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Abstract 
The purpose of the present study is to find a suitable method for removal of iron and manganese 
from ground water, considering both local economical and environmental aspects. Ground water 
is a highly important source of drinking water in Romania. Ground water is naturally pure from 
bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too 
high, the water is not drinkable. Different processes, such as electrochemical and combined 
electrochemical-adsorption methods have been applied to determine metals content in 
accordance to reports of National Water Agency from Romania (ANAR). Every water source 
contains dissolved or particulate compounds. The concentrations of these compounds can affect 
health, productivity, compliance requirements, or serviceability and cannot be economically 
removed by conventional filtration means. In this study, we made a comparison between the 
electrochemical and adsorption methods (using membranes). Both methods have been used to 
evaluate the efficiency of iron and manganese removal at various times and temperatures. We 
used two membrane types: composite and cellulose, respectively. Different approaches, 
including lowering the initial current density and increasing the initial pH were applied. Reaction 
kinetics was achieved using mathematical models: Jura and Temkin. 
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Introduction 

Electrochemical treatment is an emerging technology used for the removal of organic and 

inorganic impurities from water and wastewater. Electrochemically processes involve redox 

reactions, where oxidation and reduction reactions are separated in space or time [1,2]. Usually, 

the electrochemically treatment of water is concerned with electron transfer at the 
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solution/electrode interface applying an external direct current in order to drive an 

electrochemical process [1,3]. Electrocoagulation is an electrochemical result of destabilization 

agents (usually Mn or Fe ions) that neutralize the electrical charge of suspended pollutant. 

Electrochemically generated metallic ions from these electrodes could undergo hydrolysis near 

the anode to produce a series of activated intermediates that are able to destabilize finely 

dispersed particles present in the water/wastewater to be treated. Electrochemical treatment 

methods have a future as advanced technologies for additional treatment of potable water from 

domestically and remote areas. 

Filter media (type, size and area), hydraulic and solids loading rate and backwashing regimes 

are all important aspects of filter design. Autocatalytic removal of manganese can take place in a 

filter and could be critical for manganese removal. An investment in filter pilot testing could 

become significant. 

The sorption of metal ions from aqueous solution plays an important role in water pollution 

control and in recent years there has been considerable interest in the use of low cost adsorbents. 

Many researchers have tried to exploit naturally, occurring materials as low-cost adsorbents, for 

removing of heavy metals. 

Manganese and iron (especially the last) produce different problems that could be due to 

various causes [4]. Many types of treatment are effective for the removal of iron and manganese 

from water, but not all methods are equally effective under any conditions. 

Oxidation of dissolved iron particles in water, change the iron to white, then yellow and finally 

to red-brown solid particles (precipitates) that settle out from the water. Iron that does not form 

particles large enough to settle out and that remains suspended (colloidal iron) leaves the water 

with a red tint. 

Manganese is usually dissolved in water, although that some shallow wells contain colloidal 

manganese, leaving the water with a black tint. These sediments are responsible for the staining 

properties of water containing high concentrations of iron and manganese [4]. 

Iron and manganese are common in groundwater supplies used by many small water systems. 

Exceeding the suggested maximum contaminant levels (MCL) usually results in discolored water, 

laundry, and plumbing fixtures. This, in turn, results in consumer complaints and a general 

dissatisfaction with the water utility. There are secondary standards set for iron and manganese, 

but these are not health related and are not enforceable. ANAR establishedthe following limits 

(MCL): iron at 0.30 mg/L and manganese at 0.05 mg/L. 

The purpose of the present study is to find a suitable method for removal of iron and 

manganese from drinking water. 

Experimental 

Materials 

Iron nitrate Fe(NO3)3 was used as a source of iron in form of Fe (III) and it was supplied by Sigma 

Aldrich. Manganese (II) nitrate Mn(NO3)2 was used as sources of manganese in form of Mn (II) and 

it was supplied by Sigma Aldrich. Pure kallium chloride (KCl), purchased from Merck, was used as 

electrolyte. Distilled water was used throughout. Analar sulfuric acid 98 % was purchased from 

Chimexin. 

http://en.wikipedia.org/wiki/Manganese
http://en.wikipedia.org/wiki/Nitrate
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Method AAS for iron and manganese 

A laborator combined photo-electrochemical unit was used for the batch experiments. It 

consists of a cylindrical quartz photo reactor (1 L), with a coaxial and immersed medium pressure 

UV mercury lamp used as the UV emitter and light source (Heraeus TQ150, input energy of 150 W) 

emitting a polychromatic radiation in the range from 100 to 280 nm wavelength. The UV lamp was 

equipped with a cooling water jacket to maintain the temperature of the reaction of wastewater 

treatment at room temperature.  

The reaction vessel was filled with solution containing both iron and manganese. The 

electrochemical characterization of the solution was carried out by using DC power supply GW 

3030 and two electrodes: graphite cathode and platinum anode. The measurements were 

performed in the temperature range: 288 K to 303 K, and the mixing was accomplished by using 

continuous magnetic stirrer.  

