DENDROIDS AND PREORDERS

Víctor Neumann-Lara ${ }^{1}$, Isabel Puga and Richard G. Wilson ${ }^{2}$
Universidad Nacional Autónoma de México and Universidad Autónoma
Metropolitana, México

Abstract

Let X be a dendroid and $x^{*} \in X . \Delta_{0}\left(X, x^{*}\right)$ will denote the preordered set of arc-components of $X \backslash\left\{x^{*}\right\}$ where the preorder is defined by $\alpha \leq \beta$ if $\alpha \subseteq \operatorname{cl}(\beta)$. In this paper we investigate conditions under which there exists a pair $\left(X, x^{*}\right)$ such that $\Delta_{0}\left(X, x^{*}\right)$ is isomorphic to a given preordered set.

1. Introduction

A continuum is a compact and connected metric space. It is hereditarily unicoherent if the intersection of each two of its subcontinua is connected (or empty). A dendroid is an arcwise connected and hereditarily unicoherent continuum. It is well known that for every pair of points $x, y \in X$ there exists a unique arc $[x, y] \subseteq X$ joining them and that a subcontinuum of a dendroid X is also a dendroid.

By a preordered set or preposet we mean a set \mathcal{P} with a transitive relation \leq between pairs of elements of \mathcal{P} which satisfies $p \leq p$ for each $p \in \mathcal{P}$. If additionally, the relation \leq satisfies: $p \leq q$ and $q \leq p$ implies $p=q$, then we say that \mathcal{P} is a partially ordered set or poset. An induced subpreposet (respectively, subposet) \mathcal{P}^{\prime} is a subset of a preposet (respectively, poset) \mathcal{P} such that for $p, q \in \mathcal{P}^{\prime}, p \leq q$ in \mathcal{P}^{\prime} if and only if $p \leq q$ in \mathcal{P}. A chain (respectively, antichain) is a subset of a preposet each pair of whose elements is comparable (respectively, incomparable). An isomorphism between preordered sets is a

[^0]bijective function such that both it and its inverse preserve the order relation; the term mapping will always mean a continuous function.

The main purpose of this paper is to construct examples of dendroids. We do this by defining a preorder relation between the arc-components of $X \backslash\left\{x^{*}\right\}$ where X is a dendroid and $x^{*} \in X$. To make this more precise we need some more definitions.

The set of arc-components of a subset W of a dendroid X will be denoted by $\mathcal{A}(W)$. A pointed dendroid $\left(X, x^{*}\right)$ consists of a dendroid X and a point $x^{*} \in X$. Following [4], we denote by $\Delta_{0}\left(X, x^{*}\right)$ the set $\mathcal{A}\left(X \backslash\left\{x^{*}\right\}\right)$ with the preorder \leq defined as $\alpha \leq \beta$ if $\alpha \subseteq \operatorname{cl}(\beta)$. We say that a preposet \mathcal{P} is realizable whenever there is a pointed dendroid $\left(X, x^{*}\right)$ such that $\Delta_{0}\left(X, x^{*}\right)$ is isomorphic to \mathcal{P}; in such a case $\left(X, x^{*}\right)$ will be said to realize \mathcal{P}. The preposet \mathcal{Q} is said to be subrealizable whenever there is a realizable preposet \mathcal{P} containing \mathcal{Q} as an induced subpreposet. It was shown in [4] that for any finite poset \mathcal{P} there is a pointed dendroid (in fact infinitely many) $\left(X, x^{*}\right)$ which realizes \mathcal{P}. In this paper we investigate this problem for infinite preposets, necessarily of cardinality at most \mathfrak{c}, since a compact metric space has at most \mathfrak{c} elements.

We prove in this paper that a countable preposet containing an induced subpreposet which has no last element is not realizable. In particular ω and the preordered set $E_{2}=(\{a, b\}, \leq)$ (where $\left.a \neq b\right)$, such that $a \leq b$ and $b \leq a$ are not realizable. Nevertheless, we prove that ω and E_{2} are both subrealizable. For the latter, we construct a pointed dendroid $\left(X, x^{*}\right)$ such that every element in $\mathcal{A}\left(X \backslash\left\{x^{*}\right\}\right)$ is dense in X. We also prove that countable preposets in which all chains are bounded by a fixed natural number, are realizable.

2. Preliminaries

The following results concerning the arc-components of subsets of dendroids will be required in Section 3.

Theorem 2.1. Let X be a dendroid, $W \subseteq X$ an open set in X and $\alpha \in \mathcal{A}(W)$. Then α is an F_{σ} subset of X. Moreover $\alpha=\bigcup\left\{F_{n}: n \in \omega\right\}$ where F_{n} is a dendroid for each $n \in \omega$.

