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Abstract. An operator A on a complex Hilbert space H is called

a quasi-isometry if A∗2
A2 = A∗A. In the present article, some structural

properties of quasi-isometries are established with the help of operator
matrix representation.

1. Introduction

A bounded linear transformation of a complex Hilbert space H into itself
is called an operator on H . In [6], we have introduced the concept of a

quasi-isometry which is defined as an operator A for which A∗
2

A2 = A∗A
or equivalently, ‖A2x‖ = ‖Ax‖ for all x ∈ H . Obviously the class of quasi-
isometries is a simple extension of isometries. The purpose of the present
exposition is to explore some properties of quasi-isometries by exploiting the
special kind of operator matrix representation associated with such operators.
In the course of our investigation, we find some properties of isometries, which
are retained by quasi-isometries. However, there are other ones, which are
shown to be false for quasi-isometries.

2. Notations and terminology

We use the notations N(A) and R(A) respectively for the null space and
the range of an operator A. The symbol F will be used for the closure of
a set F . We write σ(A), π0(A), π00(A), w(A) and W (A) respectively, for the
spectrum, the point spectrum, the set of eigenvalues of finite multiplicity, the
Weyl spectrum and the numerical range of A. Let r(A) and |W (A)| denote
the spectral radius and the numerical radius of A. For an operator A, if
w(A) = σ(A) \ π00(A), then we say that the Weyl’s theorem holds for A.
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3. Results

We begin with the following result that is the heart of our entire exposi-
tion.

Theorem 3.1. If an operator A is a quasi-isometry, then it has an oper-
ator matrix representation given by

A =

[
T S
0 0

]
,

where T is an isometry and S is a bounded linear transformation.

Proof. Let H = R(A) ⊕ N(A∗) and P , the projection on R(A). Then
A has the operator matrix representation

A =

[
T S
0 0

]
,

where T = A/R(A) and S = PA/N(A∗). If y = Ax, then ‖Ty‖ = ‖Ay‖ =

‖A2x‖ = ‖Ax‖ = ‖y‖ and so ‖Ty‖ = ‖y‖ for y ∈ R(A). This means that the
operator T is an isometry.

Remark 3.2. The converse of preceding theorem is also true. In fact, if
T is an isometry on H and if S is a bounded linear transformation from a
Hilbert space H to another Hilbert space K, then it is easy to show that the
operator matrix is a quasi-isometry acting on H ⊕K.

In[6, Theorem 2], we proved that the following statements are equivalent
for a quasi-isometry A.

(i) ‖A‖ = 1.
(ii) A is hyponormal.

In the next result we use the matrix representation to derive yet another
statement which is equivalent to both (i) and (ii).

Theorem 3.3. Let

A =

[
T S
0 0

]

where T is an isometry. Then ‖A‖ = 1 if and only if (a) S∗T = 0, and (b)
‖S‖ ≤ 1.

Proof. Since

AA∗ =

[
TT ∗ + SS∗ 0

0 0

]
,

‖A‖2 = ‖TT ∗ + SS∗‖. Suppose ‖A‖ = 1. Then TT ∗ + SS∗ ≤ I and so
‖S‖ ≤ 1. Also

(3.1) ‖I + T ∗SS∗T‖ = ‖T ∗(TT ∗ + SS∗)T‖ ≤ ‖TT ∗ + SS∗‖ = 1
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Suppose α ∈ σ(I + T ∗SS∗T ). Then α − 1 ∈ σ(T ∗SS∗T ); thus α ≥ 1 and
hence by (3.1), α = 1. As a consequence of this, we find T ∗SS∗T = 0 or
S∗T = 0; thus the assertions (a) and (b) hold. Assume the converse. Observe
that

A∗A =

[
T ∗T T ∗S
S∗T S∗S

]
=

[
I 0
0 S∗S

]

gives ‖A‖ = max{1, ‖S‖}. Since ‖S‖ ≤ 1, ‖A‖ = 1.

It is obvious that an idempotent operator is a quasi-isometry with spec-
trum consisting of at the most two points 0 and 1. In the next result we
establish the converse. In the proof of the result and the following one, we
shall use the following observation: given operators T and S if

A =

[
T S
0 0

]

then σ(A) contains all non-zero elements of σ(T ).

