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DENDROIDS AND PREORDERS

VicTOR NEUMANN-LARA!, ISABEL PucA AND RICHARD G. WILSON?

Universidad Nacional Auténoma de México and Universidad Auténoma
Metropolitana, México

ABSTRACT. Let X be a dendroid and z* € X. Ag(X,z*) will denote
the preordered set of arc-components of X \ {z*} where the preorder is
defined by a < g if a C cl(8). In this paper we investigate conditions
under which there exists a pair (X, z*) such that Ag(X, 2*) is isomorphic
to a given preordered set.

1. INTRODUCTION

A continuum is a compact and connected metric space. It is hereditarily
unicoherent if the intersection of each two of its subcontinua is connected
(or empty). A dendroid is an arcwise connected and hereditarily unicoherent
continuum. It is well known that for every pair of points =,y € X there exists
a unique arc [z,y] C X joining them and that a subcontinuum of a dendroid
X is also a dendroid.

By a preordered set or preposet we mean a set P with a transitive relation
< between pairs of elements of P which satisfies p < p for each p € P.
If additionally, the relation < satisfies: p < ¢ and ¢ < p implies p = g,
then we say that P is a partially ordered set or poset. An induced subpreposet
(respectively, subposet) P’ is a subset of a preposet (respectively, poset) P such
that for p,q € P/, p < ¢ in P’ if and only if p < ¢ in P. A chain (respectively,
antichain) is a subset of a preposet each pair of whose elements is comparable
(respectively, incomparable). An isomorphism between preordered sets is a
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bijective function such that both it and its inverse preserve the order relation;
the term mapping will always mean a continuous function.

The main purpose of this paper is to construct examples of dendroids.
We do this by defining a preorder relation between the arc-components of
X \ {z*} where X is a dendroid and z* € X. To make this more precise we
need some more definitions.

The set of arc-components of a subset W of a dendroid X will be denoted
by A(W). A pointed dendroid (X, z*) consists of a dendroid X and a point
x* € X. Following [4], we denote by Ay(X,z*) the set A(X \ {z*}) with
the preorder < defined as o < 8 if o C cl(5). We say that a preposet P is
realizable whenever there is a pointed dendroid (X, z*) such that Ag(X,z*)
is isomorphic to P; in such a case (X,z*) will be said to realize P. The
preposet Q is said to be subrealizable whenever there is a realizable preposet P
containing Q as an induced subpreposet. It was shown in [4] that for any finite
poset P there is a pointed dendroid (in fact infinitely many) (X, z*) which
realizes P. In this paper we investigate this problem for infinite preposets,
necessarily of cardinality at most ¢, since a compact metric space has at most
¢ elements.

We prove in this paper that a countable preposet containing an induced
subpreposet which has no last element is not realizable. In particular w and
the preordered set Es = ({a,b}, <) (where a # b), such that a < b and
b < a are not realizable. Nevertheless, we prove that w and Fs are both
subrealizable. For the latter, we construct a pointed dendroid (X,z*) such
that every element in A(X \ {z*}) is dense in X. We also prove that countable
preposets in which all chains are bounded by a fixed natural number, are
realizable.

2. PRELIMINARIES

The following results concerning the arc-components of subsets of den-
droids will be required in Section 3.

THEOREM 2.1. Let X be a dendroid, W C X an open set in X and
a € AW). Then « is an F, subset of X. Moreover a = |J{F, : n € w}

where Fy, is a dendroid for each n € w.

PROOF. Let d be a metric on X which generates the topology and fix a
point y € . Let r =d(y, X \W). If K, ={z € X : d(z, X\ W) >r/(n+ 1)}
then K, is a closed subset of W and y € K, for each n € w. Let F), be the arc
component of K,, containing y. To prove that F), is a closed subset of X, note
that cl(F},) is a subcontinuum of X and hence it is a dendroid contained in
K,,. Since F, is the arc-component of y, it follows that cl(F},) C F,, and hence
F, is closed. Now, if 2 € «, the arc [x,y] is a closed subset of X contained
in W and hence [z,y] and X \ W are disjoint compact subsets of X. Thus
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d([z,y], W) > 0 and so [z,y] C K,, for some m € w. Hence [z,y] C Fy,,
implying that y € F,. O

The simple proof of the following theorem is left to the reader.

