PENTAPLOIDSIN POPULATIONSOFVARIOUS LEUCANTHEMUMSPECIES

DRAZENA PAPES
(Botanical Institute of the University of Zagreb)

Recelved February 3, 1972.

Introduction
Polyploidy, a common phenomenon in higher plants, is one of the most striking characteristics. The genus Leucanthemum is a well known example of this. It contains six ploidy levels: $2 \mathrm{x}, 4 \mathrm{x}, 6 \mathrm{x} .8 \mathrm{x}, 10 \mathrm{x}$ and 12 x all found in nature (F a varger and Villard 1965, Villard 1970, Mirković 1966, 1969 and others). There is not much evidence of the occurence in nature of plants with other ploidy levels, which represent unbalanced types with uneven somatic chromosome numbers such as triploids (3 x), pentaploids (5 x). heptaploids (7 x) etc. Villard (1970) was the only author who described some natural (and also artifical) hybrids with these ($5 \mathrm{x}, 7 \mathrm{x}$) uneven chromosome numbers.

The results of several years of investigation in Yugoslavia of 463 plants from 95 populations of the Leucanthemum species, show that in the natural populations of the different species pentaploids are not rare.

> Materials and Methods

The plants investigated were collected in nature in the period from 1962 to 1971. They were raised at the Botanic Garden in Zagreb. (Some plants had been transported to Kew Gardens in England where they were examined for a year).

Root tips were pretreated with α-monobromnaphtalene in a refrigerator for about 20 hours, fixed in 1:3 aceto-alcohol and stained with Feulgen. Studies of chromosome pairing were made from fixed anthers. The squashes were stained with aceto-orcein. All preparations were made permanent by the liquid- CO_{2}-method. Photographs were taken of permanent preparations.

The pollen size was determined by measuring 100-200 fresh pollen grains stained with aceto-carmine. For purposes of microphotography, the pollen grains were gently centrifuged for 3 minutes in ether (to extract fat-like substances) and then stained with aceto-carmine.

Results

Table 1. shows that from 463 investigated plants of the genus Leucanthemum, 35 are pentaploids with $2 \mathrm{n}=-(5 \mathrm{x})=45$ (Figs. 1 and 2). They occur in many populations of various species. Most of them are found in populations where hexaploids (6x) predominate (Table 2), as is the case of L. vulgare subsp. amplifolium Fiori in populations from the mountains of Galičica, Vranica, Inač, Maglić and Troglav, and also of L. croaticum var. croaticum Horvatić in two populations from Velebit. In some of these populations a few tetraploids have been found too. In two populations of L. montanum var. heterophbyllum (Willd.) Briqu. et Cav. pentaploids grow exclusively among octoploids (8x).

Ploidy	2 x	4 x	5 x	6 x	7 x	8 x	Total
$2 \mathrm{n}=$	18	$36(-1)$	45	$54(\mp 2)$	$63(\mp 4)$	$72(\mp 3)$	
No. of individuals	85	93	35	108	9	133	463

Table 1. Number of individuals of Leucanthemum species found at various ploidy levels.

Although pentaploids grow in different populations of various species, they have some common characteristics. They are selfsterile. The stainability of the pollen is quite high ranging from 58 to $88,3 \%$ (Table 2). The size of the pollen grains varies to a great extent in all pentaploids. The measurements were done in plants cyt. nos. 70.140, 70.908, 70.133, 70.48 and 70.88 and ranged from about 24 to $47 \mu \mathrm{~m}$ (Figs. 3 and 4). There are two peaks in Figs. 5 and 6. The first peak (27 to $29.7 \mu \mathrm{~m}$) includes about 20% pollen grains, and the second one (in Fig. 5 from 35.1 to $37.8 \mu \mathrm{~m}$ and in Fig. 6 from 32.4 zo $35.1 \mu \mathrm{~m}$) more than 30%. Some pollen grains of the size between 24.3 and $27 \mu \mathrm{~m}$ were found without extine.

Many of investigated Leucanthemum pentaploids produce a high percentage of fertile seeds by open pollination (e.g. the plant cyt. no. 66.1 from Vranica). The chromosome number of the seedlings varies considerably ($2 \mathrm{n}=35,36,45,54,69,70$ and 71).

All pentaploids are very similar in their pairing behaviour. Univalents are commonest. Bivalents, trivalents and quadrivalents are present in different numbers and consequently many PMC contain different chromosome numbers.

Morphological characteristics of the pentaploids do not differ from those of plants with other ploidy levels in the population. The only specific feature, which has been noticed, is that pentaploids flower rarely, e. g. once in three yars.

