DENDROIDS AND PREORDERS

Víctor Neumann-Lara¹, Isabel Puga and Richard G. Wilson²

Universidad Nacional Autónoma de México and Universidad Autónoma Metropolitana, México

ABSTRACT. Let X be a dendroid and $x^* \in X$. $\Delta_0(X, x^*)$ will denote the preordered set of arc-components of $X \setminus \{x^*\}$ where the preorder is defined by $\alpha \leq \beta$ if $\alpha \subseteq \operatorname{cl}(\beta)$. In this paper we investigate conditions under which there exists a pair (X, x^*) such that $\Delta_0(X, x^*)$ is isomorphic to a given preordered set.

1. INTRODUCTION

A continuum is a compact and connected metric space. It is *hereditarily* unicoherent if the intersection of each two of its subcontinua is connected (or empty). A *dendroid* is an arcwise connected and hereditarily unicoherent continuum. It is well known that for every pair of points $x, y \in X$ there exists a unique arc $[x, y] \subseteq X$ joining them and that a subcontinuum of a dendroid X is also a dendroid.

By a preordered set or preposet we mean a set \mathcal{P} with a transitive relation \leq between pairs of elements of \mathcal{P} which satisfies $p \leq p$ for each $p \in \mathcal{P}$. If additionally, the relation \leq satisfies: $p \leq q$ and $q \leq p$ implies p = q, then we say that \mathcal{P} is a partially ordered set or poset. An induced subpreposet (respectively, subposet) \mathcal{P}' is a subset of a preposet (respectively, poset) \mathcal{P} such that for $p, q \in \mathcal{P}', p \leq q$ in \mathcal{P}' if and only if $p \leq q$ in \mathcal{P} . A chain (respectively, antichain) is a subset of a preposet each pair of whose elements is comparable (respectively, incomparable). An isomorphism between preordered sets is a

 $^{^2}$ Research supported by Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico, grants no. 28411E and 38164E.

²⁰⁰⁰ Mathematics Subject Classification. 54F20, 54F50, 05C20.

Key words and phrases. Dendroid, preordered set, partially ordered set.

 $^{^1}$ Research supported by Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico, grant no. 27968E.

bijective function such that both it and its inverse preserve the order relation; the term *mapping* will always mean a continuous function.

The main purpose of this paper is to construct examples of dendroids. We do this by defining a preorder relation between the arc-components of $X \setminus \{x^*\}$ where X is a dendroid and $x^* \in X$. To make this more precise we need some more definitions.

The set of arc-components of a subset W of a dendroid X will be denoted by $\mathcal{A}(W)$. A pointed dendroid (X, x^*) consists of a dendroid X and a point $x^* \in X$. Following [4], we denote by $\Delta_0(X, x^*)$ the set $\mathcal{A}(X \setminus \{x^*\})$ with the preorder \leq defined as $\alpha \leq \beta$ if $\alpha \subseteq \operatorname{cl}(\beta)$. We say that a preposet \mathcal{P} is *realizable* whenever there is a pointed dendroid (X, x^*) such that $\Delta_0(X, x^*)$ is isomorphic to \mathcal{P} ; in such a case (X, x^*) will be said to *realize* \mathcal{P} . The preposet \mathcal{Q} is said to be *subrealizable* whenever there is a realizable preposet \mathcal{P} containing \mathcal{Q} as an induced subpreposet. It was shown in [4] that for any finite poset \mathcal{P} there is a pointed dendroid (in fact infinitely many) (X, x^*) which realizes \mathcal{P} . In this paper we investigate this problem for infinite preposets, necessarily of cardinality at most \mathfrak{c} , since a compact metric space has at most \mathfrak{c} elements.

We prove in this paper that a countable preposet containing an induced subpreposet which has no last element is not realizable. In particular ω and the preordered set $E_2 = (\{a, b\}, \leq)$ (where $a \neq b$), such that $a \leq b$ and $b \leq a$ are not realizable. Nevertheless, we prove that ω and E_2 are both subrealizable. For the latter, we construct a pointed dendroid (X, x^*) such that every element in $\mathcal{A}(X \setminus \{x^*\})$ is dense in X. We also prove that countable preposets in which all chains are bounded by a fixed natural number, are realizable.