Proof. Let d be a metric on X which generates the topology and fix a point $y \in \alpha$. Let $r=d(y, X \backslash W)$. If $K_{n}=\{x \in X: d(x, X \backslash W) \geq r /(n+1)\}$ then K_{n} is a closed subset of W and $y \in K_{n}$ for each $n \in \omega$. Let F_{n} be the arc component of K_{n} containing y. To prove that F_{n} is a closed subset of X, note that $\operatorname{cl}\left(F_{n}\right)$ is a subcontinuum of X and hence it is a dendroid contained in K_{n}. Since F_{n} is the arc-component of y, it follows that $\operatorname{cl}\left(F_{n}\right) \subseteq F_{n}$ and hence F_{n} is closed. Now, if $x \in \alpha$, the arc $[x, y]$ is a closed subset of X contained in W and hence $[x, y]$ and $X \backslash W$ are disjoint compact subsets of X. Thus
$d([x, y], W)>0$ and so $[x, y] \subseteq K_{m}$ for some $m \in \omega$. Hence $[x, y] \subseteq F_{m}$, implying that $y \in F_{m}$.

The simple proof of the following theorem is left to the reader.
Theorem 2.2. Let X be a dendroid, Y a subdendroid of X and $x^{*} \in Y$. Then for each $\alpha \in \mathcal{A}\left(Y \backslash\left\{x^{*}\right\}\right)$ there exists a unique $\psi(\alpha) \in \mathcal{A}\left(X \backslash\left\{x^{*}\right\}\right)$ such that $\alpha \subseteq \psi(\alpha)$. Moreover $\psi: \mathcal{A}\left(Y \backslash\left\{x^{*}\right\}\right) \rightarrow \mathcal{A}\left(X \backslash\left\{x^{*}\right\}\right)$ is an injective function and $\alpha=\psi[\alpha] \cap Y$.

Theorem 2.3. Let $\left(X, x^{*}\right)$ be a pointed dendroid such that each element of $\mathcal{A}\left(X \backslash\left\{x^{*}\right\}\right)$ has empty interior. Then $\mathcal{A}\left(X \backslash\left\{x^{*}\right\}\right)$ is uncountable.

Proof. Since $X=\bigcup\left\{\alpha: \alpha \in \mathcal{A}\left(X \backslash\left\{x^{*}\right\}\right)\right\} \cup\left\{x^{*}\right\}$, it is a consequence of Theorem 2.1 that

$$
X=\bigcup\left\{\bigcup_{n \in \omega} F_{n}(\alpha): \alpha \in \mathcal{A}\left(X \backslash x^{*}\right)\right\}
$$

where each $F_{n}(\alpha)$ is closed (it is a dendroid) and has empty interior by hypothesis. It follows from the Baire Category Theorem that $\mathcal{A}\left(X \backslash\left\{x^{*}\right\}\right)$ is uncountable.

An inverse sequence is a sequence $\left(X_{i}, f_{i}\right)_{i \in \omega}$ of topological spaces X_{i} and onto mappings $f_{i}: X_{i+1} \rightarrow X_{i}$. The set

$$
\lim _{\leftarrow}\left(X_{i}: f_{i}\right)_{i \in \omega}=\left\{\left(x_{1}, x_{2}, \ldots\right) \in \Pi_{i \in \omega} X_{i}: f_{i}\left(x_{i+1}\right)=x_{i} \text { for all } i \in \omega\right\}
$$

with the relative topology inherited from the product space $\Pi_{i \in \omega} X_{i}$ will be called the inverse limit of this sequence. For $j>k$, we denote $f_{k j}=f_{k} \circ \cdots \circ$ $f_{j-1} \circ f_{j}: X_{j+1} \rightarrow X_{k}$. The following theorems concerning inverse limits will be used in our constructions.

Theorem 2.4. [3, Theorem 2.10 (Anderson-Choquet)]. Let $\left(X_{i}, f_{i}\right)_{i \in \omega}$ be an inverse sequence of metric spaces $\left(X_{i}, d_{i}\right)$ contained in a compact space S and such that $X_{i} \subseteq X_{i+1}$. If
(1) For each $\varepsilon>0$, there exists $k \in \omega$ such that for each $p_{k} \in X_{k}$,

$$
\operatorname{diam}\left(\bigcup_{j>k} f_{k j}^{-1}\left(p_{k}\right)\right)<\varepsilon
$$

(2) For each $k \in \omega$ and each $\varepsilon>0$, there is some $\delta>0$ such that if $j>k$ and $u_{j}, w_{j} \in X_{j}$, then $d_{j}\left(u_{j}, w_{j}\right)<\delta \Rightarrow d_{k}\left(f_{k j}\left(u_{j}\right), f_{k j}\left(w_{j}\right)\right)<\varepsilon$,
then

$$
\lim _{\leftarrow}\left(X_{i}, f_{i}\right)_{i \in \omega}=\operatorname{cl}_{S}\left(\bigcup_{i \in \omega} X_{i}\right) .
$$

A mapping $f: X \rightarrow Y$ is said to be monotone at $p \in Y$ if the inverse image of each subcontinuum of Y containing p is connected. The following theorem can be found in [1].

