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APPROXIMATION IN SMIRNOV-ORLICZ CLASSES
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ABSTRACT. We use the approximation properties of the Faber poly-
nomials to obtain some direct theorems of the polynomial approximation
in Smirnov-Orlicz classes.

1. INTRODUCTION AND MAIN RESULTS

Let T' be a rectifiable Jordan curve in the complex plane C and G :=
Intl', G~ := Extl'. Without loss of generality we may assume 0 € G. Let
T:={weC:|w =1},D:=IntT and D~ := ExtT. Let also w = ¢ (z) be
the conformal mapping of G~ onto D™, normalized by

 (00) = o0, lim v (2)

z—00 2

>0,

and let ¥ be its inverse.

If 1 <p < oo, we denote by L, (I') and E, (G) the set of all measurable
complex valued functions f on I' such that |f|” is Lebesgue integrable with
respect to arclength, and the Smirnov class of analytic functions in G, respec-
tively. Since I' is rectifiable, we have that ¢’ € E; (G7) and ¢ € Ey (D7),
and hence the functions ¢’ and ¢’ admit non-tangential limits almost every-
where (a.e.) on I" and on T, and these functions belong to Ly (T') and Ly (T),
respectively (see, for example [10, p. 419]).

Let h be a continuous function on [0,27]. Its modulus of continuity is
defined by

w (t, h) = sup{\h (tl) — h(t2)| 1y, t0 € [0727'(], |t1 — t2| < t}7 t>0.
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The function h is called Dini-continuous if
v

t™rw (t,h)dt < 0.
0

DEFINITION 1.1 ([17, p. 48]). The curve I' is called Dini-smooth if it has
a parametrization
T:po(r), 0<7<2rm

such that ¢f (1) is Dini-continuous and # 0.
If T is Dini-smooth, then [21]
(1) 0<cr <|¢ ()] <ea < oo, zeTl

for some constants ¢; and ¢y independent of z.
A function M (u) : R — RT | where R := (—00,00) and R := (0, 00), is
called an N — function if it admits of the representation

Jul

where the function p (¢) is right continuous and nondecreasing for ¢ > 0 and
positive for ¢ > 0, which satisfies the conditions

p(0) =0, p(oc) =lim p(t) = oo.

The function

where
q(s):=sup t, (s >0)
p(t)<s
is defined as complementary function of M (u) [16, p. 11].
Let M be an N — function and N be its complementary function. By
Ly (T') we denote the linear space of Lebesgue measurable functions f : I' — C
satisfying the condition

/M[a|f<z>|] dz] < o0
I

for some o > 0.
The space Ly (I') becomes a Banach space with the norm

£l =] [17EaCNIdel g€ Ly (D), pl@N) <1,
r
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where

ploiN)i= [ N[1g()] ]ld.

The norm ||-[|,, ) is called Orlicz norm and the Banach space Ly (I) is

called Orlicz space. Every function in Ly (T') is integrable on T' [18, p. 50],
ie.

(2) Ly (T) € Ly (T).
An N — function M satisfies the Ay — condition if
limsupM(Qx) < 00
P (@)

The Orlicz space Ly (T') is reflexive if and only if the N — function M and
its complementary function N both satisfy the Ay — condition [18, p. 113].

Let I'; be the image of the circle {w € C: |w| =, 0 < r < 1} under some
conformal mapping of D onto G and let M be an N — function.

DEFINITION 1.2. If an analytic function f in G satisfies

/Muﬂmnw<m
I,

uniformly in r, it belongs to Smirnov-Orlicz class Ep (G).

If M(x) = M (z,p) := 2P,1 < p < oo, then the Smirnov-Orlicz class
E (G) coincides with the usual Smirnov class E, (G) .

Every function in the class Ejs (G) has [14] the non-tangential boundary
values a.e. on I" and the boundary function belongs to Ly (T'), and hence for
f € Ep (G) we can define the Ejs (G) norm as:

1 sy = N sy -
For ¢ € T we define the point ¢ € " by

sn =1 (p(s)e™), h € [0,2n],
and also the shift T}, f for f € Ly (T) as:
(3) Tnf (<) :=f(sn), sel.

Using relation (1), it can be easily verified that, if T' is Dini-smooth, then
Ly (1) is invariant under the shift T}, f.
We define the modulus of continuity for f € L (T') as:

(4) war (6, f) = sup |f = Tufllp,, §>0,
[n|<o

which satisfies the conditions
WnM (Oa f) = 07
wym (6,f) >0 for 6 >0,
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lim wys (6, f) =0,
6—0

WM((SJf"_g) SwM(é,f)—&-wM(&,g)

for f,g € Em (G).
For f € En (G) we put

Er]y (f7G) = inf”f_anLM(F)
(5) = inf { sup /I(f(C)—pn(d)g(dlldcl s p(giN)<1, 5,
I

where inf is taken over the polynomials p,, of degree at most n.
In this work, we considered some problems of the polynomial approxima-
tion in Smirnov-Orlicz class Ejs (G). Our new results are the following.

THEOREM 1.3. Let G be a finite simply connected domain with the Dini-
smooth boundary T, and let Ep (G) be a reflexive Smirnov-Orlicz space on
G. Then for every f € Ep (G) and any natural number n there exists an
algebraic polynomial py, (-, f)of degree at most n such that

L h

If = pn ('7f)||LM(F) <c WM(Ea

with some constant ¢ independent of n.