Obviously the appearance of natural pentaploids in Leucanthemum populations is not so rare as the data in the literature may indicate (V illard 1970). This fact can be proved only by investigating many individuals from many populations. A good example of this is the work of Jones (1958) on Holcus mollis, in which after examining a great number of individuals from many populations, he found plants with four different chromosome numbers among which the sterile pentaploid (hybrid), reproducing only vegetatively, was very frequent.

There is no evidence to prove that Leucanthemum pentaploids are hybrids. They are not sterile since they produce seeds; the chromosome numbers of the seedlings, grown from these seeds vary, however, considerably. They also propagate vegetatively.

Leucanthemum pentaploids $2 \mathrm{n}=(5 \mathrm{x})=45$, grow in different populations where representatives of higher polyploids are always predominant. In some, they are hexaploids (6x) and in others octoploids (8x). In both cases pentaploids seem to originate from plants with higher ploidy which would be contrary to the usual way of polyploidisation. Some examples are known in the tribe Andropogoneae of the grass family. De Wet (1965, 1968, cited after Stebbins 1971) has shown that natural autopolyploids can produce diploids. Successful reversions of this sort, however, occur only in autopolyploid populations, which appear to be of relatively recent origin, and which live sympatrically with their diploid progenitors (Stebbins 1971).

In Leucanthemum populations (Table 2), with predominant hexaploids, and with a few tetraploids, the pentaploids could be produced by hybridisation of both. In populations, however, where pentaploids grow exclusively among octoploids, it is impossible to recognize their ancestors. All that can be investigated here is the ability of Leucanthemum polyploids to produce gametes with chromosome numbers of those ploidy levels, which are successful in the process of fertilization.

As we can see the pollen stainability (of 58 to 88.3%) in pentaploids is rather high for an unbalanced type, but is still lower if compaired with that in balanced types of Leucanthemum species where pollen stainability is in the range of 75 and 95% (Papes, unpublished).

The variations in the size of pollen grains may be related to their ploidy level. The two peaks, which appear on both histograms in Figs. 5 and 6, indicate that two chromosome numbers in the nuclei of pollen grains were most frequent. If we compare the size of pollen grains on^{n} pentaploids with that of plants with other ploidy levels (Villard 1970 and Papes , unpublished) the first peaks in Figs. 5 and $6(27-29.7 \mu \mathrm{~m}$) could correspond to diploids (or perhaps triploids), the second peak in Fig. $5(35.1-37.8 \mu \mathrm{~m})$ to hexaploids or octoploids, and the second in Fig. $6(32.4-35.1 \mu \mathrm{~m})$ to hexaploids (or perhaps pentaploids).

In addition to that, the analysis of various chromosome numbers of seeds (seedlings) from one plant (cyt. no. 66.1) shows that pentaploids have a great ability of producing progeny with many various chromo. some numbers. How they survive, is still unknown.
Table 2. List of Leucanthemum populations containing pentaploids.

1	2	3	4	5	6	7	8
Speoies	Cyt. no.	Locality	Habitat	Altitudes in m	2 n	Pollen stainability	Collector
L. eulgare subsp. amplifolium	$\begin{aligned} & 67.12 \\ & 67.13 \\ & 67.14 \\ & 67.15 \end{aligned}$	Makedonija, Galičica	Wodland, clearing, calcareus substratum	$\begin{gathered} 1600 \\ " \\ " \\ " \end{gathered}$	$\begin{aligned} & 36 \\ & 45 \\ & 54 \\ & 54 \end{aligned}$		S. Ungar
L. vulgare subsp. amplifolium	63.8 63.10 63.13 64.2 66.1 66.12 66.13 66.14 66.31 66.32 66.44 66.54 66.60 66.65 66.81 66.83 66.84 66.87 66.92 67.1 70.139 70.140 64.30 64.32 64.35	Bosna and Hercegovina, above the Prokoško lake, Vranica mountain	Rocky mountain pastire, calcareous substratum	1800 $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$	36 36 36 36 45 54 54 54	58\%	Author " $"$ " " $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$