Theorem 2.5. [1; Corollary 3, p.145]. Let $X=\lim _{\leftarrow}\left(X_{i}, f_{i}\right)_{i \in \omega}$. If each X_{i} is a dendroid and there exists a point $p=\left(p_{1}, p_{2},{ }_{p}, \ldots\right) \in X$ such that each f_{i} is monotone at p_{i}, then X is a dendroid.

ThEOREM 2.6. Let $\left(X_{i}, f_{i}\right)_{i \in \omega}$ be an inverse sequence where X_{i} is an arcwise connected continuum for each $i \in \omega$ and further assume that for each $i \in \omega$ there exists $T_{i} \subseteq X_{i}$ for which $f_{i-1} \mid T_{i}: T_{i} \rightarrow X_{i-1}$ is a homeomorphism. Let $X_{\infty}=\lim _{\leftarrow}\left(X_{n}, f_{n}\right)$, then the set

$$
\mathcal{T}=\left\{\left(x_{1}, x_{2}, \ldots\right) \in X_{\infty}: x_{i} \in T_{i} \text { for all but a finite number of } i \in \omega\right\}
$$

is arcwise connected.
Proof. Let $x=\left(x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{1}, y_{2}, \ldots\right) \in \mathcal{T}$. Assume that x_{i}, y_{i} $\in T_{i}$ for every $i \geq k$ and let $\tau_{k}: I \rightarrow T_{k}$ be an arc from x_{k} to y_{k}.

For $i>k$, define inductively $\tau_{i+1}=\left(f_{i} \mid T_{i+1}\right)^{-1} \circ \tau_{i}$ and for $i<k$, let $\tau_{i}=f_{i(k-1)} \circ \tau_{k}$. Finally, we define $\tau: I \rightarrow \mathcal{T}$ by $\pi_{j}(\tau(t))=\tau_{j}(t)$. Since each τ_{i} is continuous, so is τ; moreover, $\tau_{i}(t) \in T_{i}$ for every $i \geq k$ and $\tau(0)=x$ and $\tau(1)=y$. Therefore τ is a path from x to y which is contained in \mathcal{T} and which, in its turn, contains an arc from x to y.

3. Realizable and non-Realizable preposets.

We begin this section by showing that certain preposets are not realizable.
Theorem 3.1. Let (\mathcal{P}, \leq) be a preposet containing a preposet \mathcal{Q} such that for $p \in \mathcal{Q}$, there exists $p^{*} \in \mathcal{Q}, p^{*} \neq p, p \leq p^{*}$. If \mathcal{P} is countable then it is not realizable.

Proof. Suppose $\left(X, x^{*}\right)$ realizes \mathcal{P}, that is there exists an isomorphism $\varphi: \mathcal{P} \rightarrow \Delta_{0}\left(X, x^{*}\right)$. Then $Y=\operatorname{cl}(\bigcup\{\alpha: \alpha \in \varphi[\mathcal{Q}]\})$ is a subdendroid of X in which each element of $\Delta_{0}\left(Y, x^{*}\right)$ has empty interior. Then, by Theorem 2.3, $\mathcal{A}\left(Y \backslash\left\{x^{*}\right\}\right)$ is uncountable and by Theorem $2.2, \mathcal{A}\left(X \backslash\left\{x^{*}\right\}\right)$ is also uncountable. Since \mathcal{P} is countable, we have a contradiction.

Corollary 3.2. No countable preposet containing ω as an induced subposet is realizable.

Recall that E_{2} denotes the preposet $(\{a, b\}, \leq)$ in which $a \leq b$ and $b \leq a$.
Corollary 3.3. No countable preposet containing E_{2} as an induced subpreposet is realizable.

The following result is well-known; for completeness we include its easy proof.

Lemma 3.4. A separable metric space cannot contain a strictly increasing or a strictly decreasing sequence of closed sets of length ω_{1}.

