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Vol. 38(58)(2003), 167 – 176

DENDROIDS AND PREORDERS
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Abstract. Let X be a dendroid and x∗ ∈ X. ∆0(X, x∗) will denote
the preordered set of arc-components of X \ {x∗} where the preorder is
defined by α ≤ β if α ⊆ cl(β). In this paper we investigate conditions
under which there exists a pair (X, x∗) such that ∆0(X, x∗) is isomorphic
to a given preordered set.

1. Introduction

A continuum is a compact and connected metric space. It is hereditarily
unicoherent if the intersection of each two of its subcontinua is connected
(or empty). A dendroid is an arcwise connected and hereditarily unicoherent
continuum. It is well known that for every pair of points x, y ∈ X there exists
a unique arc [x, y] ⊆ X joining them and that a subcontinuum of a dendroid
X is also a dendroid.

By a preordered set or preposet we mean a set P with a transitive relation
≤ between pairs of elements of P which satisfies p ≤ p for each p ∈ P .
If additionally, the relation ≤ satisfies: p ≤ q and q ≤ p implies p = q,
then we say that P is a partially ordered set or poset. An induced subpreposet
(respectively, subposet) P ′ is a subset of a preposet (respectively, poset) P such
that for p, q ∈ P ′, p ≤ q in P ′ if and only if p ≤ q in P . A chain (respectively,
antichain) is a subset of a preposet each pair of whose elements is comparable
(respectively, incomparable). An isomorphism between preordered sets is a
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bijective function such that both it and its inverse preserve the order relation;
the term mapping will always mean a continuous function.

The main purpose of this paper is to construct examples of dendroids.
We do this by defining a preorder relation between the arc-components of
X \ {x∗} where X is a dendroid and x∗ ∈ X . To make this more precise we
need some more definitions.

The set of arc-components of a subset W of a dendroid X will be denoted
by A(W ). A pointed dendroid (X, x∗) consists of a dendroid X and a point
x∗ ∈ X. Following [4], we denote by ∆0(X, x

∗) the set A(X \ {x∗}) with
the preorder ≤ defined as α ≤ β if α ⊆ cl(β). We say that a preposet P is
realizable whenever there is a pointed dendroid (X, x∗) such that ∆0(X, x

∗)
is isomorphic to P ; in such a case (X, x∗) will be said to realize P . The
preposet Q is said to be subrealizable whenever there is a realizable preposet P
containingQ as an induced subpreposet. It was shown in [4] that for any finite
poset P there is a pointed dendroid (in fact infinitely many) (X, x∗) which
realizes P . In this paper we investigate this problem for infinite preposets,
necessarily of cardinality at most c, since a compact metric space has at most
c elements.

We prove in this paper that a countable preposet containing an induced
subpreposet which has no last element is not realizable. In particular ω and
the preordered set E2 = ({a, b},≤) (where a 6= b), such that a ≤ b and
b ≤ a are not realizable. Nevertheless, we prove that ω and E2 are both
subrealizable. For the latter, we construct a pointed dendroid (X, x∗) such
that every element in A(X \{x∗}) is dense in X . We also prove that countable
preposets in which all chains are bounded by a fixed natural number, are
realizable.

2. Preliminaries

The following results concerning the arc-components of subsets of den-
droids will be required in Section 3.

Theorem 2.1. Let X be a dendroid, W ⊆ X an open set in X and
α ∈ A(W ). Then α is an Fσ subset of X. Moreover α =

⋃{Fn : n ∈ ω}
where Fn is a dendroid for each n ∈ ω.

Proof. Let d be a metric on X which generates the topology and fix a
point y ∈ α. Let r = d(y,X \W ). If Kn = {x ∈ X : d(x,X \W ) ≥ r/(n+ 1)}
then Kn is a closed subset of W and y ∈ Kn for each n ∈ ω. Let Fn be the arc
component of Kn containing y. To prove that Fn is a closed subset of X , note
that cl(Fn) is a subcontinuum of X and hence it is a dendroid contained in
Kn. Since Fn is the arc-component of y, it follows that cl(Fn) ⊆ Fn and hence
Fn is closed. Now, if x ∈ α, the arc [x, y] is a closed subset of X contained
in W and hence [x, y] and X \W are disjoint compact subsets of X . Thus
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d([x, y],W ) > 0 and so [x, y] ⊆ Km for some m ∈ ω. Hence [x, y] ⊆ Fm,
implying that y ∈ Fm.