Theorem 3.4. A quasi-isometry A is idempotent provided σ(A) ⊆ {0, 1}.
Proof. Let

A =

[
T S
0 0

]

as in Theorem 3.1. The observation stated just before the present theorem
along with the hypothesis on σ(A) shows that σ(T ) consists of 1 only. Since
T is an isometry, it follows that T = I . This proves the result.

A further relaxation in the hypothesis of the preceding theorem gives the
following result.

Theorem 3.5. If A is a quasi-isometry with real spectrum, then A3 = A.

Proof. We suppose that A has the matrix representation given in Theo-
rem 3.1. By our hypothesis, we find that σ(T ) is real. Since T is a hyponormal

operator, the convex hull of σ(T ) equals W (T ) [8]. Therefore W (T ) is real or
T ∗ = T . Hence T 2 = I . Now it is easy to check the relation A3 = A.

Theorem 3.6. Let

A =

[
T S
0 0

]

be a quasi-isometry. If A∗ is also a quasi-isometry, then T is unitary and
(A∗A)2 ≥ (A∗A).

Proof. First we assert that T is unitary. It is enough to show that T ∗ is
injective. Suppose T ∗x = 0. Since A2A∗2 = AA∗, a computation shows that

(3.2) T 2T ∗2 + TSS∗T ∗ = TT ∗ + SS∗
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From this it is immediate that SS∗x = 0 or S∗x = 0. Now premultiplying
and postmultiplying (3.2) by T ∗ and T respectively, we get

(3.3) TT ∗ + SS∗ = I + T ∗SS∗T

Since T ∗x = 0 = S∗x, we deduce x + T ∗SS∗Tx = 0 from (3.3) or 0 =
‖x‖2 + ‖S∗Tx‖2. Hence x = 0 which shows the injectivity of T . Now we
verify the remaining assertion. We denote the operator matrix

[
I 0
0 0

]

by P . The fact that T is unitary yields

(3.4) AA∗ −APA∗ =

[
SS∗ 0
0 0

]

and

(3.5) APA∗A = A

Postmultiplying equation (3.4) by A and using equation (3.5), we get

AA∗A−A =

[
SS∗ 0
0 0

] [
T S
0 0

]

which in turn gives

(A∗A)2 −A∗A = A∗
[
SS∗ 0
0 0

]
A ≥ 0

Although an isometry is left invertible, the corresponding result for quasi-
isometries is not true (Counter Example: an idempotent operator which not
the identity operator). This motivates us to pay special attention to left
invertible quasi-isometries.

Theorem 3.7. A left invertible quasi-isometry is similar to an isometry.

Proof. Let A be a left invertible quasi-isometry. Define a new inner
product on H by < x, y >o=< Ax,Ay >. Clearly ‖x‖o = ‖Ax‖ ≤ ‖A‖‖x‖.
Since A is bounded below,

(3.6) M‖x‖ ≤ ‖x‖o ≤ ‖A‖‖x‖
for some M > 0. This shows that H is also a Hilbert space with respect to
new inner product. Denote this new Hilbert space by Ho. Let I from H to
Ho be the identity transformation. The continuity of I follows from (3.6). Let
Ao = IAI−1. Then A0 is an isometry. This proves the result.

Remark 3.8. The preceding theorem insipires us to examine the existence
of a stronger possibility for a left invertible quasi-isometry to be an isometry.
However, the following example ruled out this possibility.
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Example 3.9. Define operators T and S on a Hilbert space H = l2 by

T (x1, x2, x3, . . .) = (0, x1, 0, x2, ..)

and

S(x1, x2, x3, . . .) = (2x1, 0, x2, 0, x3, 0, . . .).

Then it is not difficult to show that

(i) T is an isometry,
(ii) S∗T = 0,
(iii) ‖ Sx ‖≥‖ x ‖ for all x in H ,
(iv) S is not an isometry as ‖ Se1 ‖= 2 for e1 = (1, 0, 0, . . .).

We assert that the operator

A =

[
T S
0 0

]

is bounded below. If not, then there is a sequence of unit vectors zn = (xn, yn)
in H⊕H such that Azn → 0 or Txn+Syn → 0. Because T is an isometry and
S∗T = 0, we find xn → 0 and hence Syn → 0. By (iii), yn → 0. Thus A is a
quasi-isometry that is bounded below. However, if we let z = (1

√
2)(e1, e1),

then < Az, z >= 3/2, resulting ‖A‖ > 1. Consequently A fails to be an
isometry.