2. Preliminaries

The following results concerning the arc-components of subsets of dendroids will be required in Section 3.

THEOREM 2.1. Let X be a dendroid, $W \subseteq X$ an open set in X and $\alpha \in \mathcal{A}(W)$. Then α is an F_{σ} subset of X. Moreover $\alpha = \bigcup \{F_n : n \in \omega\}$ where F_n is a dendroid for each $n \in \omega$.

PROOF. Let d be a metric on X which generates the topology and fix a point $y \in \alpha$. Let $r = d(y, X \setminus W)$. If $K_n = \{x \in X : d(x, X \setminus W) \ge r/(n+1)\}$ then K_n is a closed subset of W and $y \in K_n$ for each $n \in \omega$. Let F_n be the arc component of K_n containing y. To prove that F_n is a closed subset of X, note that $cl(F_n)$ is a subcontinuum of X and hence it is a dendroid contained in K_n . Since F_n is the arc-component of y, it follows that $cl(F_n) \subseteq F_n$ and hence F_n is closed. Now, if $x \in \alpha$, the arc [x, y] is a closed subset of X contained in W and hence [x, y] and $X \setminus W$ are disjoint compact subsets of X. Thus d([x,y],W) > 0 and so $[x,y] \subseteq K_m$ for some $m \in \omega$. Hence $[x,y] \subseteq F_m$, implying that $y \in F_m$.

The simple proof of the following theorem is left to the reader.

THEOREM 2.2. Let X be a dendroid, Y a subdendroid of X and $x^* \in Y$. Then for each $\alpha \in \mathcal{A}(Y \setminus \{x^*\})$ there exists a unique $\psi(\alpha) \in \mathcal{A}(X \setminus \{x^*\})$ such that $\alpha \subseteq \psi(\alpha)$. Moreover $\psi : \mathcal{A}(Y \setminus \{x^*\}) \to \mathcal{A}(X \setminus \{x^*\})$ is an injective function and $\alpha = \psi[\alpha] \cap Y$.

THEOREM 2.3. Let (X, x^*) be a pointed dendroid such that each element of $\mathcal{A}(X \setminus \{x^*\})$ has empty interior. Then $\mathcal{A}(X \setminus \{x^*\})$ is uncountable.

PROOF. Since $X = \bigcup \{ \alpha : \alpha \in \mathcal{A}(X \setminus \{x^*\}) \} \cup \{x^*\}$, it is a consequence of Theorem 2.1 that

$$X = \bigcup \left\{ \bigcup_{n \in \omega} F_n(\alpha) : \alpha \in \mathcal{A}(X \setminus x^*) \right\}$$

where each $F_n(\alpha)$ is closed (it is a dendroid) and has empty interior by hypothesis. It follows from the Baire Category Theorem that $\mathcal{A}(X \setminus \{x^*\})$ is uncountable.

An inverse sequence is a sequence $(X_i, f_i)_{i \in \omega}$ of topological spaces X_i and onto mappings $f_i : X_{i+1} \to X_i$. The set

$$\lim_{\leftarrow} (X_i : f_i)_{i \in \omega} = \{ (x_1, x_2, ...) \in \Pi_{i \in \omega} X_i : f_i(x_{i+1}) = x_i \text{ for all } i \in \omega \}$$

with the relative topology inherited from the product space $\prod_{i \in \omega} X_i$ will be called the *inverse limit* of this sequence. For j > k, we denote $f_{kj} = f_k \circ \cdots \circ f_{j-1} \circ f_j : X_{j+1} \to X_k$. The following theorems concerning inverse limits will be used in our constructions.

THEOREM 2.4. [3, Theorem 2.10 (Anderson-Choquet)]. Let $(X_i, f_i)_{i \in \omega}$ be an inverse sequence of metric spaces (X_i, d_i) contained in a compact space S and such that $X_i \subseteq X_{i+1}$. If

(1) For each $\varepsilon > 0$, there exists $k \in \omega$ such that for each $p_k \in X_k$,

$$\operatorname{diam}\left(\bigcup_{j>k}f_{kj}^{-1}(p_k)\right)<\varepsilon$$

(2) For each $k \in \omega$ and each $\varepsilon > 0$, there is some $\delta > 0$ such that if j > kand $u_j, w_j \in X_j$, then $d_j(u_j, w_j) < \delta \Rightarrow d_k(f_{kj}(u_j), f_{kj}(w_j)) < \varepsilon$,

then

$$\lim_{\leftarrow} (X_i, f_i)_{i \in \omega} = \operatorname{cl}_S \left(\bigcup_{i \in \omega} X_i \right).$$

A mapping $f : X \to Y$ is said to be *monotone at* $p \in Y$ if the inverse image of each subcontinuum of Y containing p is connected. The following theorem can be found in [1].