The simple proof of the following theorem is left to the reader.

Theorem 2.2. Let X be a dendroid, Y a subdendroid of X and x∗ ∈ Y .
Then for each α ∈ A(Y \ {x∗}) there exists a unique ψ(α) ∈ A(X \ {x∗})
such that α ⊆ ψ(α). Moreover ψ : A(Y \ {x∗})→ A(X \ {x∗}) is an injective
function and α = ψ[α] ∩ Y .

Theorem 2.3. Let (X, x∗) be a pointed dendroid such that each element
of A(X \ {x∗}) has empty interior. Then A(X \ {x∗}) is uncountable.

Proof. Since X =
⋃{α : α ∈ A(X \ {x∗})} ∪ {x∗}, it is a consequence

of Theorem 2.1 that

X =
⋃{⋃

n∈ω

Fn(α) : α ∈ A(X \ x∗)
}

where each Fn(α) is closed (it is a dendroid) and has empty interior by hy-
pothesis. It follows from the Baire Category Theorem that A(X \ {x∗}) is
uncountable.

An inverse sequence is a sequence (Xi, fi)i∈ω of topological spaces Xi and
onto mappings fi : Xi+1 → Xi. The set

lim
←

(Xi : fi)i∈ω = {(x1, x2, ...) ∈ Πi∈ωXi : fi(xi+1) = xi for all i ∈ ω}

with the relative topology inherited from the product space Πi∈ω Xi will be
called the inverse limit of this sequence. For j > k, we denote fkj = fk ◦ · · · ◦
fj−1 ◦ fj : Xj+1 → Xk. The following theorems concerning inverse limits will
be used in our constructions.

Theorem 2.4. [3, Theorem 2.10 (Anderson-Choquet)]. Let (Xi, fi)i∈ω

be an inverse sequence of metric spaces (Xi, di) contained in a compact space
S and such that Xi ⊆ Xi+1. If

(1) For each ε > 0, there exists k ∈ ω such that for each pk ∈ Xk,

diam


⋃

j>k

f−1
kj (pk)


 < ε.

(2) For each k ∈ ω and each ε > 0, there is some δ > 0 such that if j > k
and uj , wj ∈ Xj , then dj(uj , wj) < δ ⇒ dk(fkj(uj), fkj(wj)) < ε,

then

lim
←

(Xi, fi)i∈ω = clS

(⋃

i∈ω

Xi

)
.
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A mapping f : X → Y is said to be monotone at p ∈ Y if the inverse
image of each subcontinuum of Y containing p is connected. The following
theorem can be found in [1].

Theorem 2.5. [1; Corollary 3, p.145]. Let X = lim
←

(Xi, fi)i∈ω. If each

Xi is a dendroid and there exists a point p = (p1, p2, p3, ...) ∈ X such that
each fi is monotone at pi, then X is a dendroid.

Theorem 2.6. Let (Xi, fi)i∈ω be an inverse sequence where Xi is an
arcwise connected continuum for each i ∈ ω and further assume that for each
i ∈ ω there exists Ti ⊆ Xi for which fi−1 | Ti : Ti → Xi−1 is a homeomor-
phism. Let X∞ = lim

←
(Xn, fn), then the set

T = {(x1, x2, ...) ∈ X∞ : xi ∈ Ti for all but a finite number of i ∈ ω}
is arcwise connected.

Proof. Let x = (x1, x2, ...) and y = (y1, y2, ...) ∈ T . Assume that xi, yi

∈ Ti for every i ≥ k and let τk : I → Tk be an arc from xk to yk.
For i > k, define inductively τi+1 = (fi | Ti+1)

−1 ◦ τi and for i < k, let
τi = fi(k−1) ◦ τk . Finally, we define τ : I → T by πj(τ(t)) = τj(t). Since each
τi is continuous, so is τ ; moreover, τi(t) ∈ Ti for every i ≥ k and τ(0) = x
and τ(1) = y. Therefore τ is a path from x to y which is contained in T and
which, in its turn, contains an arc from x to y.