THEOREM 2.2. Let X be a dendroid, Y a subdendroid of X and x* € Y.
Then for each o € A(Y \ {z*}) there exists a unique ¥(a) € AX \ {z*})
such that o C (). Moreover ¢ : A(Y \ {z*}) — A(X \ {z*}) is an injective
function and o = Yla]NY.

THEOREM 2.3. Let (X, z*) be a pointed dendroid such that each element
of A(X \ {«*}) has empty interior. Then A(X \ {z*}) is uncountable.

PRrROOF. Since X = J{a: a € AX \ {z*})} U {z*}, it is a consequence
of Theorem 2.1 that

X:U{UFn(a):aEA(X\CE*)}

new

where each F,(a) is closed (it is a dendroid) and has empty interior by hy-
pothesis. It follows from the Baire Category Theorem that A(X \ {z*}) is
uncountable. O

An inverse sequence is a sequence (X, f;)icw of topological spaces X; and
onto mappings f; : X;41 — X;. The set

hHl(XZ : fi)iew = {(.Tl,.IQ, ) € Ilicw X; : fi(IfL’+1) =x; foralli e w}

with the relative topology inherited from the product space Il;¢c,, X; will be
called the inverse limit of this sequence. For j > k, we denote f; = fro---o
fi—1of; : Xj41 — Xj. The following theorems concerning inverse limits will
be used in our constructions.

THEOREM 2.4. [3, Theorem 2.10 (Anderson-Choquet)]. Let (X;, fi)icw
be an inverse sequence of metric spaces (X;,d;) contained in a compact space
S and such that X; C X;41. If

(1) For each € > 0, there exists k € w such that for each py € Xy,

diam Uf,;jl(pk) <e.
j>k

(2) For each k € w and each € > 0, there is some § > 0 such that if j > k
and uj,w; € X;, then d;(uj, w;) < § = di(frj(uy), frj(w;)) < e,
then

liin(Xi,fi)z‘ew =clg (U Xi) .

€W
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A mapping f : X — Y is said to be monotone at p € Y if the inverse
image of each subcontinuum of Y containing p is connected. The following
theorem can be found in [1].

THEOREM 2.5. [1; Corollary 3, p.145]. Let X = im(X;, fi)icw- If each

X; is a dendroid and there exists a point p = (p1,p2,ps3,-..) € X such that
each f; is monotone at p;, then X is a dendroid.

THEOREM 2.6. Let (X, fi)icw be an inverse sequence where X; is an
arcwise connected continuum for each i € w and further assume that for each
1 € w there exists T; C X; for which fi—1 | T; : T; — Xi—1 is a homeomor-
phism. Let X, = IEn(Xn, fn), then the set

T ={(z1,22,...) € Xoo : ®m; € T; for all but a finite number of i € w}
is arcwise connected.

PROOF. Let & = (21,22,...) and y = (y1,92,...) € 7. Assume that z;,y;
€ T; for every i > k and let 74 : I — T} be an arc from xy to yg.

For i > k, define inductively 7,41 = (fi | Tiyx1) ' o7 and for i < k, let
Ti = fi(k—1) © Tk- Finally, we define 7: I — 7 by 7;(7(t)) = 7;(t). Since each
7; is continuous, so is 7; moreover, 7;(t) € T; for every ¢ > k and 7(0) = «
and 7(1) = y. Therefore 7 is a path from z to y which is contained in 7 and
which, in its turn, contains an arc from z to y. O

3. REALIZABLE AND NON-REALIZABLE PREPOSETS.
We begin this section by showing that certain preposets are not realizable.

THEOREM 3.1. Let (P, <) be a preposet containing a preposet Q such that
forp € Q, there exists p* € Q, p* # p, p < p*. If P is countable then it is not
realizable.

PROOF. Suppose (X, z*) realizes P, that is there exists an isomorphism
v : P — Ag(X,z*). Then Y = cl(J{a : a € ¢[Q]}) is a subdendroid of X
in which each element of Ay(Y,2*) has empty interior. Then, by Theorem
2.3, A(Y \ {z*}) is uncountable and by Theorem 2.2, A(X \ {z*}) is also
uncountable. Since P is countable, we have a contradiction. O

COROLLARY 3.2. No countable preposet containing w as an induced sub-
poset s realizable.

Recall that Eo denotes the preposet ({a, b}, <) in which ¢ < b and b < a.

COROLLARY 3.3. No countable preposet containing E5 as an induced sub-
preposet is realizable.