THEOREM 2.5. [1; Corollary 3, p.145]. Let $X = \lim_{\leftarrow} (X_i, f_i)_{i \in \omega}$. If each X_i is a dendroid and there exists a point $p = (p_1, p_2, p_3, ...) \in X$ such that each f_i is monotone at p_i , then X is a dendroid.

THEOREM 2.6. Let $(X_i, f_i)_{i \in \omega}$ be an inverse sequence where X_i is an arcwise connected continuum for each $i \in \omega$ and further assume that for each $i \in \omega$ there exists $T_i \subseteq X_i$ for which $f_{i-1} \mid T_i : T_i \to X_{i-1}$ is a homeomorphism. Let $X_{\infty} = \lim(X_n, f_n)$, then the set

 $\mathcal{T} = \{(x_1, x_2, ...) \in X_{\infty} : x_i \in T_i \text{ for all but a finite number of } i \in \omega\}$ is arcwise connected.

PROOF. Let $x = (x_1, x_2, ...)$ and $y = (y_1, y_2, ...) \in \mathcal{T}$. Assume that $x_i, y_i \in T_i$ for every $i \ge k$ and let $\tau_k : I \to T_k$ be an arc from x_k to y_k .

For i > k, define inductively $\tau_{i+1} = (f_i \mid T_{i+1})^{-1} \circ \tau_i$ and for i < k, let $\tau_i = f_{i(k-1)} \circ \tau_k$. Finally, we define $\tau : I \to \mathcal{T}$ by $\pi_j(\tau(t)) = \tau_j(t)$. Since each τ_i is continuous, so is τ ; moreover, $\tau_i(t) \in T_i$ for every $i \ge k$ and $\tau(0) = x$ and $\tau(1) = y$. Therefore τ is a path from x to y which is contained in \mathcal{T} and which, in its turn, contains an arc from x to y.

3. Realizable and non-realizable preposets.

We begin this section by showing that certain preposets are not realizable.

THEOREM 3.1. Let (\mathcal{P}, \leq) be a preposet containing a preposet \mathcal{Q} such that for $p \in \mathcal{Q}$, there exists $p^* \in \mathcal{Q}$, $p^* \neq p$, $p \leq p^*$. If \mathcal{P} is countable then it is not realizable.

PROOF. Suppose (X, x^*) realizes \mathcal{P} , that is there exists an isomorphism $\varphi : \mathcal{P} \to \Delta_0(X, x^*)$. Then $Y = \operatorname{cl}(\bigcup \{\alpha : \alpha \in \varphi[\mathcal{Q}]\})$ is a subdendroid of X in which each element of $\Delta_0(Y, x^*)$ has empty interior. Then, by Theorem 2.3, $\mathcal{A}(Y \setminus \{x^*\})$ is uncountable and by Theorem 2.2, $\mathcal{A}(X \setminus \{x^*\})$ is also uncountable. Since \mathcal{P} is countable, we have a contradiction.

COROLLARY 3.2. No countable preposet containing ω as an induced subposet is realizable.

Recall that E_2 denotes the preposet $(\{a, b\}, \leq)$ in which $a \leq b$ and $b \leq a$.

COROLLARY 3.3. No countable preposet containing E_2 as an induced subpreposet is realizable.

The following result is well-known; for completeness we include its easy proof.

LEMMA 3.4. A separable metric space cannot contain a strictly increasing or a strictly decreasing sequence of closed sets of length ω_1 .

PROOF. Suppose $\{C_{\lambda} : \lambda \in \omega_1\}$ is a strictly increasing sequence of sets and either

- i) all of the sets C_{λ} are open, or
- *ii)* all of the sets C_{λ} are closed.