1	2	3	4	5	6	7	8
	$\begin{aligned} & 66.26 \\ & 66.28 \\ & 66.30 \end{aligned}$			"	$\begin{aligned} & 54 \\ & 54 \\ & 54 \end{aligned}$		$"$
L. vulgare subsp. amplifolium	66.36 66.37 66.49 66.62 66.70 66.73 66.82 66.86 66.93 66.94 70.141	Vranica mountain		$\begin{gathered} 1600 \\ " \\ " \\ " \\ " \\ " \\ " \\ " \\ " \end{gathered}$	$\begin{aligned} & 54 \\ & 54 \\ & 54 \\ & 54 \\ & 54 \\ & 54 \\ & 54 \\ & 54 \\ & 54 \\ & 54 \\ & 54 \end{aligned}$		Author and C. Silić
L. vulgare subsp. amplijolium	$\begin{aligned} & 70.240 \\ & 70.1097 \\ & 69.14 \\ & 69.15 \end{aligned}$	Bosna and Hercegovina, Inač mountain SE-exp. Kojsina	Rocky mountain pasture, calcareous substratum	$\begin{gathered} 1000 \\ " \\ " \\ " \end{gathered}$	$\begin{aligned} & 45 \\ & 45 \\ & \\ & 54 \\ & 54 \end{aligned}$		C. Silić
L. vulgare subsp. amplifolium	$\begin{aligned} & 70.908 \\ & 70.144 \\ & 70.152 \\ & 70.153 \end{aligned}$	Bosna and Hercegovina, Maglić mountain near Dobre vode	Rocky mountain pasture, calcareous substratum	$\begin{gathered} 1800 \\ " \\ " \end{gathered}$	$\begin{aligned} & 45 \\ & \\ & 54 \\ & 54 \\ & 54 \end{aligned}$	63,6\%	Author
L. vulgare subsp. amplifolium	$\begin{aligned} & 70.121 \\ & 70.185 \\ & 69.10 \end{aligned}$	Hrvatska, Troglav mountain, above Velika Poljica	Woodland clearing, calcareous substratum	$\begin{gathered} 1350 \\ " \\ " \end{gathered}$	36 45 54		C Silić

1	2	3	4	5	6	7	8
Species	Cyt. no.	Locality	Habitat	Altitudes in m	2 n	Pollen stainability	Collector
L. croaticum var. croaticum	$\begin{aligned} & 70.138 \\ & 70.486 \\ & 70.137 \\ & 70.870 \end{aligned}$	Hrvatska, Velebit near Teminovac	Rocky mountain pasture, calcareous substratum	$\begin{gathered} 1000 \\ " \\ " \\ " \\ \hline \end{gathered}$	$\begin{aligned} & 36 \\ & 45 \\ & 54 \\ & 54 \end{aligned}$		Author
L. croaticum var. croaticum	70.133 70.134 70.487 70.526 70.887 70.1090 70.135 70.136	Hrvatska, Velebit near Ovčiće	Rocky mountain pasture, calcareous substratum	$\begin{gathered} 1100 \\ ", \\ " \\ " \\ " \\ " \end{gathered}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \\ & 45 \\ & 45 \\ & 54 \\ & 54 \end{aligned}$	$\begin{gathered} 81 \% \\ 88,3 \% \\ 71 \% \end{gathered}$	Author
L. montonum var. heterophyllum	68.15 66.76 70.184 66.63 66.66 66.68 66.71 66.77 66.78	Hrvatska, Risnjak mountain	Rock strown bank bordering a beech wood	$\begin{gathered} 1200 \\ " \\ " \\ " \\ " \\ " \\ " \end{gathered}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 72 \\ & 72 \\ & 72 \\ & 72 \\ & 72 \\ & 72 \end{aligned}$		Author 3 3 31 3 3 3 9
L. montanum var. heterophyllum	$\begin{aligned} & 70.128 \\ & 70.129 \\ & 69.16 \\ & 69.17 \end{aligned}$	Hrvatska, Bijelolasica mountain	Rock strown bank bordering a beech wood	$\begin{gathered} 1500 \\ " \\ " \end{gathered}$	$\left\lvert\, \begin{gathered} 45+2 \mathrm{~B} \\ 45+1-2 \mathrm{~B} \\ 72 \\ 72 \end{gathered}\right.$		V. Trinajstić

Plate I - Tabla I

Plate II - Tabla II

Plate I - Somatic chromosomes of the Leucanthemum - pentaploids. Tabla I - Somatski kromosomi u Leucanthemum - pentaploida.

Fig. 1. L. vulgare subsp. amplifolium $2 \mathrm{n}=(5 \mathrm{x})=45$, (cyt. no. 70.1097).
Sl. 1. L. vulgare subsp. amplifolium $2 \mathrm{n}=(5 \mathrm{x})=45$, (cyt. br. 70.1097).
Fig. 2. L. croaticum var. croaticum $2 n=(5 x)=45$, (cyt. no. 70.526).
Sl. 2. L. croaticum var. croaticum $2 \mathrm{n}=(5 \mathrm{x})=45$, (cit. br. 70.526).
Plate II - Pollen grains of Leucanthemum - pentaploids.
Tabla II - Polenska zrnca u Leucanthemum - pentaploida.
Fig. 3. L. vulgare subsp. amplifolium.
Sl. 3. L. vulgare subsp. amplifolium.
Fig. 4. L. croaticum var. croaticum.
Sl. 4. L. croaticum var. croaticum.

