 = {(x, y) ∈ E1\{0}×E1 : ‖y‖ ≥ d}

and

E2
1 \B2 = {(x, y) ∈ E2

1 : ‖x+ y‖ ≥ d},
we have

E2
1 \(B1 ∪B2) = {(x, y) ∈ E1\{0} ×E1 : ‖y‖ ≥ d and ‖x+ y‖ ≥ d}.

Thus, it follows from our hypothesis that f satisfies the inequality (2.2) for
all (x, y) ∈ E2

1 \(B1 ∪ B2).
According to Theorem 2.1, there exists a unique additive mapping A :

E1 → E2 that satisfies the inequality (2.3) for all x ∈ E1.

In 1983, Skof [14] presented an interesting asymptotic behavior of the
additive mappings:

A mapping f : R → R is additive if and only if |f(x + y) −
f(x)− f(y)| → 0 as |x|+ |y| → ∞.

Without difficulty, the above theorem can be extended to mappings from
a real normed space to a Banach space. We will now apply the previous
corollary to a generalization of the above theorem of Skof:

Corollary 2.3. A mapping f : E1 → E2 is additive if and only if

‖f(x+ y)− f(x)− f(y)‖ → 0

as ‖x+ y‖ → ∞.

Proof. On account of the hypothesis, there exists a decreasing sequence
(εn) with lim

n→∞
εn = 0 and

‖f(x+ y)− f(x)− f(y)‖ ≤ εn

for all (x, y) ∈ E2
1 with ‖x+y‖ ≥ n. With y = 0 and ‖x‖ → ∞, our hypothesis

implies f(0) = 0.
By Corollary 2.2, there exists a unique additive mapping An : E1 → E2

such that

(2.10) ‖f(x)−An(x)‖ ≤ 39εn

for all x ∈ E1.
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Now, let l and m be integers with m > l > 0. Then, the inequality (2.10)
implies that

‖f(x)−Am(x)‖ ≤ 39εm ≤ 39εl,

for x ∈ E1, and further the uniqueness of An implies that Am = Al for all
integers l,m > 0, i.e., An = A1 for any n ∈ N. By letting m→∞ in the last
inequality, we get

‖f(x)−A1(x)‖ = 0,

for any x ∈ E1, which means that f is additive. The reverse assertion is
trivial.

3. Stability of Jensen’s equation on restricted domains

Z. Kominek investigated in [9] the Hyers-Ulam stability of the Jensen’s
functional equation

2f

(
x+ y

2

)
= f(x) + f(y)

for the class of mappings defined on a bounded subset of RN . On the other
hand, the author proved in [7] the Hyers-Ulam stability of that equation on
unbounded domains.

In this section, we will use Theorem 2.1 to generalize the theorems of the
author and of Kominek.

Let ϕ1 : [0,∞) → [0,∞) be a decreasing mapping that satisfies ϕ1(0) =
d0 > 0. Let us define

B1 = {(x, y) ∈ E1\{0}×E1 : ‖y‖ < ϕ1(‖x‖)} ∪ {(0, y) ∈ E2
1 : y ∈ E1},

B2 = {(x, y) ∈ E2
1 : ‖x+ y‖ < d0},

D = {(0, y) ∈ E2
1 : ‖y‖ ≥ d0}.

Theorem 3.1. If a mapping f : E1 → E2 satisfies the inequality

(3.11)

∥∥∥∥2f
(
x+ y

2

)
− f(x)− f(y)

∥∥∥∥ ≤ ε

for some ε ≥ 0 and all (x, y) ∈ E2
1 \(B1 ∪B2) ∪D, then there exists a unique

additive mapping A : E1 → E2 such that

(3.12) ‖f(x)−A(x) − f(0)‖ ≤ 78ε

for any x ∈ E1.

Proof. If we substitute g(x) for f(x)− f(0) in (3.11), then we have

(3.13)

∥∥∥∥2g
(
x+ y

2

)
− g(x)− g(y)

∥∥∥∥ ≤ ε

for any (x, y) ∈ E2
1 \(B1 ∪ B2) ∪D. With x = 0 and ‖y‖ ≥ d0, the inequality

(3.13) yields ∥∥∥2g
(y

2

)
− g(y)

∥∥∥ ≤ ε
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for each y ∈ E1 with ‖y‖ ≥ d0. Let us replace y by x + y (‖x + y‖ ≥ d0) in
the above inequality to get

(3.14)

∥∥∥∥2g
(
x+ y

2

)
− g(x+ y)

∥∥∥∥ ≤ ε

for all x, y ∈ E1 with ‖x+ y‖ ≥ d0.
It follows from (3.13) and (3.14) that

‖g(x+ y)− g(x)− g(y)‖ ≤
∥∥∥∥g(x+ y)− 2g

(
x+ y

2

)∥∥∥∥

+

∥∥∥∥2g
(
x+ y

2

)
− g(x)− g(y)

∥∥∥∥
≤ 2ε

for every (x, y) ∈ E2
1 \ (B1 ∪ B2) ∪ D with ‖x + y‖ ≥ d0. Since (x, y) ∈

E2
1 \(B1 ∪ B2) implies ‖x+ y‖ ≥ d0, the mapping g surely satisfies

‖g(x+ y)− g(x)− g(y)‖ ≤ 2ε

for all (x, y) ∈ E2
1 \(B1 ∪ B2).