The following result is well-known; for completeness we include its easy
proof.
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LEMMA 3.4. A separable metric space cannot contain a strictly increasing
or a strictly decreasing sequence of closed sets of length wi.

PROOF. Suppose {C) : A € w1} is a strictly increasing sequence of sets
and either

i) all of the sets C) are open, or
it) all of the sets C) are closed.

For each ordinal A € wi, we choose ) € Cyy1 \ Cy and then in case i),
{zx : A € w1} is not Lindeldf, while in Case i) {xx : A € w1} is not separable.
In either case we have a contradiction since X is both hereditarily separable
and hereditarily Lindelof. O

The following theorem follows immediately from Lemma 3.4.

THEOREM 3.5. A poset containing either a well-ordered or an anti-well-
ordered uncountable chain is not subrealizable.

THEOREM 3.6. (MA) Let k be a cardinal such that w < kK < ¢. A poset
of size K is not realizable.

PROOF. Let X be a dendroid and suppose that for some z* € X we
have (X,2*) = {C) : XA € k}. By Lemma 2.2, each arc-component C) is a
countable union of dendroids, say Cx = U{Fy,, : n € w}. Then X = U{F) , :
n € w,A € k} U {z*} and since each F), is closed in X, Martin’s Axiom
implies that there are ng € w and Ag € k such that intx(F), n,) 7 0. Now
we let X1 = X \ intx (F), n,); clearly X7 is compact.

Having chosen indices {\o : @ € §} and {n, : a € [} and having
constructed compact spaces {X, : o < (3}, then if 8 is a limit ordinal,
we define Xg = N{X, : @ < B}. If on the other hand, 8 is a successor
ordinal, # = ~ + 1, then applying Martin’s Axiom again, there is some
Mg € k and ng € w such that intx (Fx,n, N X,) # 0 and we define
Xg = Xy \intx, (U{Fr,n, N X, : a < B}). In this way we construct a
strictly decreasing family {X : A € k} of closed subsets of X, contradicting
Lemma 3.4. O

We now prove some positive results concerning realizable and subreal-
izable preposets. In the sequel I and I,, (for n € w) will denote the unit
interval [0,1] and H will denote the Hilbert cube [], ., I. The natural pro-
jection from H onto I, will be denoted by 7, and the metric in H is defined
by

o) = 3 I = mal0) |

new
H,, will denote the subspace {z € H : m;(xz) = 0 for all j > n} of H which is
clearly homeomorphic to [];_, Ix. The restriction of d to H,, will be denoted
by d,. €™ will denote the element of H,, such that m,(e™) = 1 and m,,,(e™) =0
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if m # n. For each k € w, we denote by 0 that element of H all of whose
coordinates are 0 and by O that element of Hy whose coordinates are all equal
to 0. Finally, let B, = {re" : 0 <r <1} and S = {X : m € w\{0}}U{0} C I.

Now let D be a dendroid contained in Hj, such that 0 € D and define
Comb(D) = Exy1 UlUeg D x{t}. It is easy to verify that Comb(D) is a
dendroid contained in Hyy1, D x {0} € Comb(D) C cl(Comb(D) \ D) and
A(Comb(D)\{0}) = A(D\{0})U{Comb(D)\ D}. (Since D and D x {0} are
homeomorphic, we will in future write D instead of D x {0}.) It is clear that
for each n € w, the projection map from H, 11 — H, restricted to Comb(D)
is monotone at 0,,.

THEOREM 3.7. w s subrealizable.

PrOOF. We will construct a dendroid D in the Hilbert cube H such
that (D,0) subrealizes w. Let Dy be a dendroid which we assume to be
embedded in H, and such that 02 € Ds. Now having constructed dendroids
Dy, D3, ..., D, 1 as subspaces of Hy, Hs,..., H,_1 respectively, let D,, =
Comb(D,,—1) C H,. It is clear that for m > 3, the projection map from H,,
to H,,—1 restricted to D,,, (and which we denote by p,,—1), maps onto D,,_1
and (D, pm)m>2 is an inverse system whose limit we will denote by D. It is
easy to see that D is homeomorphic to a subspace of H under the map which
sends ((z1,x2), (x1,22,23), (x1, T2, T3,24),...) to (21, T2, T3, 24,...). Since D
is an inverse limit of dendroids and the bonding maps are monotone at the
points 0,,, it follows from Theorem 2.5 that D is a dendroid. We claim that D
is homeomorphic to clg (lJ,,»5 Dn). Since it is clear that D,, C Dy, 41, we need
only verify the two conditions of the Anderson-Choquet Theorem (Theorem
2.4).