For each ordinal $\lambda \in \omega_1$, we choose $x_\lambda \in C_{\lambda+1} \setminus C_\lambda$ and then in case i), $\{x_\lambda : \lambda \in \omega_1\}$ is not Lindelöf, while in Case i) $\{x_\lambda : \lambda \in \omega_1\}$ is not separable. In either case we have a contradiction since X is both hereditarily separable and hereditarily Lindelöf.

The following theorem follows immediately from Lemma 3.4.

THEOREM 3.5. A poset containing either a well-ordered or an anti-wellordered uncountable chain is not subrealizable.

THEOREM 3.6. (MA) Let κ be a cardinal such that $\omega < \kappa < \mathfrak{c}$. A poset of size κ is not realizable.

PROOF. Let X be a dendroid and suppose that for some $x^* \in X$ we have $(X, x^*) = \{C_{\lambda} : \lambda \in \kappa\}$. By Lemma 2.2, each arc-component C_{λ} is a countable union of dendroids, say $C_{\lambda} = \bigcup \{F_{\lambda,n} : n \in \omega\}$. Then $X = \bigcup \{F_{\lambda,n} :$ $n \in \omega, \lambda \in \kappa\} \cup \{x^*\}$ and since each $F_{\lambda,n}$ is closed in X, Martin's Axiom implies that there are $n_0 \in \omega$ and $\lambda_0 \in \kappa$ such that $\operatorname{int}_X(F_{\lambda_0,n_0}) \neq \emptyset$. Now we let $X_1 = X \setminus \operatorname{int}_X(F_{\lambda_0,n_0})$; clearly X_1 is compact.

Having chosen indices $\{\lambda_{\alpha} : \alpha \in \beta\}$ and $\{n_{\alpha} : \alpha \in \beta\}$ and having constructed compact spaces $\{X_{\alpha} : \alpha < \beta\}$, then if β is a limit ordinal, we define $X_{\beta} = \cap \{X_{\alpha} : \alpha < \beta\}$. If on the other hand, β is a successor ordinal, $\beta = \gamma + 1$, then applying Martin's Axiom again, there is some $\lambda_{\beta} \in \kappa$ and $n_{\beta} \in \omega$ such that $\operatorname{int}_{X_{\gamma}}(F_{\lambda_{\beta},n_{\beta}} \cap X_{\gamma}) \neq \emptyset$ and we define $X_{\beta} = X_{\gamma} \setminus \operatorname{int}_{X_{\gamma}}(\cup \{F_{\lambda_{\alpha},n_{\alpha}} \cap X_{\gamma} : \alpha \leq \beta\})$. In this way we construct a strictly decreasing family $\{X_{\lambda} : \lambda \in \kappa\}$ of closed subsets of X, contradicting Lemma 3.4.

We now prove some positive results concerning realizable and subrealizable preposets. In the sequel I and I_n (for $n \in \omega$) will denote the unit interval [0, 1] and H will denote the Hilbert cube $\prod_{n \in \omega} I_n$. The natural projection from H onto I_n will be denoted by π_n and the metric in H is defined by

$$d(x,y) = \sum_{n \in \omega} \frac{\mid \pi_n(x) - \pi_n(y) \mid}{2^n}$$

 H_n will denote the subspace $\{x \in H : \pi_j(x) = 0 \text{ for all } j > n\}$ of H which is clearly homeomorphic to $\prod_{k=1}^n I_k$. The restriction of d to H_n will be denoted by d_n . e^n will denote the element of H_n such that $\pi_n(e^n) = 1$ and $\pi_m(e^n) = 0$

if $m \neq n$. For each $k \in \omega$, we denote by **0** that element of H all of whose coordinates are 0 and by 0_k that element of H_k whose coordinates are all equal to 0. Finally, let $E_n = \{re^n : 0 \leq r \leq 1\}$ and $S = \{\frac{1}{m} : m \in \omega \setminus \{0\}\} \cup \{0\} \subseteq I$.