It trivially holds that ϕ1(s) ≤ s for all s ≥ d0. On account of Theorem 2.1,
there exists a unique additive mapping A : E1 → E2 such that

‖g(x)−A(x)‖ ≤ 78ε

for each x in E1.

Let ϕ2 : (0,∞) → [0,∞) be a continuous and decreasing mapping that
satisfies

0 < d = inf{s > 0 : ϕ2(s) = 0} <∞.
Furthermore, let us assume that the restriction ϕ2 | (0,d] is strictly decreasing.

Now, we define

B1 = {(x, y) ∈ E1\{0}×E1 : ‖y‖ < ϕ2(‖x‖)} ∪ {(0, y) ∈ E2
1 : y ∈ E1},

B2 = {(x, y) ∈ E2
1 : ‖x+ y‖ < d0},

D = {(0, y) ∈ E2
1 : ‖y‖ ≥ d0},

where we set d0 = inf{d, lim
s→0+

ϕ2(s)}.

Corollary 3.2. If a mapping f : E1 → E2 satisfies the inequality (3.11)
for some ε ≥ 0 and all (x, y) ∈ E2

1 \(B1 ∪B2) ∪D, then there exists a unique
additive mapping A : E1 → E2 satisfying the inequality (3.12) for all x ∈ E1.

Proof. First, we may define a mapping ϕ0 : [0,∞)→ [0,∞) by

ϕ0(s) =

{
d0, for s = 0,

inf{ϕ2(s), inf ϕ−1
2 (s)}, for s > 0,
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where we set ϕ−1
2 (t) = {s > 0 : ϕ2(s) = t} and inf ∅ = ∞. (We cannot

exclude the case ϕ−1
2 (s) = ∅ from the above definition). Let us define

B̃1 = {(x, y) ∈ E1\{0}×E1 : ‖y‖ < ϕ0(‖x‖)} ∪ {(0, y) ∈ E2
1 : y ∈ E1},

B̃2 = {(x, y) ∈ E2
1 : ‖x+ y‖ < d0},

D̃ = {(0, y) ∈ E2
1 : ‖y‖ ≥ d0}.

The fact that ϕ0(s) ≤ ϕ2(s) for all s > 0 implies B̃1 ⊂ B1. Since B2 = B̃2

and D = D̃, we get

E2
1 \(B1 ∪ B2) ∪D ⊂ E2

1 \(B̃1 ∪ B̃2) ∪ D̃.
Now, assume that (x, y) ∈ E2

1\(B̃1∪B̃2)∪D̃ but (x, y) 6∈ E2
1\(B1∪B2)∪D.

Because (x, y) 6∈ D and (x, y) 6∈ B2, we have

(3.15) x 6= 0 and ‖x+ y‖ ≥ d0.

Moreover, (x, y) should belong to B1\B̃1, i.e.,

(3.16) 0 < inf ϕ−1
2 (‖x‖) ≤ ‖y‖ < ϕ2(‖x‖).

(Since ‖x‖ > 0 and ϕ2| (0,d] is strictly decreasing, we have inf ϕ−1
2 (‖x‖) > 0.)

If we assume that (y, x) ∈ B1, then we get ‖x‖ < ϕ2(‖y‖). This fact implies
‖y‖ < inf ϕ−1

2 (‖x‖), which is contrary to (3.16). Hence, by (3.15), we conclude
that (y, x) 6∈ B1 ∪B2. This fact, together with (3.11), yields

∥∥∥∥2f
(
y + x

2

)
− f(y)− f(x)

∥∥∥∥ ≤ ε

for all (x, y) ∈ E2
1 \(B̃1 ∪ B̃2) ∪ D̃.

We now define another mapping ϕ : [0,∞)→ [0,∞) by

ϕ(s) =





d0, for s = 0,

inf{ϕ2(s), inf ϕ−1
2 (s)}, for 0 < s ≤ d1,

sup{ϕ2(s), supϕ−1
2 (s)}, for s > d1,

where d1 > 0 is the unique fixed point of ϕ2, i.e., d1 = ϕ2(d1), and we set
inf ∅ =∞ and sup ∅ = 0.