3. Realizable and non-realizable preposets.

We begin this section by showing that certain preposets are not realizable.

Theorem 3.1. Let (P ,≤) be a preposet containing a preposet Q such that
for p ∈ Q, there exists p∗ ∈ Q, p∗ 6= p, p ≤ p∗. If P is countable then it is not
realizable.

Proof. Suppose (X, x∗) realizes P , that is there exists an isomorphism
ϕ : P → ∆0(X, x

∗). Then Y = cl(
⋃{α : α ∈ ϕ[Q]}) is a subdendroid of X

in which each element of ∆0(Y, x
∗) has empty interior. Then, by Theorem

2.3, A(Y \ {x∗}) is uncountable and by Theorem 2.2, A(X \ {x∗}) is also
uncountable. Since P is countable, we have a contradiction.

Corollary 3.2. No countable preposet containing ω as an induced sub-
poset is realizable.

Recall that E2 denotes the preposet ({a, b},≤) in which a ≤ b and b ≤ a.
Corollary 3.3. No countable preposet containing E2 as an induced sub-

preposet is realizable.

The following result is well-known; for completeness we include its easy
proof.
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Lemma 3.4. A separable metric space cannot contain a strictly increasing
or a strictly decreasing sequence of closed sets of length ω1.

Proof. Suppose {Cλ : λ ∈ ω1} is a strictly increasing sequence of sets
and either

i) all of the sets Cλ are open, or
ii) all of the sets Cλ are closed.

For each ordinal λ ∈ ω1, we choose xλ ∈ Cλ+1 \ Cλ and then in case i),
{xλ : λ ∈ ω1} is not Lindelöf, while in Case ii) {xλ : λ ∈ ω1} is not separable.
In either case we have a contradiction since X is both hereditarily separable
and hereditarily Lindelöf.

The following theorem follows immediately from Lemma 3.4.

Theorem 3.5. A poset containing either a well-ordered or an anti-well-
ordered uncountable chain is not subrealizable.

Theorem 3.6. (MA) Let κ be a cardinal such that ω < κ < c. A poset
of size κ is not realizable.

Proof. Let X be a dendroid and suppose that for some x∗ ∈ X we
have (X, x∗) = {Cλ : λ ∈ κ}. By Lemma 2.2, each arc-component Cλ is a
countable union of dendroids, say Cλ = ∪{Fλ,n : n ∈ ω}. Then X = ∪{Fλ,n :
n ∈ ω, λ ∈ κ} ∪ {x∗} and since each Fλ,n is closed in X , Martin’s Axiom
implies that there are n0 ∈ ω and λ0 ∈ κ such that intX(Fλ0,n0) 6= ∅. Now
we let X1 = X \ intX(Fλ0,n0); clearly X1 is compact.

Having chosen indices {λα : α ∈ β} and {nα : α ∈ β} and having
constructed compact spaces {Xα : α < β}, then if β is a limit ordinal,
we define Xβ = ∩{Xα : α < β}. If on the other hand, β is a successor
ordinal, β = γ + 1, then applying Martin’s Axiom again, there is some
λβ ∈ κ and nβ ∈ ω such that intXγ

(Fλβ ,nβ
∩ Xγ) 6= ∅ and we define

Xβ = Xγ \ intXγ
(∪{Fλα,nα

∩ Xγ : α ≤ β}). In this way we construct a
strictly decreasing family {Xλ : λ ∈ κ} of closed subsets of X , contradicting
Lemma 3.4.

We now prove some positive results concerning realizable and subreal-
izable preposets. In the sequel I and In (for n ∈ ω) will denote the unit
interval [0, 1] and H will denote the Hilbert cube

∏
n∈ω In. The natural pro-

jection from H onto In will be denoted by πn and the metric in H is defined
by

d(x, y) =
∑

n∈ω

| πn(x) − πn(y) |
2n

.