Now let D be a dendroid contained in H_k , such that $\mathbf{0} \in D$ and define $\operatorname{Comb}(D) = E_{k+1} \cup \bigcup_{t \in S} D \times \{t\}$. It is easy to verify that $\operatorname{Comb}(D)$ is a dendroid contained in H_{k+1} , $D \times \{0\} \subseteq \operatorname{Comb}(D) \subseteq \operatorname{cl}(\operatorname{Comb}(D) \setminus D)$ and $\mathcal{A}(\operatorname{Comb}(D) \setminus \{\mathbf{0}\}) = \mathcal{A}(D \setminus \{\mathbf{0}\}) \cup \{\operatorname{Comb}(D) \setminus D\}$. (Since D and $D \times \{0\}$ are homeomorphic, we will in future write D instead of $D \times \{0\}$.) It is clear that for each $n \in \omega$, the projection map from $H_{n+1} \to H_n$ restricted to $\operatorname{Comb}(D)$ is monotone at 0_n .

Theorem 3.7. ω is subrealizable.

PROOF. We will construct a dendroid D in the Hilbert cube H such that $(D, \mathbf{0})$ subrealizes ω . Let D_2 be a dendroid which we assume to be embedded in H_2 and such that $0_2 \in D_2$. Now having constructed dendroids $D_2, D_3, \ldots, D_{n-1}$ as subspaces of $H_2, H_3, \ldots, H_{n-1}$ respectively, let $D_n = \text{Comb}(D_{n-1}) \subseteq H_n$. It is clear that for $m \geq 3$, the projection map from H_m to H_{m-1} restricted to D_m , (and which we denote by ρ_{m-1}), maps onto D_{m-1} and $(D_m, \rho_m)_{m\geq 2}$ is an inverse system whose limit we will denote by D. It is easy to see that D is homeomorphic to a subspace of H under the map which sends $((x_1, x_2), (x_1, x_2, x_3), (x_1, x_2, x_3, x_4), \ldots)$ to $(x_1, x_2, x_3, x_4, \ldots)$. Since D is an inverse limit of dendroids and the bonding maps are monotone at the points 0_n , it follows from Theorem 2.5 that D is a dendroid. We claim that D is homeomorphic to $cl_H(\bigcup_{n\geq 2} D_n)$. Since it is clear that $D_n \subseteq D_{n+1}$, we need only verify the two conditions of the Anderson-Choquet Theorem (Theorem 2.4).

(1) Let $\varepsilon > 0$ and and choose k > 2 such that $\frac{1}{2^{k-1}} < \varepsilon$. Then for each $p \in D_k$ and $u, w \in \bigcup_{j>k} \rho_{kj}^{-1}(p), \pi_i(u) = \pi_i(w) = \pi_i(p)$ for $i \le k$, so that

$$d(u,w) = \sum_{n \ge k} \frac{|\pi_n(x) - \pi_n(y)|}{2^n} \le \frac{1}{2^{k-1}} < \varepsilon.$$

(2) Let $k \in \omega$ and $\varepsilon > 0$. If j > k and $u, w \in D_j$, then we have $d_k(\rho_{kj}(u), \rho_{kj}(w)) \leq d_j(u, w)$. Thus we can choose $\delta = \varepsilon$.

We proceed to show that $\Delta_0(D, \mathbf{0})$ contains ω as an induced subposet. First we show that for each $m \geq 3$, $D_m \setminus D_{m-1} \in \mathcal{A}(D \setminus \{\mathbf{0}\})$. To this end, note that $D_m \setminus D_{m-1} = E_m \cup \bigcup_{t \in S \setminus \{0\}} D_{m-1} \times \{t\}$ and that this set is arcwise connected. We will prove now that given $x \in D_m \setminus D_{m-1}$ and $y \notin D_m \setminus D_{m-1}$, then for each arc joining x and $y, \mathbf{0} \in [x, y]$. It is easy to see from the definition of the dendroids D_n that $\mathbf{0} \in [x, y]$ for each $y \in \bigcup_{n \geq 2} D_n \setminus (D_m \setminus D_{m-1})$.

Now observe that:

1) If $y \in \operatorname{cl}_H(\bigcup_{n\geq 2} D_n) \setminus \bigcup_{n\geq 2} D_n$, then $\pi_n(y) \neq 0$ for infinitely many indices n.

2) If $y \in D$, $j \ge 3$ and $\pi_j(y) \notin S$, then $\pi_i(y) = 0$ for every $i \ne j$.