The following theorem appeared in [6] is proved here with an alternate
argument that uses the operator matrix representation.

Theorem 3.10. An isolated point in the spectrum of a quasi-isometry is
an eigen-value.

Proof. Let

A =

[
T S
0 0

]

be a quasi-isometry. Let λ be an isolated point in σ(A). Suppose λ is zero.
If 0 ∈ σ(T ), then 0 is an eigen-value of T because T is hyponormal and we
know that an isolated point in the spectrum of a hyponormal operator is an
eigenvalue [7]. But this will contradicts the injectivity of T . Therefore 0
cannot be in σ(T ) and so T must be unitary. Fix a non-zero vector y in H .
Then there is a non-zero vector x such that Sy = −Tx or A(x, y) = 0. This
shows that 0 is an eigen-value of A. Next assume that λ is non-zero. Clearly
it is an isolated point of σ(T ) and so an eigen-value of T . Choose a non-zero
vector x such that (T − λI)x = 0. Clearly A(x, 0) = λ(x, 0). This completes
the proof.

Theorem 3.11. Let

A =

[
T S
0 0

]
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be a quasi-isometry with S∗T = 0. Then R(S) is closed if and only if R(A)
is closed.

Proof. Suppose R(S) is closed. Let {(xn, yn)} be the sequence of vectors
such that A(xn, yn) → (x, y). Clearly Txn + Syn → x and y = 0. Since T is
an isometry, it follows that xn +T ∗Syn → T ∗x and so xn → T ∗x as T ∗S = 0.
This, in turn, gives Syn → x−TT ∗x and Txn → TT ∗x. Since R(S) is closed,
x − TT ∗x = Su for some u in H . Thus x = TT ∗x + Su which shows that
(x, y) ∈ R(A).

On the other hand if R(A) is closed, then (y, 0) ∈ R(A) whenever Syn →
y. This gives y = Tx+Sz for some vectors x and z. Since T ∗S = 0, T ∗y = 0
and hence 0 = x+ T ∗Sz = x giving y = Sz; thus R(S) is closed.

Remark 3.12. As an application of the preceding theorem, we construct
a quasi-isometry to show that unlike the range of an isometry, the range of a
quasi-isometry need not be closed

Example 3.13. Define operators T and S on `2 by

T (x1, x2, x3, . . .) = (0, x1, 0, x2, 0, . . .)

and
S(x1, x2, x3, . . .) = (x1, 0, x2/2, 0, x3/3, 0, . . .).

Since dimR(S) = ∞ and S is a compact operator, R(S) cannot be closed.
Also it is easy to verify that S∗T = 0. In view of the above result R(A) fails
to be closed.

It is well known that Weyl’s theorem holds for hyponormal operators [2]
and in particular. Here we find that this important property of hyponor-
mal operators (and in particular of quasi-isometries) is also shared by quasi-
isometries.

In the sequel, A will denote a quasi-isometry with the matrix representa-
tion as obtained in Theorem 3.1. In order to prove Weyl’s theorem for A, we
shall need some lemmas. We assume that A is a non-unitary operator.

Lemma 3.14. For a non-zero complex number z, R(A − zI) is closed if
and only if R(T − zI) is closed.

Proof. Suppose R(A − zI) is closed and (T − zI)xn → x. Then (A −
zI)(xn, 0) → (x, 0). Since R(A − zI) is closed, there exist vectors u and v
such that (x, 0) = (A− zI)(u, v) or x = (T − zI)u+ Sv and 0 = zv. Because
z is non-zero, we find v = 0 resulting in x = (T − zI)u. This proves that
R(T − zI) is closed.

Conversely assume that R(T −zI) is closed. Let {(xn, yn)} be a sequence
of vectors for which (A − zI)(xn, yn) → (x, y) or (T − zI)xn + Syn → x and
−zyn → y. Since z is non-zero, yn → −(1/z)y and hence (T − zI)xn →
x + (1/z)Sy. Since R(T − zI) is closed, we find a vector u such that x +
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(1/z)Sy = (T − zI)u. It is clear that (A− zI)(u,−y/z) = (x, y). This shows
that R(A− zI) is closed.