Let si > 0 (i = 1, 2, 3, 4) be arbitrarily given with 0 < s1 < s2 ≤ d1 <
s3 < s4. Since ϕ2 is decreasing, we have

lim
s→0+

ϕ2(s) ≥ ϕ2(s1) ≥ ϕ2(s2) ≥ d1 ≥ ϕ2(s3) ≥ ϕ2(s4)

and

d ≥ inf ϕ−1
2 (s1) ≥ inf ϕ−1

2 (s2) ≥ d1 ≥ supϕ−1
2 (s3) ≥ supϕ−1

2 (s4).

Hence, we get

ϕ(0) ≥ ϕ(s1) ≥ ϕ(s2) ≥ ϕ(s3) ≥ ϕ(s4),

which implies that ϕ is decreasing.
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Similarly as before, we define

B̂1 = {(x, y) ∈ E1\{0}×E1 : ‖y‖ < ϕ(‖x‖)} ∪ {(0, y) ∈ E2
1 : y ∈ E1},

B̂2 = {(x, y) ∈ E2
1 : ‖x+ y‖ < d0},

D̂ = {(0, y) ∈ E2
1 : ‖y‖ ≥ d0}.

Since B̂1 ⊃ B̃1, B̂2 = B̃2 and D̂ = D̃, we may conclude that the inequality
(3.11) holds true for all (x, y) ∈ E2

1 \(B̂1 ∪ B̂2) ∪ D̂.
According to Theorem 3.1, there exists a unique additive mapping A :

E1 → E2 such that the inequality (3.12) is true for any x ∈ E1.

The author [7] proved that it needs only to show an asymptotic property
of the Jensen difference to identify a given mapping with an additive one:

Let X and Y be a real normed space and a real Banach space,
respectively. A mapping f : X → Y with f(0) = 0 is additive if
and only if ∥∥∥∥2f

(
x+ y

2

)
− f(x)− f(y)

∥∥∥∥→ 0

as ‖x‖+ ‖y‖ → ∞.

By using Theorem 3.1, we will now prove an asymptotic behavior of ad-
ditive mappings which generalizes the above result:

Corollary 3.3. A mapping f : E1 → E2 with f(0) = 0 is additive if
and only if ∥∥∥∥2f

(
x+ y

2

)
− f(x)− f(y)

∥∥∥∥→ 0

as ‖x+ y‖ → ∞.

Proof. According to our hypothesis, there exists a decreasing sequence
(εn) with lim

n→∞
εn = 0 and

(3.17)

∥∥∥∥2f
(
x+ y

2

)
− f(x)− f(y)

∥∥∥∥ ≤ εn

for all (x, y) ∈ E2
1 with ‖x+ y‖ ≥ n.

The mapping ϕ1 : [0,∞) → [0,∞) defined by ϕ1(s) = −s+ n (s ≥ 0) is
decreasing. Moreover, it holds that ϕ1(0) = n. Let us define

B1 = {(x, y) ∈ E1\{0}×E1 : ‖y‖ < −‖x‖+ n} ∪ {(0, y) ∈ E2
1 : y ∈ E1},

B2 = {(x, y) ∈ E2
1 : ‖x+ y‖ < n},

D = {(0, y) ∈ E2
1 : ‖y‖ ≥ n}.

Since B1 ∪B2 = {(x, y) ∈ E2
1 : x = 0 or ‖x+ y‖ < n} and D = {(x, y) ∈

E2
1 : x = 0 and ‖x+ y‖ ≥ n}, we have

E2
1 \(B1 ∪ B2) = {(x, y) ∈ E2

1 : x 6= 0 and ‖x+ y‖ ≥ n},
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and hence

E2
1 \(B1 ∪ B2) ∪D = {(x, y) ∈ E2

1 : ‖x+ y‖ ≥ n}.
Therefore, the inequality (3.17) holds true for all (x, y) ∈ E2

1 \(B1 ∪B2) ∪D.
According to Theorem 3.1, there exists a unique additive mapping An :

E1 → E2 such that

(3.18) ‖f(x)−An(x)‖ ≤ 78εn

for all x ∈ E1. Now, let l and m be positive integers with m > l. Then, it
follows from (3.18) that

‖f(x)−Am(x)‖ ≤ 78εm ≤ 78εl

for x ∈ E1. However, the uniqueness of An implies that Am = Al for all
positive integers l and m, i.e., An = A1 for any n ∈ N. By letting m→∞ in
the last inequality, we get

‖f(x)−A1(x)‖ = 0,

for each x ∈ E1, which implies that f is an additive mapping.
The reverse assertion is trivial because every additive mapping f : E1 →

E2 is a solution of the Jensen functional equation (see [11]).
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