Now if $y \in \operatorname{cl}_H(\bigcup_{n\geq 2} D_n) \setminus \bigcup_{n\geq 2} D_n$, let $\sigma: I \to D$ be a path joining x and y. By 1), we can choose integers j, k greater than m and such that $\pi_j(y) \neq 0$ and $\pi_k(y) \neq 0$. Since $\pi_j(x) = \pi_k(x) = 0$, there is a point $u \in \pi_j[\sigma[I]] \setminus S$ and a point $v \in \pi_k[\sigma[I]] \setminus S$. By 2), there is a unique point u^* (respectively, v^*) in D whose j-th coordinate is u (respectively, whose k-th coordinate is v). Then u^* and v^* are both in $\sigma[I]$ and it is clear that the path joining these two points must contain $\mathbf{0}$. This proves that y is not an element of the arc-component of $D \setminus \{\mathbf{0}\}$ which contains x. Thus we have proved that $\{D_n \setminus D_{n-1} : n \geq 2\} \subseteq \mathcal{A}(D \setminus \{\mathbf{0}\})$. Since $D_n \setminus D_{n-1} \subseteq \operatorname{cl}(D_{n+1} \setminus D_n)$, it follows that $\{D_n \setminus D_{n-1} : n \geq 2\}$ is isomorphic to ω .

LEMMA 3.8. Let $(X, \mathbf{0})$ be a pointed dendroid (which we assume to be embedded in H_k for some integer k) with the property (\dagger) that if $\Lambda \subseteq A(X \setminus \{\mathbf{0}\})$ then $\bigcup \{ \operatorname{cl}(L) : L \in \Lambda \}$ is a dendroid. If $\mathcal{B} = \{\mathcal{B}_n\}_{n \in \omega}$ is a countable family of subsets of $\mathcal{A}(X \setminus \{\mathbf{0}\})$, then there exists a dendroid $\Omega = \Omega((X, \mathbf{0}), \mathcal{B}) \subseteq H_{k+2}$ which contains (a homeomorphic copy of) X and has the following properties:

- i) For each $\mathcal{B}_n \in \mathcal{B}$, there exists $A_n \in \mathcal{A}(\Omega \setminus \{\mathbf{0}\})$ such that $\bigcup \{B : B \in \mathcal{B}_n\} \subseteq cl(A_n)$.
- ii) $\mathcal{A}(\Omega \setminus \{\mathbf{0}\}) = \mathcal{A}(X \setminus \{\mathbf{0}\}) \cup \{A_n\}_{n \in \omega}.$
- iii) Ω satisfies (†).

PROOF. For each $n \in \omega$, we choose $\xi_n \in H_{k+2}$ in such a way that $\pi_j(\xi_n) = 0$ if $j \leq k$ and $\{(\pi_{k+1}(\xi_n), \pi_{k+2}(\xi_n))\}_{n \in \omega}$ is a sequence of pairwise linearly independent vectors of \mathbb{R}^2 which converges to (0,0). $\mathbf{J}(\xi_n)$ will denote the set $\{r\xi_n : 0 \leq r \leq 1\} \subseteq H_{k+2}$. The set $\mathbf{B}_n = \bigcup \{\operatorname{cl}(B) : B \in \mathcal{B}_n\}$ is a dendroid by hypothesis. For each $m \in \omega$, let

$$A_{n,m} = \mathbf{B}_n \times \left\{ \left(\frac{\pi_k(\xi_n)}{m+1}, \frac{\pi_{k+1}(\xi_n)}{m+1} \right) \right\} \subseteq H_{k+2},$$

so that each $A_{n,m}$ is homeomorphic to \mathbf{B}_n and $A_{m,n} \cap A_{r,s} = \emptyset$ unless (m, n) = (r, s). We define

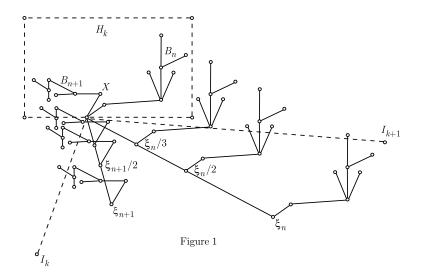
$$\Omega = (X \times \{(0,0)\}) \cup \bigcup_{n \in \omega} \mathbf{J}(\xi_n) \cup \bigcup_{n,m \in \omega} A_{n,m}$$

(see Figure 1). It is not difficult to verify that Ω is a dendroid which satisfies (†). Conditions i) and ii) are satisfied with $A_n = \bigcup_{m \in \omega} A_{n,m} \cup \mathbf{J}(\xi_n)$.