Proof. Suppose $\left\{C_{\lambda}: \lambda \in \omega_{1}\right\}$ is a strictly increasing sequence of sets and either
i) all of the sets C_{λ} are open, or
ii) all of the sets C_{λ} are closed.

For each ordinal $\lambda \in \omega_{1}$, we choose $x_{\lambda} \in C_{\lambda+1} \backslash C_{\lambda}$ and then in case i), $\left\{x_{\lambda}: \lambda \in \omega_{1}\right\}$ is not Lindelöf, while in Case $\left.i i\right)\left\{x_{\lambda}: \lambda \in \omega_{1}\right\}$ is not separable. In either case we have a contradiction since X is both hereditarily separable and hereditarily Lindelöf.

The following theorem follows immediately from Lemma 3.4.
Theorem 3.5. A poset containing either a well-ordered or an anti-wellordered uncountable chain is not subrealizable.

Theorem 3.6. (MA) Let κ be a cardinal such that $\omega<\kappa<\mathfrak{c}$. A poset of size κ is not realizable.

Proof. Let X be a dendroid and suppose that for some $x^{*} \in X$ we have $\left(X, x^{*}\right)=\left\{C_{\lambda}: \lambda \in \kappa\right\}$. By Lemma 2.2, each arc-component C_{λ} is a countable union of dendroids, say $C_{\lambda}=\cup\left\{F_{\lambda, n}: n \in \omega\right\}$. Then $X=\cup\left\{F_{\lambda, n}\right.$: $n \in \omega, \lambda \in \kappa\} \cup\left\{x^{*}\right\}$ and since each $F_{\lambda, n}$ is closed in X, Martin's Axiom implies that there are $n_{0} \in \omega$ and $\lambda_{0} \in \kappa$ such that $\operatorname{int}_{X}\left(F_{\lambda_{0}, n_{0}}\right) \neq \emptyset$. Now we let $X_{1}=X \backslash \operatorname{int}_{X}\left(F_{\lambda_{0}, n_{0}}\right)$; clearly X_{1} is compact.

Having chosen indices $\left\{\lambda_{\alpha}: \alpha \in \beta\right\}$ and $\left\{n_{\alpha}: \alpha \in \beta\right\}$ and having constructed compact spaces $\left\{X_{\alpha}: \alpha<\beta\right\}$, then if β is a limit ordinal, we define $X_{\beta}=\cap\left\{X_{\alpha}: \alpha<\beta\right\}$. If on the other hand, β is a successor ordinal, $\beta=\gamma+1$, then applying Martin's Axiom again, there is some $\lambda_{\beta} \in \kappa$ and $n_{\beta} \in \omega$ such that $\operatorname{int}_{X_{\gamma}}\left(F_{\lambda_{\beta}, n_{\beta}} \cap X_{\gamma}\right) \neq \emptyset$ and we define $X_{\beta}=X_{\gamma} \backslash \operatorname{int}_{X_{\gamma}}\left(\cup\left\{F_{\lambda_{\alpha}, n_{\alpha}} \cap X_{\gamma}: \alpha \leq \beta\right\}\right)$. In this way we construct a strictly decreasing family $\left\{X_{\lambda}: \lambda \in \kappa\right\}$ of closed subsets of X, contradicting Lemma 3.4.

We now prove some positive results concerning realizable and subrealizable preposets. In the sequel I and I_{n} (for $n \in \omega$) will denote the unit interval $[0,1]$ and H will denote the Hilbert cube $\prod_{n \in \omega} I_{n}$. The natural projection from H onto I_{n} will be denoted by π_{n} and the metric in H is defined by

$$
d(x, y)=\sum_{n \in \omega} \frac{\left|\pi_{n}(x)-\pi_{n}(y)\right|}{2^{n}} .
$$

H_{n} will denote the subspace $\left\{x \in H: \pi_{j}(x)=0\right.$ for all $\left.j>n\right\}$ of H which is clearly homeomorphic to $\prod_{k=1}^{n} I_{k}$. The restriction of d to H_{n} will be denoted by d_{n}. e^{n} will denote the element of H_{n} such that $\pi_{n}\left(e^{n}\right)=1$ and $\pi_{m}\left(e^{n}\right)=0$
if $m \neq n$. For each $k \in \omega$, we denote by $\mathbf{0}$ that element of H all of whose coordinates are 0 and by 0_{k} that element of H_{k} whose coordinates are all equal to 0 . Finally, let $E_{n}=\left\{r e^{n}: 0 \leq r \leq 1\right\}$ and $S=\left\{\frac{1}{m}: m \in \omega \backslash\{0\}\right\} \cup\{0\} \subseteq I$.