(1) Let € > 0 and and choose k > 2 such that 5+ < e. Then for each
p € Dy and u,w € ;54 p,;jl(p), i (u) = mi(w) = m(p) for i < k, so
that )

() — Ty
oy = Y =) | 1
n>k

(2) Let k € wand ¢ > 0. If j > k and w,w € Dj, then we have

di(prj(u), prj(w)) < dj(u,w). Thus we can choose § = e.

We proceed to show that Ag(D,0) contains w as an induced subposet.
First we show that for each m > 3, Dy, \ D1 € A(D \ {0}). To this end,
note that D,;,\ Dpp—1 = Ep, UUtes\{o} D,,—1 x{t} and that this set is arcwise
connected. We will prove now that given z € Dy, \ Dy,—1 and y € Dy, \ D1,
then for each arc joining z and y, 0 € [z, y]. It is easy to see from the definition
of the dendroids D,, that 0 € [z,y] for each y € |J,;~5 Dn \ (Dm \ Dm—1).

Now observe that: B

1) If y € clg(U,,52 Dn) \ U,;>9 Dn, then m,(y) # 0 for infinitely many

indices n. B B
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2) Ifye D, j >3 and m;(y) ¢ S, then m;(y) = 0 for every ¢ # j.

Now ify € clg(U,,>2 Dn)\U,;>2 Dn, let o : I — D be a path joining  and
y. By 1), we can choose integers j, k greater than m and such that 7;(y) # 0
and 7 (y) # 0. Since 7j(x) = mp(x) = 0, there is a point u € 7;[o[I]] \ S
and a point v € mi[o[I]] \ S. By 2), there is a unique point u* (respectively,
v*) in D whose j—th coordinate is u (respectively, whose k—th coordinate
is v). Then u* and v* are both in o[I] and it is clear that the path joining
these two points must contain 0. This proves that y is not an element of
the arc-component of D \ {0} which contains z. Thus we have proved that
{Dy, \ Dp—1 : n > 2} C A(D\ {0}). Since D,, \ Dp—1 C cl(Dyy1 \ Dy), it
follows that {D,, \ D,—1 : n > 2} is isomorphic to w. O

LEMMA 3.8. Let (X,0) be a pointed dendroid (which we assume to be em-
bedded in Hy, for some integer k) with the property (1) that if A C A(X \ {0})
then (J{cl(L) : L € A} is a dendroid. If B = {B,}new is a countable family of
subsets of A(X \ {0}), then there exists a dendroid Q = Q((X,0),8) C Hyyo
which contains (a homeomorphic copy of ) X and has the following properties:

i) For each B,, € B, there exists A, € A(Q\ {0}) such that |J{B : B €
B} Ccl(4,).
i) A\ {0}) = A(X\{0}) U{An}new-
iii) Q satisfies ().

PRrROOF. Foreachn € w, we choose §,, € Hyyo in such a way that 7;(&,) =
0if j <k and {(mg4+1(&n), Trt2(&n)) tnew is a sequence of pairwise linearly
independent vectors of R? which converges to (0,0). J(&,,) will denote the set
{ré&, : 0 <r <1} C Hyyo. The set B, = |J{cl(B) : B € B, } is a dendroid by
hypothesis. For each m € w, let

- 7"'k(gn) 7Tk+1(§n)
An,m—BnX{(m+17 m+1 >}ng+2;

so that each A, ,,, is homeomorphic to B,, and A,, ,NA, s = @ unless (m,n) =
(r,s). We define

Q=X x{0,0HuJIE)u J 4um

new n,mew
(see Figure 1). It is not difficult to verify that € is a dendroid which satisfies
(). Conditions i) and ii) are satisfied with A,, = J,,c., An,mUJI(&n)- O

We now define F, = {J,», Fj C R?* where

1
F; = {r (cos%,sin%) :0<r< Z} CR%

Clearly F,, is a dendroid and (F,, (0,0)) realizes a countably infinite set
of mutually incomparable points.
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o Ti1
T T - -0

/ Figure 1

THEOREM 3.9. A countable poset in which the length of every chain is
bounded by some integer N is realizable.