Fig. 5. Diameter of pollen grains in L. vulgare subsp. amplifolium, (cyt. no. 70.908).
Sl. 5. Promjer polenskih zrnaca u L. vulgare subsp. amplifolium, (cit. br. 70.908).

Fig. 6. Diameter of pollen grains in L. croaticum var. croaticum, (cyt. no. 70.487).
Sl. 6. Promjer polenskih zrnaca u L. croaticum var. croaticum, (cit. br. 70.487).

The appearance of individuals with three different ploidy levels in the same population, the morphological characteristics of which do not differ significantly, shows that in Leucanthemum species it is useless to make taxonomic conclusions only on basis of chromosome numbers, as many cytotaxonomists did.

Summary

Among 463 investigated plants from 95 populations of the genus Leucanthemum 35 plants were pentaploids $(2 n=(5 x)=45)$. Most of them grow in populations where hexaploids (6x) predominate, but a few tetraploids (4 x) have also been found (L. vulgare subsp. amplifolium Fiori and L. croaticum var. croaticum Horvatić). In two populations of L. montanum var. heterophyllum (Willd.) Briqu. et. Cav. pentaploids grow only among octoploids (8 x). The origin of the Leucanthemum pentaploids is discussed.

Acknowledgments: A part of this work was prepared in Jodrell Laboratory, Royal Botanic Gardes, Kew, while the author was a recipient of a British Council Scholarship. I offer my special thanks to Dr. Keith Jones and the staff of the Cytology Department for their help and assistance in the work.

I am also grateful to Professor Z. Devidé for this helpful advice in preparing the paper.

References - Literatura

Favarget, C. and M. Villard, 1965: Nouvelles recherches cytotaxinomiques sur Chrysanthemum Leucanthemum L. sens. lat. Bull. Soc. Bot. Suisse 75, 57-79.

Jones, K., 1958: Cytotaxonomic studies in Holcus. I. The chromosome complex in Holcus mollis L. New Phytol. 57, 191-210.

Mirković Dražena, 1966: Citotaksonomska istraživanja vrsta roda Leucanthemum Adans. em. Briqu. et Cav. na području Jugoslavije. Acta Bot. Croat. 25, 137-152.

Mirković Dražena, 1969: Citotaksonomska i citogenetska istraživanja planinskih taksona roda Leucanthemum u Jugoslaviji. Knjiga plenarnih referatov in povzetkov, 188-189, III kongres biologov Jugoslavije, Ljubljana.

Stebbins, G. L., 1971: Chromosomal evolution in higher plants. Contemporary Biology, Eduard Arnold, London.

Villard, M., 1970: Contribution à l'étude cytotaxinomique et cytogénétique du genre Leucanthemum Adans. em. Briq. et Cav. Thèse. Bull. Soc. Bot. Suisse 80, 96-188.

Dražena Papes
(Institut za botaniku Sveučilišta u Zagrebu)

Od 463 istražene biljke iz 95 populacija vrsta roda Leucathemum 35 biljaka bilo je pentaploidno $s 2 n=(5 x)=45$. Većina pentaploida nađena je u populacijana gdje su prevladavali heksaploidi; u istim populacijama takoder je nađeno i nekoliko tetraploida. Takav slučaj uočen je u populacijama s vrstama L. vulgare subsp. amplifolium Fiori i L. croaticum var. croaticum Horvatić. U dvije populacije L. montanum var. heterophyllum (Willd.) Briqu. et Cav. pentaploidi su rasli isključivo između oktoploidnih ivančica.

Svi Leucantheumum-pentaploidi, iako su rasli u različitim populacijama i bili pripadnici različitih vrsta, imali su mnogo zajedničkih karakteristika.

Po morfološkim karakteristikama pentaploidi se nisu razlikovali od ostalih ivančica u istoj populaciji. Konstatacija da pripadnici jedne vrste u jednoj populaciji s različitim brojem kromosoma, odnosno s različitim stupnjem ploidije (kao npr. 4x, 5x i 6x u jednoj populaciji i 5x i 8x u drugoj) čija se izvanja morfologija međusobno ne razlikuje, upućuje na to da je nemoguće klasificirati vrste isključivo na temelju kromosomskog broja, a isto tako zaključivati o broju kromosoma na osnovi samo jednog brojenja.