Now let D be a dendroid contained in H_{k}, such that $\mathbf{0} \in D$ and define $\operatorname{Comb}(D)=E_{k+1} \cup \bigcup_{t \in S} D \times\{t\}$. It is easy to verify that $\operatorname{Comb}(D)$ is a dendroid contained in $H_{k+1}, D \times\{0\} \subseteq \operatorname{Comb}(D) \subseteq \operatorname{cl}(\operatorname{Comb}(D) \backslash D)$ and $\mathcal{A}(\operatorname{Comb}(D) \backslash\{\mathbf{0}\})=\mathcal{A}(D \backslash\{\mathbf{0}\}) \cup\{\operatorname{Comb}(D) \backslash D\}$. (Since D and $D \times\{0\}$ are homeomorphic, we will in future write D instead of $D \times\{0\}$.) It is clear that for each $n \in \omega$, the projection map from $H_{n+1} \rightarrow H_{n}$ restricted to $\operatorname{Comb}(D)$ is monotone at 0_{n}.

Theorem 3.7. ω is subrealizable.
Proof. We will construct a dendroid D in the Hilbert cube H such that $(D, \mathbf{0})$ subrealizes ω. Let D_{2} be a dendroid which we assume to be embedded in H_{2} and such that $0_{2} \in D_{2}$. Now having constructed dendroids $D_{2}, D_{3}, \ldots, D_{n-1}$ as subspaces of $H_{2}, H_{3}, \ldots, H_{n-1}$ respectively, let $D_{n}=$ $\operatorname{Comb}\left(D_{n-1}\right) \subseteq H_{n}$. It is clear that for $m \geq 3$, the projection map from H_{m} to H_{m-1} restricted to D_{m}, (and which we denote by ρ_{m-1}), maps onto D_{m-1} and $\left(D_{m}, \rho_{m}\right)_{m \geq 2}$ is an inverse system whose limit we will denote by D. It is easy to see that D is homeomorphic to a subspace of H under the map which sends $\left(\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}, x_{3}\right),\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \ldots\right)$ to $\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)$. Since D is an inverse limit of dendroids and the bonding maps are monotone at the points 0_{n}, it follows from Theorem 2.5 that D is a dendroid. We claim that D is homeomorphic to $\operatorname{cl}_{H}\left(\bigcup_{n \geq 2} D_{n}\right)$. Since it is clear that $D_{n} \subseteq D_{n+1}$, we need only verify the two conditions of the Anderson-Choquet Theorem (Theorem 2.4).
(1) Let $\varepsilon>0$ and and choose $k>2$ such that $\frac{1}{2^{k-1}}<\varepsilon$. Then for each $p \in D_{k}$ and $u, w \in \bigcup_{j>k} \rho_{k j}^{-1}(p), \pi_{i}(u)=\pi_{i}(w)=\pi_{i}(p)$ for $i \leq k$, so that

$$
d(u, w)=\sum_{n \geq k} \frac{\left|\pi_{n}(x)-\pi_{n}(y)\right|}{2^{n}} \leq \frac{1}{2^{k-1}}<\varepsilon
$$

(2) Let $k \in \omega$ and $\varepsilon>0$. If $j>k$ and $u, w \in D_{j}$, then we have $d_{k}\left(\rho_{k j}(u), \rho_{k j}(w)\right) \leq d_{j}(u, w)$. Thus we can choose $\delta=\varepsilon$.
We proceed to show that $\Delta_{0}(D, \mathbf{0})$ contains ω as an induced subposet. First we show that for each $m \geq 3, D_{m} \backslash D_{m-1} \in \mathcal{A}(D \backslash\{\mathbf{0}\})$. To this end, note that $D_{m} \backslash D_{m-1}=E_{m} \cup \bigcup_{t \in S \backslash\{0\}} D_{m-1} \times\{t\}$ and that this set is arcwise connected. We will prove now that given $x \in D_{m} \backslash D_{m-1}$ and $y \notin D_{m} \backslash D_{m-1}$, then for each arc joining x and $y, \mathbf{0} \in[x, y]$. It is easy to see from the definition of the dendroids D_{n} that $\mathbf{0} \in[x, y]$ for each $y \in \bigcup_{n \geq 2} D_{n} \backslash\left(D_{m} \backslash D_{m-1}\right)$.

Now observe that:

1) If $y \in \operatorname{cl}_{H}\left(\bigcup_{n \geq 2} D_{n}\right) \backslash \bigcup_{n \geq 2} D_{n}$, then $\pi_{n}(y) \neq 0$ for infinitely many indices n.
2) If $y \in D, j \geq 3$ and $\pi_{j}(y) \notin S$, then $\pi_{i}(y)=0$ for every $i \neq j$.