We now define $F_{\omega} = \bigcup_{j>1} F_j \subset \mathbb{R}^2$ where

$$F_j = \left\{ r\left(\cos\frac{\pi}{2j}, \sin\frac{\pi}{2j}\right) : 0 \le r \le \frac{1}{2j} \right\} \subset \mathbb{R}^2.$$

Clearly F_{ω} is a dendroid and $(F_{\omega}, (0, 0))$ realizes a countably infinite set of mutually incomparable points.



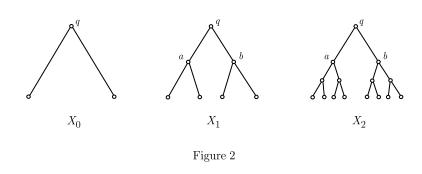
THEOREM 3.9. A countable poset in which the length of every chain is bounded by some integer N is realizable.

PROOF. Let (P, <) be a countable poset in which every chain is of length at most N. The set P can be partitioned into sets $\{P_n : n \leq N\}$ where P_1 is the set of minimal elements of P and P_n is the set of minimal elements of $P \setminus \bigcup \{P_j : 1 \leq j \leq n-1\}$; points of P_n are mutually incomparable. Without loss of generality we assume that each P_n is countably infinite. Define $\Gamma_1 = F_\omega \subseteq H_2$. Then $(\Gamma_1, \mathbf{0})$ realizes the induced subposet $(P_1, <)$. Let ϕ : $P_1 \to \Delta_0(\Gamma_1, \mathbf{0})$ be the isomorphism. Now, for each $q_m \in P_2$, let $F_m \subseteq P_1$ be the set of immediate predecesors of q_m and let $\mathcal{B}_2 = \{\phi[F_m] : m \in \omega\}$. Define $\Gamma_2 = \Omega((\Gamma_1, \mathbf{0}), \mathcal{B}_2) \subseteq H_4$. It follows from Lemma 3.8 that $(\Gamma_2, \mathbf{0})$ realizes the induced poset $(P_1 \cup P_2, \leq)$. If for some $n \leq N$, Γ_{n-1} has been constructed, we define $\Gamma_n = \Omega((\Gamma_{n-1}, \mathbf{0}), \mathcal{B}_n)$ and hence $(\Gamma_n, \mathbf{0})$ realizes the induced poset $(P_1 \cup \ldots \cup P_n, \leq)$. It is clear that the desired dendroid is Γ_N .

As we proved in Corollary 3.3, E_2 is not realizable. However, the following theorem provides an example of a pointed dendroid (X, p) which subrealizes E_2 . Moreover, we will prove that every element of $\mathcal{A}(X \setminus \{p\})$ is dense in X and so by Theorem 2.3, $\mathcal{A}(X, p)$ is not countable.

THEOREM 3.10. The preordered set E_2 is subrealizable.

PROOF. We will construct a dendroid X as the inverse limit, $\lim_{\leftarrow} (X_i, f_i)$ of trees X_i contained in \mathbb{R}^2 (with the metric inherited from \mathbb{R}^2), such that there is $p = (p_n)_{n \in \omega} \in X$ and each bonding maps f_{i-1} is monotone at $p_i \in X_i$. By Theorem 2.5, this will ensure that X is a dendroid. In Figure 2 we illustrate the trees X_0 , X_1 and X_2 . X_n is the union of X_{n-1} and rectilinear segments, so that the set of end points of X_n is the set of points in the Cantor set of the form $\frac{k}{3^n}$ $(0 \le k \le 3^n)$.



Let $x, y \in \mathbb{R}^2$ and denote by [x, y] the rectilinear segment from x to y contained in \mathbb{R}^2 . Let q = (1, 1/2) and $T = [q, a] \cup [q, b]$ where a and b are the middle points of the segments [q, (0, 0)] and [q, (1, 0)]. Notice that $X_n = T \cup A_n \cup B_n$ where A_n and B_n are both homeomorphic to X_{n-1} .