Hn will denote the subspace {x ∈ H : πj(x) = 0 for all j > n} of H which is
clearly homeomorphic to

∏n
k=1 Ik. The restriction of d to Hn will be denoted

by dn. en will denote the element of Hn such that πn(en) = 1 and πm(en) = 0
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if m 6= n. For each k ∈ ω, we denote by 0 that element of H all of whose
coordinates are 0 and by 0k that element of Hk whose coordinates are all equal
to 0. Finally, let En = {ren : 0 ≤ r ≤ 1} and S = { 1

m : m ∈ ω\{0}}∪{0} ⊆ I .
Now let D be a dendroid contained in Hk, such that 0∈ D and define

Comb(D) = Ek+1 ∪
⋃

t∈S D ×{t}. It is easy to verify that Comb(D) is a
dendroid contained in Hk+1, D × {0} ⊆ Comb(D) ⊆ cl(Comb(D) \ D) and
A(Comb(D)\{0}) = A(D\{0})∪{Comb(D)\D}. (Since D and D×{0} are
homeomorphic, we will in future write D instead of D×{0}.) It is clear that
for each n ∈ ω, the projection map from Hn+1 → Hn restricted to Comb(D)
is monotone at 0n.

Theorem 3.7. ω is subrealizable.

Proof. We will construct a dendroid D in the Hilbert cube H such
that (D,0) subrealizes ω. Let D2 be a dendroid which we assume to be
embedded in H2 and such that 02 ∈ D2. Now having constructed dendroids
D2, D3, . . . , Dn−1 as subspaces of H2, H3, . . . , Hn−1 respectively, let Dn =
Comb(Dn−1) ⊆ Hn. It is clear that for m ≥ 3, the projection map from Hm

to Hm−1 restricted to Dm, (and which we denote by ρm−1), maps onto Dm−1

and (Dm, ρm)m≥2 is an inverse system whose limit we will denote by D. It is
easy to see that D is homeomorphic to a subspace of H under the map which
sends ((x1, x2), (x1, x2, x3), (x1, x2, x3, x4), ...) to (x1, x2, x3, x4, . . . ). Since D
is an inverse limit of dendroids and the bonding maps are monotone at the
points 0n, it follows from Theorem 2.5 that D is a dendroid. We claim that D
is homeomorphic to clH(

⋃
n≥2Dn). Since it is clear that Dn ⊆ Dn+1, we need

only verify the two conditions of the Anderson-Choquet Theorem (Theorem
2.4).

(1) Let ε > 0 and and choose k > 2 such that 1
2k−1 < ε. Then for each

p ∈ Dk and u,w ∈ ⋃j>k ρ
−1
kj (p), πi(u) = πi(w) = πi(p) for i ≤ k, so

that

d(u,w) =
∑

n≥k

| πn(x)− πn(y) |
2n

≤ 1

2k−1
< ε.

(2) Let k ∈ ω and ε > 0. If j > k and u,w ∈ Dj , then we have
dk(ρkj(u), ρkj(w)) ≤ dj(u,w). Thus we can choose δ = ε.

We proceed to show that ∆0(D,0) contains ω as an induced subposet.
First we show that for each m ≥ 3, Dm \Dm−1 ∈ A(D \ {0}). To this end,
note that Dm\Dm−1 = Em∪

⋃
t∈S\{0}Dm−1 ×{t} and that this set is arcwise

connected. We will prove now that given x ∈ Dm\Dm−1 and y /∈ Dm\Dm−1,
then for each arc joining x and y, 0∈ [x, y]. It is easy to see from the definition
of the dendroids Dn that 0∈ [x, y] for each y ∈ ⋃n≥2Dn \ (Dm \Dm−1).

Now observe that:

1) If y ∈ clH(
⋃

n≥2Dn) \ ⋃n≥2Dn, then πn(y) 6= 0 for infinitely many
indices n.
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2) If y ∈ D, j ≥ 3 and πj(y) /∈ S, then πi(y) = 0 for every i 6= j.

Now if y ∈ clH(
⋃

n≥2Dn)\⋃n≥2Dn, let σ : I → D be a path joining x and

y. By 1), we can choose integers j, k greater than m and such that πj(y) 6= 0
and πk(y) 6= 0. Since πj(x) = πk(x) = 0, there is a point u ∈ πj [σ[I ]] \ S
and a point v ∈ πk[σ[I ]] \ S. By 2), there is a unique point u∗ (respectively,
v∗) in D whose j−th coordinate is u (respectively, whose k−th coordinate
is v). Then u∗ and v∗ are both in σ[I ] and it is clear that the path joining
these two points must contain 0. This proves that y is not an element of
the arc-component of D \ {0} which contains x. Thus we have proved that
{Dn \ Dn−1 : n ≥ 2} ⊆ A(D \ {0}). Since Dn \ Dn−1 ⊆ cl(Dn+1 \ Dn), it
follows that {Dn \Dn−1 : n ≥ 2} is isomorphic to ω.