Now if $y \in \operatorname{cl}_{H}\left(\bigcup_{n \geq 2} D_{n}\right) \backslash \bigcup_{n \geq 2} D_{n}$, let $\sigma: I \rightarrow D$ be a path joining x and y. By 1), we can choose integers j, k greater than m and such that $\pi_{j}(y) \neq 0$ and $\pi_{k}(y) \neq 0$. Since $\pi_{j}(x)=\pi_{k}(x)=0$, there is a point $u \in \pi_{j}[\sigma[I]] \backslash S$ and a point $v \in \pi_{k}[\sigma[I]] \backslash S$. By 2), there is a unique point u^{*} (respectively, v^{*}) in D whose j-th coordinate is u (respectively, whose k-th coordinate is v). Then u^{*} and v^{*} are both in $\sigma[I]$ and it is clear that the path joining these two points must contain $\mathbf{0}$. This proves that y is not an element of the arc-component of $D \backslash\{\mathbf{0}\}$ which contains x. Thus we have proved that $\left\{D_{n} \backslash D_{n-1}: n \geq 2\right\} \subseteq \mathcal{A}(D \backslash\{\mathbf{0}\})$. Since $D_{n} \backslash D_{n-1} \subseteq \operatorname{cl}\left(D_{n+1} \backslash D_{n}\right)$, it follows that $\left\{D_{n} \backslash D_{n-1}: n \geq 2\right\}$ is isomorphic to ω.

Lemma 3.8. Let $(X, \mathbf{0})$ be a pointed dendroid (which we assume to be embedded in H_{k} for some integer k) with the property (\dagger) that if $\Lambda \subseteq A(X \backslash\{\mathbf{0}\})$ then $\bigcup\{\operatorname{cl}(L): L \in \Lambda\}$ is a dendroid. If $\mathcal{B}=\left\{\mathcal{B}_{n}\right\}_{n \in \omega}$ is a countable family of subsets of $\mathcal{A}(X \backslash\{\mathbf{0}\})$, then there exists a dendroid $\Omega=\Omega((X, \mathbf{0}), \mathcal{B}) \subseteq H_{k+2}$ which contains (a homeomorphic copy of) X and has the following properties:
i) For each $\mathcal{B}_{n} \in \mathcal{B}$, there exists $A_{n} \in \mathcal{A}(\Omega \backslash\{\mathbf{0}\})$ such that $\bigcup\{B: B \in$ $\left.\mathcal{B}_{n}\right\} \subseteq \operatorname{cl}\left(A_{n}\right)$.
ii) $\mathcal{A}(\Omega \backslash\{\mathbf{0}\})=\mathcal{A}(X \backslash\{\mathbf{0}\}) \cup\left\{A_{n}\right\}_{n \in \omega}$.
iii) Ω satisfies (\dagger).

Proof. For each $n \in \omega$, we choose $\xi_{n} \in H_{k+2}$ in such a way that $\pi_{j}\left(\xi_{n}\right)=$ 0 if $j \leq k$ and $\left\{\left(\pi_{k+1}\left(\xi_{n}\right), \pi_{k+2}\left(\xi_{n}\right)\right)\right\}_{n \in \omega}$ is a sequence of pairwise linearly independent vectors of \mathbb{R}^{2} which converges to $(0,0)$. $\mathbf{J}\left(\xi_{n}\right)$ will denote the set $\left\{r \xi_{n}: 0 \leq r \leq 1\right\} \subseteq H_{k+2}$. The set $\mathbf{B}_{n}=\bigcup\left\{\operatorname{cl}(B): B \in \mathcal{B}_{n}\right\}$ is a dendroid by hypothesis. For each $m \in \omega$, let

$$
A_{n, m}=\mathbf{B}_{n} \times\left\{\left(\frac{\pi_{k}\left(\xi_{n}\right)}{m+1}, \frac{\pi_{k+1}\left(\xi_{n}\right)}{m+1}\right)\right\} \subseteq H_{k+2}
$$

so that each $A_{n, m}$ is homeomorphic to \mathbf{B}_{n} and $A_{m, n} \cap A_{r, s}=\emptyset$ unless $(m, n)=$ (r, s). We define

$$
\Omega=(X \times\{(0,0)\}) \cup \bigcup_{n \in \omega} \mathbf{J}\left(\xi_{n}\right) \cup \bigcup_{n, m \in \omega} A_{n, m}
$$

(see Figure 1). It is not difficult to verify that Ω is a dendroid which satisfies (\dagger). Conditions i) and ii) are satisfied with $A_{n}=\bigcup_{m \in \omega} A_{n, m} \cup \mathbf{J}\left(\xi_{n}\right)$.