Photo-electrochemical method was combined with electrocoagulation in the same unit. Metal 

hydroxides generated during electrocoagulation were used to remove iron and manganesse from 

aqueous solution, and the effects of varying the current density and solution temperature of iron 

and manganesse adsorption characteristics were evaluated. The findings indicated that complete 

iron and manganesse removal could be achieved within reasonable removal efficiency and with 

relatively low electrical energy consumption [5,6].  

The experimental data have been fitted with Jura and Temkin adsorption isotherm models to 

describe the electrocoagulation process. The adsorption of iron preferably fitted the Jura 

adsorption isotherm and manganesse preferably fitted the Temkin adsorption isotherm, and these 

suggested monolayer coverage of adsorbed molecules.  

Definite amounts of KCl were added to improve the conductivity and ionic mobility through the 

electrolyte. Low concentration of KCl (45 mg/L) was added to increase the conductivity and 

electric current beside its bactericide effect after electrolysis to chlorine. The solution was 

acidified to pH 3 by drops added of prepared dilute sulfuric acid 15 %. The effect of Fe2+ and Mn2+ 

concentrations revealed that the higher concentration of dissolved iron and manganese ions, the 

higher removal efficiency was obtained. The efficiency of the process was evaluated by measuring 

the metal removal from samples at the end of each experiment. Samples were filtered with 

cellulose and composite membrane, before the measurement of metals, by applying atomic 

adsorption (Carl Zeiss Jena AAS). For all experiments there have been used a synthetic solutions of 

iron and manganesse with a concentration range between 1-12 ppm (Fig. 1). 
 

 
Time, min 

Figure 1. Iron and manganase concentratin evolution in time in the case photo-electrochemical 
combined with electrocoagulation method 
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Results and discussion 

The photo-electrochemical method combined with electrocoagulation method presents good 

results for removing iron ions from 12 ppm prepared synthetic solutions. As it could be seen from 

Figure 2, the removal efficiency in the case of iron was about 46 %, while in the case of manganese 

it was 55 %. 
 

 
Time, min 

Figure 2. Effect of different current densities on the removal efficiency of iron and manganese 
(C0 = 12 ppm, T = 298 K, CKCl = 45 mg/L) 

According to the applied electric current, the removal efficiency varied, while at low applied 

electric current, a low value of efficiency removal, % was obtained, but the removal efficiency in 

time was improved. The equilibrium of removal was achieved after 15 minute, from the processes' 

beginning. 

 
Current dansity, mA 

Figure 3. Effect of current density on iron and manganese removal. 

The optimum current density and temperature have been establisheda at 3.2 mA cm−2 and 

288 K, for iron and 3.4 mA cm−2 and 298 K for manganesse, respectively. Another method to 

remove iron and manganese from drinking water was the adsorption method using two 

membranes (cellulose and composite respectively). 

Both methods have been used to evaluate the efficiency of removing iron and manganese from 

waste waters at different times and temperatures [7,8]. 
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The experiments showed the feasibility of removing iron and manganese by adsorption and co-

precipitation with aluminum hydroxides. Photo-electrochemical method was combined with 

electrocoagulation in the same unit and were used for oxidation of soluble forms Fe2+ and Mn2+ to 

the insoluble forms Fe3+ and Mn4+. The combined method revealed better efficiency compared 

with a single electrochemical method. The presence of both dissolved iron and manganese has the 

advantage of less resistivity of the waste water solution. Low concentration of KCl (45 mg/L) was 

added to increase the conductivity and electric current. Higher removal efficiency was obtained 

when Fe2+ and Mn2+ are presented in higher concentration (12 ppm). The study showed a more 

rapid oxidation of Fe2+ than of Mn2+ due to the lower oxidation potential of iron ion than of the 

manganese ion [9,10]. 

a 

 
Time, min 

 
b 

 
Time, min 

 

Figure 4. Iron and manganese removal efficiency evolution in time when using cellulose 
membrane (a) and composite membrane (b) 

Composite membranes presented a better adsorption behavior for manganese ion (10.75 ppm) 

compared with the cellulose membranes (8.78 ppm). 

For iron ion the composite membranes' adsorption behavior (9.57 ppm) was better compared 

with the cellulose membranes (7.89 ppm) as they are presented in Figure 4. 

The solution pH is an important parameter which controls the adsorption process. It influences 

the ionization of the adsorptive molecule and hence the adsorbent's surface charge. Therefore, 

investigating the pH effect on the adsorption is essential in adsorption experiments. In this 

particular case, the solution pH can change the surface charge of the adsorbent as well as different 

iron and manganese ionic formsions. 
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Model Temkin 

Energy adsorption and ion interactions between aqueous solutions and membrane (adsorbent-

adsorbed) were studied by Temkin-Pzyhev model [10-13]. 

The Temkin assumed that due to such interactions, the adsorption energy of all layer molecules 

decreases with surface coating. 

This pattern was obtained in view of adsorption phenomena and the interaction between 

adsorbed substance and was achieved by designing the chart functions: qe versus ln Ce. 