PROOF. Let (P, <) be a countable poset in which every chain is of length
at most N. The set P can be partitioned into sets {P, : n < N} where P
is the set of minimal elements of P and P, is the set of minimal elements
of P\U{P; : 1 < j < n —1}; points of P, are mutually incomparable.
Without loss of generality we assume that each P, is countably infinite. Define
't = F, C Hs. Then (I'1,0) realizes the induced subposet (Py, <). Let ¢ :
Py — Ap(T'1,0) be the isomorphism. Now, for each g, € Ps, let F,,, C P; be
the set of immediate predecesors of ¢, and let By = {¢[F},,] : m € w}. Define
Iy = Q((T'1,0),B2) C Hy. It follows from Lemma 3.8 that (I'z, 0) realizes the
induced poset (P; U Py, <). If for some n < N, I';,_; has been constructed,
we define T';, = Q((T'»—1,0), B,,) and hence (T',,, 0) realizes the induced poset
(PLU...UP,, <). Tt is clear that the desired dendroid is T'y. O

As we proved in Corollary 3.3, Fs is not realizable. However, the following
theorem provides an example of a pointed dendroid (X, p) which subrealizes
E5. Moreover, we will prove that every element of A(X \ {p}) is dense in X
and so by Theorem 2.3, A(X,p) is not countable.

THEOREM 3.10. The preordered set Es is subrealizable.

PRrROOF. We will construct a dendroid X as the inverse limit, lim(X;, f;)

of trees X; contained in R? (with the metric inherited from R?), such that
there is p = (pn)new € X and each bonding maps f;_1 is monotone at p; € X;.
By Theorem 2.5, this will ensure that X is a dendroid.
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In Figure 2 we illustrate the trees Xy, X; and X5. X, is the union of
X, —1 and rectilinear segments, so that the set of end points of X,, is the set
of points in the Cantor set of the form £ (0 <k < 3").

q q q
a b a b
Xy Xq Xy
Figure 2

Let x, y € R? and denote by [r,%] the rectilinear segment from z to y
contained in R2. Let ¢ = (1,1/2) and T = [q,a] U [g,b] where a and b are
the middle points of of the segments [g, (0,0)] and [g,(1,0)]. Notice that
X,=TUA,UB, where A,, and B,, are both homeomorphic to X,,_1.

The mapping f,, : X,,41 — X, is defined as follows: f,, restricted to A, 11
and to B, is the natural homeomorphism onto X, and for every z € T,
fn(x) = q. We will prove that f, is monotone with respect to q. Let K be
a subcontinuum of X,, containing ¢q. Clearly, f,, (K) = K4 U K U N where
Ka=f Y (K)NA, and K = f,,1(K)NB,. Since K4 and K contain a and
b respectively and each of them is homeomorphic to K it follows that f,,1(K)
is connected. Thus X is a dendroid.

Define q € X by 7;(q) = ¢ for each j € w. We will prove that each subset
B e AX\{q})isdense in X. To this end, given ¢ > 0 and z = (21, 22,...) €
X, we will show that there is z = (21, 22,...) € 3 such that d(z, z) < e.

Notice that any element in X has at most one coordinate contained in 7.
Fix y = (y1,Y2,...) € 0 and choose jo € w such that y; ¢ T and 2% < ¢ for
every j > jo. To construct z, choose zj, = x;,; hence z; = x; for each j < jo.
If 5 > jo, then y; € A; U B; and we define T; = A; if y; € A; or T; = B;
if y; € B; and then we choose z; inductively in such a way that z; € T; and
fj—1(24) = zj—1. This is possible by the definition of the maps f;. Applying
Theorem 2.6 we obtain that z = (z1, 22, ...) € 8 and clearly d(z, z) < e. Thus
we have proved that 3 is a dense subset of X and that Fs is subrealizable.
a

It has recently been brought to our attention that in a different context,
a dendroid with similar properties to that described in Theorem 3.10 was
constructed in [2].
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COROLLARY 3.11. A preordered set P of cardinality w1 such that for every

two elements p,q € P the two relations p < q and p > q hold, is subrealizable.

A number of open questions remain and we mention below some of the

more interesting ones.

PROBLEM 3.12. Is a countable poset in which every chain is finite realiz-

able?

(or

[1]
2]

[4]

PROBLEM 3.13. Is Q (the rationals) subrealizable?
PROBLEM 3.14. Is every countable ordinal subrealizable?
If the above can be answered, then:

PROBLEM 3.15. Characterize those countable posets which are realizable
subrealizable).
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