We now define $F_{\omega}=\bigcup_{j \geq 1} F_{j} \subset \mathbb{R}^{2}$ where

$$
F_{j}=\left\{r\left(\cos \frac{\pi}{2 j}, \sin \frac{\pi}{2 j}\right): 0 \leq r \leq \frac{1}{2 j}\right\} \subset \mathbb{R}^{2}
$$

Clearly F_{ω} is a dendroid and $\left(F_{\omega},(0,0)\right)$ realizes a countably infinite set of mutually incomparable points.

Theorem 3.9. A countable poset in which the length of every chain is bounded by some integer N is realizable.

Proof. Let $(P,<)$ be a countable poset in which every chain is of length at most N. The set P can be partitioned into sets $\left\{P_{n}: n \leq N\right\}$ where P_{1} is the set of minimal elements of P and P_{n} is the set of minimal elements of $P \backslash \cup\left\{P_{j}: 1 \leq j \leq n-1\right\}$; points of P_{n} are mutually incomparable. Without loss of generality we assume that each P_{n} is countably infinite. Define $\Gamma_{1}=F_{\omega} \subseteq H_{2}$. Then $\left(\Gamma_{1}, \mathbf{0}\right)$ realizes the induced subposet $\left(P_{1},<\right)$. Let ϕ : $P_{1} \rightarrow \Delta_{0}\left(\Gamma_{1}, \mathbf{0}\right)$ be the isomorphism. Now, for each $q_{m} \in P_{2}$, let $F_{m} \subseteq P_{1}$ be the set of immediate predecesors of q_{m} and let $\mathcal{B}_{2}=\left\{\phi\left[F_{m}\right]: m \in \omega\right\}$. Define $\Gamma_{2}=\Omega\left(\left(\Gamma_{1}, \mathbf{0}\right), \mathcal{B}_{2}\right) \subseteq H_{4}$. It follows from Lemma 3.8 that $\left(\Gamma_{2}, \mathbf{0}\right)$ realizes the induced poset $\left(P_{1} \cup P_{2}, \leq\right)$. If for some $n \leq N, \Gamma_{n-1}$ has been constructed, we define $\Gamma_{n}=\Omega\left(\left(\Gamma_{n-1}, \mathbf{0}\right), \mathcal{B}_{n}\right)$ and hence $\left(\Gamma_{n}, \mathbf{0}\right)$ realizes the induced poset $\left(P_{1} \cup \ldots \cup P_{n}, \leq\right)$. It is clear that the desired dendroid is Γ_{N}.

As we proved in Corollary 3.3, E_{2} is not realizable. However, the following theorem provides an example of a pointed dendroid (X, p) which subrealizes E_{2}. Moreover, we will prove that every element of $\mathcal{A}(X \backslash\{p\})$ is dense in X and so by Theorem $2.3, \mathcal{A}(X, p)$ is not countable.

Theorem 3.10. The preordered set E_{2} is subrealizable.
Proof. We will construct a dendroid X as the inverse limit, $\underset{\leftarrow}{\lim }\left(X_{i}, f_{i}\right)$ of trees X_{i} contained in \mathbb{R}^{2} (with the metric inherited from \mathbb{R}^{2}), such that there is $p=\left(p_{n}\right)_{n \in \omega} \in X$ and each bonding maps f_{i-1} is monotone at $p_{i} \in X_{i}$. By Theorem 2.5, this will ensure that X is a dendroid.

In Figure 2 we illustrate the trees X_{0}, X_{1} and $X_{2} . X_{n}$ is the union of X_{n-1} and rectilinear segments, so that the set of end points of X_{n} is the set of points in the Cantor set of the form $\frac{k}{3^{n}}\left(0 \leq k \leq 3^{n}\right)$.

X_{2}

Figure 2

Let $x, y \in \mathbb{R}^{2}$ and denote by $[x, y]$ the rectilinear segment from x to y contained in \mathbb{R}^{2}. Let $q=(1,1 / 2)$ and $T=[q, a] \cup[q, b]$ where a and b are the middle points of of the segments $[q,(0,0)]$ and $[q,(1,0)]$. Notice that $X_{n}=T \cup A_{n} \cup B_{n}$ where A_{n} and B_{n} are both homeomorphic to X_{n-1}.