Lemma 3.15. For a non-zero complex number z,

(i) dimN(A− zI) = dimN(T − zI).
(ii) dimN(A∗ − z∗I) = dimN(T ∗ − z∗I).
Proof. (i) is obvious in view of the relationN(A−zI) = N(T−zI)∪{0}.

Now we prove (ii). Note that (x, y) ∈ N(A∗ − z∗I) if and only if x ∈ N(T ∗−
z∗I) and y = S∗x/z∗.

Suppose (x1, y1), . . . , (xm, ym) are linearly independent vectors in N(A∗−
z∗I). Then xi ∈ N(T ∗ − z∗I) and yi = S∗xi/z

∗ for i = 1, 2, 3, . . .. If α1x1 +
α2x2 +α3x3 + · · ·+αmxm = 0, then α1y1 +α2y2 +α3y3 + · · ·+αmym = 0 and
so α1(x1, y1) + α2(x2, y2) + α3(x3, y3) + · · ·+ αm(xm, ym) = 0. Since vectors
(xi, yi)(i = 1, 2, 3, . . . ,m) are linearly independent, it follows that αi = 0.
This means that the vectors x1, x2, . . . , xm are linearly independent. Hence

(3.7) dimN(A∗ − z∗I) ≤ dimN(T ∗ − z∗I).
Next we obtain the reverse inequality. Let x1, x2, . . . , xn be linearly

independent vectors in N(T ∗ − z∗I). Set yi = S∗xi/z
∗. Then vectors

(x1, y1), . . . , (xn, yn) belong to N(A∗−z∗I). The linear independence of these
vectors follows from that of x1, x2, . . . , xn. Consequently

(3.8) dimN(A∗ − z∗I) ≥ dimN(T ∗ − z∗I).
From (3.7) and (3.8), our second assertion follows.

Lemma 3.16. σ(A) \ {0} = (w(A) ∪ πoo(A)) \ {0}.
Proof. By Lemma 3.14 and Lemma 3.15, we find

w(A) \ {0} = w(T ) \ {0}
and

πoo(A) \ {0} = πoo(T ) \ {0}.
Since T is an isometry, σ(T ) = w(T ) ∪ πoo(T ). Therefore σ(A) \ {0} =

σ(T ) \ {0} = (w(T )∪πoo(T )) \ {0} = (w(T ) \ {0})∪ (πoo(T ) \ {0}) = (w(A)∪
πoo(A)) \ {0}.

Lemma 3.17. 0 ∈ w(A) ∪ πoo(A).

Proof. Suppose 0 6∈ w(A)∪πoo(A). Then either 0 is not an isolated point
of σ(A) or is an eigenvalue of A with infinite multiplicity. In the latter case,
0 ∈ w(A) which contradicts the assumption 0 6∈ w(A)∪πoo(A). Therefore the
only possibility remains with us is that 0 is a limit point of σ(A). Select a
sequence {zn} of non-zero distinct points from σ(A) converging to 0. In view
of Lemma 3.15, each zn lies in w(A) ∪ πoo(A). Because of our assumption
that 0 6∈ w(A) ∪ πoo(A), w(A) can contain at the most finitely many z′ns.
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Therefore there exists a positive integer k such that zn ∈ πoo(A) for n ≥ k.
In particular, zn ∈ ∂σ(A) for n ≥ k. Since ∂σ(A) ⊆ πoo(A) ∪ σl(A) [3], we
find 0 ∈ πoo(A) ∪ σl(A) and hence 0 ∈ w(A) ∪ πoo(A). Again we get the
contradiction.

Lemma 3.18. w(A) ∩ πoo(A) = φ

Proof. Suppose z ∈ πoo(A). If z is non-zero, then it will follow from
Lemma 3.15 that z ∈ πoo(T ) \ {0}. Since πoo(T ) \ {0} and w(T ) \ {0} are
disjoint and also w(A) \ {0} = w(T ) \ {0}, one can see that z is not in w(A).
Next assume that z = 0. If 0 ∈ σ(A), then 0 is an isolated point of σ(T ) and
therefore an eigenvalue of T . This contradicts the injectivity of T ; thus 0 does
not belong to σ(T ) or T is unitary.