Lemma 3.8. Let (X,0) be a pointed dendroid (which we assume to be em-
bedded in Hk for some integer k) with the property (†) that if Λ ⊆ A(X \{0})
then

⋃{cl(L) : L ∈ Λ} is a dendroid. If B = {Bn}n∈ω is a countable family of
subsets of A(X \ {0}), then there exists a dendroid Ω = Ω((X,0),B) ⊆ Hk+2

which contains (a homeomorphic copy of) X and has the following properties:

i) For each Bn ∈ B, there exists An ∈ A(Ω \ {0}) such that
⋃{B : B ∈

Bn} ⊆ cl(An).
ii) A(Ω \ {0}) = A(X \ {0}) ∪ {An}n∈ω.
iii) Ω satisfies (†).
Proof. For each n ∈ ω, we choose ξn ∈ Hk+2 in such a way that πj(ξn) =

0 if j ≤ k and {(πk+1(ξn), πk+2(ξn))}n∈ω is a sequence of pairwise linearly
independent vectors of R2 which converges to (0, 0). J(ξn) will denote the set
{rξn : 0 ≤ r ≤ 1} ⊆ Hk+2. The set Bn =

⋃{cl(B) : B ∈ Bn} is a dendroid by
hypothesis. For each m ∈ ω, let

An,m = Bn ×
{(

πk(ξn)

m+ 1
,
πk+1(ξn)

m+ 1

)}
⊆ Hk+2,

so that each An,m is homeomorphic to Bn and Am,n∩Ar,s = ∅ unless (m,n) =
(r, s). We define

Ω = (X × {(0, 0)}) ∪
⋃

n∈ω

J(ξn) ∪
⋃

n,m∈ω

An,m

(see Figure 1). It is not difficult to verify that Ω is a dendroid which satisfies
(†). Conditions i) and ii) are satisfied with An =

⋃
m∈ω An,m∪J(ξn).

We now define Fω =
⋃

j≥1 Fj ⊂ R2 where

Fj =

{
r

(
cos

π

2j
, sin

π

2j

)
: 0 ≤ r ≤ 1

2j

}
⊂ R2.

Clearly Fω is a dendroid and (Fω , (0, 0)) realizes a countably infinite set
of mutually incomparable points.
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Theorem 3.9. A countable poset in which the length of every chain is
bounded by some integer N is realizable.

Proof. Let (P,<) be a countable poset in which every chain is of length
at most N . The set P can be partitioned into sets {Pn : n ≤ N} where P1

is the set of minimal elements of P and Pn is the set of minimal elements
of P \ ∪{Pj : 1 ≤ j ≤ n − 1}; points of Pn are mutually incomparable.
Without loss of generality we assume that each Pn is countably infinite. Define
Γ1 = Fω ⊆ H2. Then (Γ1,0) realizes the induced subposet (P1, <). Let φ :
P1 → ∆0(Γ1,0) be the isomorphism. Now, for each qm ∈ P2, let Fm ⊆ P1 be
the set of immediate predecesors of qm and let B2 = {φ[Fm] : m ∈ ω}. Define
Γ2 = Ω((Γ1,0),B2) ⊆ H4. It follows from Lemma 3.8 that (Γ2,0) realizes the
induced poset (P1 ∪ P2,≤). If for some n ≤ N , Γn−1 has been constructed,
we define Γn = Ω((Γn−1,0),Bn) and hence (Γn,0) realizes the induced poset
(P1 ∪ ... ∪ Pn,≤). It is clear that the desired dendroid is ΓN .

As we proved in Corollary 3.3, E2 is not realizable. However, the following
theorem provides an example of a pointed dendroid (X, p) which subrealizes
E2. Moreover, we will prove that every element of A(X \ {p}) is dense in X
and so by Theorem 2.3, A(X, p) is not countable.