The Temkin isotherm considers the interaction between the aqueous solution and solid 

(composite or cellulose membrane) that contained the free energy adsorption as a function of 

coating the surface of the adsorbent material. The equation underlying the Temkin model 

adsorption heat is: 

qe = B ln KT + B ln Ce (1) 

The linearized form of the Temkin’equation is: 

e

T T T eln ln

RT RT
q

b K b C
   (2) 

where Tb  - is the Temkin constant sorption heat, J/mg and the corresponding maximum energy 

constant connection between adsorbent and adsorbed is TK  / (L/g). 

The isotherms of this model are shown in Figure 5. 
 

 
ln (Ce / ppm) 

 
ln (Ce / ppm) 

Figure 5.Temkin adsorption isotherms of maganese and iron ions: cellulose membrane (a)  
and composite membrane (b) 
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B and KT are Temkin equation parameters and respectively adequate with adsorption condes-

cended and boundary constant adequate with maximum of boundary energy. Amount of B is 

RT/bT and bT is based on Temkin isotherm constant. By observing that we can see in Figure 5, the 

maximum amount adsorption of KT for two ions: manganese and iron, these with be much better 

uptake by the composite membranes. 

Taking into consideration the correlation coefficient for the surves presented in Figures (5,6), 

we observe that there is an accessible competition between this model and Harkins-Jura model. 

Harkins-Jura adsorption isotherm 

The Harkins-Jura adsorption isotherm could be expressed as [14, 15]:  

e2
e

1 1
log

B
C

q A A
   (3) 

where: qe is the adsorbed ions amount at equilibrium (mg/g) and Ce is the concentration at 

equilibrium for two ions (ppm). 

Harkins-Jura model is presented in Figure 6, and from the diagram log Ce against 2
e1 / q  , 

considering A as parameter slope and from intercept , we could compute B parameter.  
 

a 

 
log (Ce / (mg/g)) 

 

b 

 
log (Ce / (mg/g)) 

Figure 6. Harkins-Jura adsorption isotherms of maganese and iron ions: cellulose membrane (a)  
and composite membrane (b) 
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In this paper, the experimental adsorption data were tested applying the Temkin and Harkins-

Jura equations. 

It was observed that the correlation coefficient has a good correlation with experimental data.  

In Figure 6 the specific amount capacity adsorption is in mg/g and equilibrium concentration in 

ppm. 

The validity of the Harkins-Jura solute adsorption isotherm to systems, it could be used for the 

determination of the specific surface area of solids (composite and cellulose membrane). 

All the plots contain two intersecting straight lines (for these two metals: iron and maganese) 

and according to the Harkins-Jura solute adsorption equation. The Harkins-Jura equation applies to 

these systems for the entire concentration range studied. The existence of two or more 

intersecting straight lines in the Harkins-Jura plot indicates that there are two, or many isotherms 

corresponding to each of these lines with different values for the constants A and B. As it could be 

seen from Figure 6, in the case of Jura isotherm representation there are two linear parts 

derivated from model equation. The difference between the surface tensions caused by the 

adsorbent material and aqueous solutions is a linear function of the molecule and therefore the 

area is indicated using the isotherm Harkins-Jura. 

It argues that the two straight lines correspond for two different orientations of the adsorbent 

(composite or cellulose membrane) in the process of adsorption and high slope corresponding to a 

plane in surface and the slope shows lower values corresponding to a vertical orientation, for the 

two metals adsorption. 

This point of view was supported by the research of Soriaga et al. [13] work, where, using thin 

layer electrochemical techniques, it has been shown that admolecules assume a parallel 

orientation to the solid surface when adsorbed from solutions. 

Therefore, we can see that a straight line with a higher slope in the Harkins-Jura model 

corresponds to a flat orientation adsorption process that changes from a vertical orientation as 

this initial concentrations becames greater. 

As consequence, by making this orienting change of the adsorption process, a new phase it 

would be obtained, which presents a new point of intersection between the lines of the model 

representation of the two ions by their adsorption through the two membranes. Thus are 

obtained very good values for the adsorption capacity of the two membranes.  

The Temkin and Harkin-Jura models are often used to describe the equilibrium sorption 

isotherms. 

Conclusion 

pH is an important parameter influencing heavy metal adsorption from aqueous solutions. It 

has no influence on the adsorbent surface charge, the degree of ionization of material present in 

the solution, and also the dissociation of functional groups on the active sites of the adsorbent. 

The method applying the composite and cellulose membranes adsorption presented the best 

results compared to photo-electrochemical method for removing iron and manganese ions from 

drinking water. The adsorption membrane method has the advantage of simplicity in terms of 

installation compared to photo-electrochemical method. The disadvantage is the high cost of 

composite and cellulose membranes. 

Considering the high consumption of electricity which is used for photo-electrochemical 

method, the adsorption membrane method has the advantage of low power consumption. 



D.-E. Pascu at al. J. Electrochem. Sci. Eng. 6(1) (2016) 47-55 

doi:10.5599/jese.244 55 

In addition, the adsorption kinetic studies showed that the electrocoagulation process was best 

described using the pseudo second-order kinetic model [16] at the various current densities and 

temperatures. 
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