Now we show that N(A∗) is finite dimensional. Note that N(A) =

{(x, y) : x ∈ R(A), y ∈ N(A∗) and Tx+Sy = 0}. Let y1, y2, . . . , yk be linearly

independent vectors in N(A∗). Since T is unitary and Syi ∈ R(A), there ex-

ist vectors x1, x2, . . . , xk in R(A) such that Txi + Syi = 0 for i = 1, 2, . . . , k.
Clearly (xi, yi) ∈ N(A). One can easily check the linear independence of vec-
tors (x1, y1), . . . , (xk, yk). Thus we have shown that dimN(A∗) ≤ dimN(A).
Since 0 ∈ πoo(A), N(A∗) is finite dimensional. We now complete the proof by
proving 0 6∈ w(A). Write

A =

[
T 0
0 I

]
+

[
0 S
0 −I

]

Since N(A∗) is of finite dimension, the operator
[

0 S
0 −I

]

is compact. As A is the sum of a unitary operator and the compact operator,
we conclude that A is a Fredholm operator of index 0 or equivalently, 0 6∈ w(A)
[1].

Theorem 3.19. A quasi-isometry satisfies Weyl’s theorem.

Proof. The result follows from Lemma 3.16, Lemma 3.17 and Lemma
3.18.

Corollary 3.20. If A is compact, then

(i) A is finite dimensional.
(ii) N(A) is infinite dimensional.

Proof. Under the hypothesis, T is compact. But T being an isometry,
its range must be closed and therefore it must be finite dimensional. Since
the domain of T is R(A) and T is injective, we conclude that dimR(A) <∞.
This proves (i). To prove (ii), note that T is unitary by the first part of the
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proof. The fact that w(A) = {0} and Theorem 3.19 gives that 0 6∈ πoo(A).
This verifies (ii).

4. General remarks

It is well known that the eigenspaces of an isometry are reducing sub-
spaces. However, the corresponding result for a quasi-isometry is invalid. To
see this, consider the operator

A =

[
T S
0 0

]

on H ⊕ H , where T is an isometry with non-empty point spectrum and S
is invertible. Observe that πo(A) 6= φ. We claim that for each λ ∈ πo(A),
N(A − λI) 6⊆ N(A∗ − λ∗I). Suppose (A − λI)(x, y) = 0 for some (x, y) 6= 0.
Then (T − λI)x + Sy = 0 and −λy = 0. If (x, y) ∈ N(A∗ − λ∗I), then
(T ∗ − λ∗I)x = 0 and S∗x − λ∗y = 0. Since λy = 0, the first equation gives
S∗x = 0 and so the invertibility of S forces x = 0. Consequently the equation
(T − λI)x + Sy = 0 yields Sy = 0 or y = 0. Thus we have (x, y) = 0, which
is a contradiction. Therefore for no λ ∈ πo(A), N(A− λI) ⊆ N(A∗ − λ∗I).

In [6, Remark to Theorem 4], we have raised the following question: is it
true that a quasi-isometry is normal if it is reduced by its null space? The
answer turns out to be no as can be seen by the following counter example.

Example 4.1. Let T be the unilateral shift on H . Define an operator S
on H by Sx = 0 if x ∈ R(T ) and Sx = 2x if x ∈ N(T ∗). Then S is self-adjoint
and N(S) = R(T ). Let

A =

[
T S
0 0

]
.

Then A is a quasi-isometry on H ⊕ H . We first show that N(A) ⊆ N(A∗).
Suppose A(x, y) = 0. Then Tx + Sy = 0. Since N(S) = R(T ), we find
Sy ∈ N(S). But then S2y = 0 and hence Sy = 0 as S is selfadjoint. This
together with Tx+Sy = 0 will imply x = 0. Consequently A∗(x, y) = 0. Thus
N(A) ⊆ N(A∗). The construction of S shows that ‖S‖ ≥ 2 and ST = 0. In
view of Theorem 3.3, A is non-hyponormal.

If A is a quasi-isometry, then |W (A)| ≥ 1 because r(A) = 1. In case
|W (A)| = 1, it is obvious that A is spectraloid, i.e., r(A) = |W (A)|. Here
the possibility for a stronger conclusion is not known to us. However, if A is
idempotent, then it turns out be a projection [4].
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