The mapping $f_{n}: X_{n+1} \rightarrow X_{n}$ is defined as follows: f_{n} restricted to A_{n+1} and to B_{n+1} is the natural homeomorphism onto X_{n} and for every $x \in T$, $f_{n}(x)=q$. We will prove that f_{n} is monotone with respect to q. Let K be a subcontinuum of X_{n} containing q. Clearly, $f_{n}^{-1}(K)=K_{A} \cup K_{B} \cup N$ where $K_{A}=f_{n}^{-1}(K) \cap A_{n}$ and $K_{B}=f_{n}^{-1}(K) \cap B_{n}$. Since K_{A} and K_{B} contain a and b respectively and each of them is homeomorphic to K it follows that $f_{n}^{-1}(K)$ is connected. Thus X is a dendroid.

Define $\mathbf{q} \in X$ by $\pi_{j}(\mathbf{q})=q$ for each $j \in \omega$. We will prove that each subset $\beta \in \mathcal{A}(X \backslash\{\mathbf{q}\})$ is dense in X. To this end, given $\varepsilon>0$ and $x=\left(x_{1}, x_{2}, \ldots\right) \in$ X, we will show that there is $z=\left(z_{1}, z_{2}, \ldots\right) \in \beta$ such that $d(x, z)<\varepsilon$.

Notice that any element in X has at most one coordinate contained in T. Fix $y=\left(y_{1}, y_{2}, \ldots\right) \in \beta$ and choose $j_{0} \in \omega$ such that $y_{j} \notin T$ and $\frac{1}{2^{j}}<\varepsilon$ for every $j \geq j_{0}$. To construct z, choose $z_{j_{0}}=x_{j_{0}}$; hence $z_{j}=x_{j}$ for each $j \leq j_{0}$. If $j>j_{0}$, then $y_{j} \in A_{j} \cup B_{j}$ and we define $T_{j}=A_{j}$ if $y_{j} \in A_{j}$ or $T_{j}=B_{j}$ if $y_{j} \in B_{j}$ and then we choose z_{j} inductively in such a way that $z_{j} \in T_{j}$ and $f_{j-1}\left(z_{j}\right)=z_{j-1}$. This is possible by the definition of the maps f_{j}. Applying Theorem 2.6 we obtain that $z=\left(z_{1}, z_{2}, \ldots\right) \in \beta$ and clearly $d(x, z)<\varepsilon$. Thus we have proved that β is a dense subset of X and that E_{2} is subrealizable.

It has recently been brought to our attention that in a different context, a dendroid with similar properties to that described in Theorem 3.10 was constructed in [2].

Corollary 3.11. A preordered set \mathcal{P} of cardinality ω_{1} such that for every two elements $p, q \in \mathcal{P}$ the two relations $p \leq q$ and $p \geq q$ hold, is subrealizable.

A number of open questions remain and we mention below some of the more interesting ones.

Problem 3.12. Is a countable poset in which every chain is finite realizable?

Problem 3.13. Is \mathbb{Q} (the rationals) subrealizable?
Problem 3.14. Is every countable ordinal subrealizable?
If the above can be answered, then:
Problem 3.15. Characterize those countable posets which are realizable (or subrealizable).

References

[1] J. J. Charatonik and W. J. Charatonik, Monotoneity relative to a point and inverse limits of continua, Glasnik Matematički Ser. III, 20(40) (1985), 139-151.
[2] J. Krasinkiewicz and P. Minc, Approximation of continua from within, Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys. 25 (1977), 283-289.
[3] Sam B. Nadler Jr., Continuum Theory, an introduction, Marcel Dekker, New York, 1992.
[4] V. Neumann-Lara, Dendroids, digraphs and posets, in Continuum Theory: Proceedings of the Special Session in Honor of Sam B. Nadler Jr.'s 60th Birthday, A. Illanes and S. Macías (eds.), Marcel Dekker, New York, 2002.
V. Neumann-Lara

Instituto de Matemáticas
Universidad Nacional Autónoma de México
México, D. F., México
E-mail: neumann@matem.unam.mx
I. Puga

Departamento de Matemáticas
Facultad de Ciencias
Universidad Nacional Autónoma de México
México, D.F., México
E-mail: ipe@hp.fciencias.unam.mx
R. G. Wilson

Departamento de Matemáticas
Universidad Autónoma Metropolitana
Avenida San Rafael Atlixco, \#186
Iztapalapa, Apartado Postal 55-532, C.P. 09340
México, D.F., México
E-mail: rgw@xanum.uam.mx
Received: 07.01.2002.

[^0]: 2000 Mathematics Subject Classification. 54F20, 54F50, 05C20
 Key words and phrases. Dendroid, preordered set, partially ordered set.
 1 Research supported by Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico, grant no. 27968E.
 ${ }^{2}$ Research supported by Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico, grants no. 28411E and 38164 E .