Theorem 3.10. The preordered set E2 is subrealizable.

Proof. We will construct a dendroid X as the inverse limit, lim
←

(Xi, fi)

of trees Xi contained in R2 (with the metric inherited from R2), such that
there is p = (pn)n∈ω ∈ X and each bonding maps fi−1 is monotone at pi ∈ Xi.
By Theorem 2.5, this will ensure that X is a dendroid.
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In Figure 2 we illustrate the trees X0, X1 and X2. Xn is the union of
Xn−1 and rectilinear segments, so that the set of end points of Xn is the set
of points in the Cantor set of the form k

3n (0 ≤ k ≤ 3n).

Let x, y ∈ R2 and denote by [x, y] the rectilinear segment from x to y
contained in R2. Let q = (1, 1/2) and T = [q, a] ∪ [q, b] where a and b are
the middle points of of the segments [q, (0, 0)] and [q, (1, 0)]. Notice that
Xn = T ∪ An ∪ Bn where An and Bn are both homeomorphic to Xn−1.

The mapping fn : Xn+1 → Xn is defined as follows: fn restricted to An+1

and to Bn+1 is the natural homeomorphism onto Xn and for every x ∈ T ,
fn(x) = q. We will prove that fn is monotone with respect to q. Let K be
a subcontinuum of Xn containing q. Clearly, f−1

n (K) = KA ∪KB ∪N where
KA = f−1

n (K)∩An and KB = f−1
n (K)∩Bn. Since KA and KB contain a and

b respectively and each of them is homeomorphic to K it follows that f−1
n (K)

is connected. Thus X is a dendroid.
Define q ∈ X by πj(q) = q for each j ∈ ω. We will prove that each subset

β ∈ A(X \{ q}) is dense in X . To this end, given ε > 0 and x = (x1, x2, . . .) ∈
X , we will show that there is z = (z1, z2, . . .) ∈ β such that d(x, z) < ε.

Notice that any element in X has at most one coordinate contained in T .
Fix y = (y1, y2, . . .) ∈ β and choose j0 ∈ ω such that yj /∈ T and 1

2j < ε for
every j ≥ j0. To construct z, choose zj0 = xj0 ; hence zj = xj for each j ≤ j0.
If j > j0, then yj ∈ Aj ∪ Bj and we define Tj = Aj if yj ∈ Aj or Tj = Bj

if yj ∈ Bj and then we choose zj inductively in such a way that zj ∈ Tj and
fj−1(zj) = zj−1. This is possible by the definition of the maps fj . Applying
Theorem 2.6 we obtain that z = (z1, z2, ...) ∈ β and clearly d(x, z) < ε. Thus
we have proved that β is a dense subset of X and that E2 is subrealizable.

It has recently been brought to our attention that in a different context,
a dendroid with similar properties to that described in Theorem 3.10 was
constructed in [2].
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Corollary 3.11. A preordered set P of cardinality ω1 such that for every
two elements p, q ∈ P the two relations p ≤ q and p ≥ q hold, is subrealizable.

A number of open questions remain and we mention below some of the
more interesting ones.

Problem 3.12. Is a countable poset in which every chain is finite realiz-
able?

Problem 3.13. Is Q (the rationals) subrealizable?

Problem 3.14. Is every countable ordinal subrealizable?

If the above can be answered, then:

Problem 3.15. Characterize those countable posets which are realizable
(or subrealizable).
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limits of continua, Glasnik Matematički Ser. III, 20(40) (1985), 139–151.

[2] J. Krasinkiewicz and P. Minc, Approximation of continua from within, Bull. Acad.
Polon. Sci. Sr. Sci. Math. Astronom. Phys. 25 (1977), 283–289.

[3] Sam B. Nadler Jr., Continuum Theory, an introduction, Marcel Dekker, New York,
1992.

[4] V. Neumann-Lara, Dendroids, digraphs and posets, in Continuum Theory: Proceedings

of the Special Session in Honor of Sam B. Nadler Jr.’s 60th Birthday, A. Illanes and
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E-mail : neumann@matem.unam.mx

I. Puga
Departamento de Matemáticas
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