The mapping $f_n: X_{n+1} \to X_n$ is defined as follows: f_n restricted to A_{n+1} and to B_{n+1} is the natural homeomorphism onto X_n and for every $x \in T$, $f_n(x) = q$. We will prove that f_n is monotone with respect to q. Let K be a subcontinuum of X_n containing q. Clearly, $f_n^{-1}(K) = K_A \cup K_B \cup N$ where $K_A = f_n^{-1}(K) \cap A_n$ and $K_B = f_n^{-1}(K) \cap B_n$. Since K_A and K_B contain a and b respectively and each of them is homeomorphic to K it follows that $f_n^{-1}(K)$ is connected. Thus X is a dendroid.

Define $\mathbf{q} \in X$ by $\pi_j(\mathbf{q}) = q$ for each $j \in \omega$. We will prove that each subset $\beta \in \mathcal{A}(X \setminus \{\mathbf{q}\})$ is dense in X. To this end, given $\varepsilon > 0$ and $x = (x_1, x_2, \ldots) \in X$, we will show that there is $z = (z_1, z_2, \ldots) \in \beta$ such that $d(x, z) < \varepsilon$.

Notice that any element in X has at most one coordinate contained in T. Fix $y = (y_1, y_2, \ldots) \in \beta$ and choose $j_0 \in \omega$ such that $y_j \notin T$ and $\frac{1}{2^j} < \varepsilon$ for every $j \ge j_0$. To construct z, choose $z_{j_0} = x_{j_0}$; hence $z_j = x_j$ for each $j \le j_0$. If $j > j_0$, then $y_j \in A_j \cup B_j$ and we define $T_j = A_j$ if $y_j \in A_j$ or $T_j = B_j$ if $y_j \in B_j$ and then we choose z_j inductively in such a way that $z_j \in T_j$ and $f_{j-1}(z_j) = z_{j-1}$. This is possible by the definition of the maps f_j . Applying Theorem 2.6 we obtain that $z = (z_1, z_2, \ldots) \in \beta$ and clearly $d(x, z) < \varepsilon$. Thus we have proved that β is a dense subset of X and that E_2 is subrealizable.

It has recently been brought to our attention that in a different context, a dendroid with similar properties to that described in Theorem 3.10 was constructed in [2]. COROLLARY 3.11. A preordered set \mathcal{P} of cardinality ω_1 such that for every two elements $p, q \in \mathcal{P}$ the two relations $p \leq q$ and $p \geq q$ hold, is subrealizable.

A number of open questions remain and we mention below some of the more interesting ones.

PROBLEM 3.12. Is a countable poset in which every chain is finite realizable?

PROBLEM 3.13. Is \mathbb{Q} (the rationals) subrealizable?

PROBLEM 3.14. Is every countable ordinal subrealizable?

If the above can be answered, then:

PROBLEM 3.15. Characterize those countable posets which are realizable (or subrealizable).

References

- J. J. Charatonik and W. J. Charatonik, Monotoneity relative to a point and inverse limits of continua, Glasnik Matematički Ser. III, 20(40) (1985), 139–151.
- [2] J. Krasinkiewicz and P. Minc, Approximation of continua from within, Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys. 25 (1977), 283–289.
- [3] Sam B. Nadler Jr., Continuum Theory, an introduction, Marcel Dekker, New York, 1992.
- [4] V. Neumann-Lara, Dendroids, digraphs and posets, in Continuum Theory: Proceedings of the Special Session in Honor of Sam B. Nadler Jr.'s 60th Birthday, A. Illanes and S. Macías (eds.), Marcel Dekker, New York, 2002.

V. Neumann-Lara Instituto de Matemáticas Universidad Nacional Autónoma de México México, D. F., México *E-mail*: neumann@matem.unam.mx

I. Puga Departamento de Matemáticas Facultad de Ciencias Universidad Nacional Autónoma de México México, D.F., México *E-mail*: ipe@hp.fciencias.unam.mx

R. G. Wilson Departamento de Matemáticas Universidad Autónoma Metropolitana Avenida San Rafael Atlixco, #186 Iztapalapa, Apartado Postal 55-532, C.P. 09340 México, D.F., México *E-mail*: rgw@xanum.uam.mx *Received*: 07.01.2002.