In the more general case, namely when I' is a Carleson curve, applying
the same method of summation, but using different modulus of continuity
some direct theorem of approximation theory by polynomials in Smirnov-
Orlicz class Ej (G) is given in [8]. The modulus of continuity wys, used in
this work, is simplier than the modulus of continuity considered in [8].

Similar problems for the spaces L, (I') and E, (G),1 < p < 00, have been
studied in [1, 2, 4, 5, 10, 11, 12, 15]. All these results were proved under
different restrictive conditions on I' = 0G.

Some inverse problems of approximation theory in Smirnov-Orlicz classes
have been investigated by Kokilashvili [14] in the case that I" is Dini-smooth.

Now let K be a bounded continuum with the connected complement
D:=C\K andlet f(z)be an analytic function on K. It is well known that
[20, p. 199] the expansion

(6) [(2)=Y m(z), €K
k=0

with the Faber coefficients
1 t
f (7/}( )) dt

kT o L
T

k=0,1,2,...,
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converges absolutely and uniformly on K, where @ (2), £k =0,1,2,...
the Faber polynomials for K that satisfy the relation

, are

z€ K, |wl>1.

- Vi) 5

b=z e

The detailed information about the Faber polynomials and their approx-
imation properties can be found in the monographs [8, 19, 20] .
Let us introduce the value

k=0

®)  Ro(zf)=f(2)=> ar®i(z)= > axds(2), zeK,
k=0 k=n+1

and put
IF'r:={2€D:|p(2)]=R} and Gg := IntT'g, R > 1.
The following theorem characterizes the maximal convergence property of the

Faber series (6) in the Smirnov-Orlicz space En (GR) .

THEOREM 1.4. If f € Ey (GRr), R > 1, then
¢ M VT
|Rn (Z,f)| S mEn (f7GR) TLIH’I’L, zeK
with a constant ¢ > 0 independent of n and z.

From theorem 1.3 and 1.4, we have the following corollary.

COROLLARY 1.5. Let K be a continuum with connected complement
and let Eyn (Gr) be a reflezive Smirnov-Orlicz class on Gg, R > 1. If
feEyu (GR) , then

c 1
[ — _
|Rn (2, f)] < R (= 1)wM (n,f) vnlnn, z€K,
with ¢ > 0.

Theorem 1.4 in the Smirnov spaces E, (G), p > 1, was proved in [20,
p. 207].

We use ¢, ¢, ¢, ... to denote constants ( which may, in general, differ in
different relations) depending only on numbers that are not important for the
question of interest.

2. AUXILIARY RESULTS

Let I be a rectifiable Jordan curve and f € L; (T') . The functions f* and
f~ defined by

(9) =t (19 Leq,

211 ¢—z
r
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and I
_ 1 S
Fo(z)= 211 g—zd
I

S, ze G,

are analytic in G and G, respectively and f~ (o0) =
Let also

Srf (z0) := lim / &dg, el
e—0 S — 20
I'n{s:|ls—z0|>¢€}
be the Cauchy singular integral of f € Ly (T').

If one of the functions f* or f~ has non-tangential limits a.e. on T', then
Srf (z) exists a.e. on " and also the other one has non-tangential limits a.e. on
I'. Conversely, if St f (z) exist a.e. on I', then both functions f* and f~ have
non-tangential limits a.e. on I'. In both cases, the formulae

(10) F*(2) = 80f () + 55 (2)
) =50 ()~ 3f ()

hold, and hence
f=rr=7

a.e.on I' [9, p. 431].

The linear operator St : f — Srf is called the Cauchy singular operator.

For z € I" and € > 0, let I" (2, €) denote the portion of I which is inside
the open disk of radius € centered at z, i.e. I'(z,¢) :=={t €T : |t —z| <¢€}.
Further, let |I" (z, €)| denote the length of ' (z,€). A rectifiable Jordan curve
I is called a Carleson curve if

1
sup sup — |I' (z,€)| < o0.
e>0 zel' €

THEOREM 2.1 ([13]). Let T' be a rectifiable Jordan curve and let L (T)
be a reflexive Orlicz space on I'. Then the singular operator St is bounded on
LM (F) N i.e.

(1) 190 Fllcey < €31l ey for all £ € Las (T)
for some constant cz > 0, if and only if I is a Carleson curve .

THEOREM 2.2 ([16, p. 67]). For every pair of real valued functions u (z) €
Ly (T), v(2) € Ly (T') the inequality

(12) /u(z)v(z)dz§p(u;M)+p(v;N)
r
holds.
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THEOREM 2.3 ([16, p. 74]). For every pair of real valued functions u (z) €
Ly (T), v(2) € Ly (T') the inequality

(13) / w(2)o (=) dz] < Jull,, o ol
I
holds.

The coefficients of the series in (6) are determined by the formulae

1 O, 1 [fW®)

ag = dt, k=0,1,2,...,

2w ) oRtL() T 2mi tht1
r T

and hence the relation (8) implies that

Ra(ef)= 5 [ 10(0) [ >
T

k=n-+1

dt.

If p, (2) is a polynomial of degree at most n, then

1) Raf)=g- [ {f(w(t))—pn(@b(t))}[ > 2l
T k=n+1

Since

(15) %)=l + BL(), €K,

where Ej, (z) is analytic on the whole domain D and Ej, (00) = 0, we have

= 2 (x) s @] S Er(2)
(16) > R 2 S 2 tht1
k=n+1 k=n-+1 k=n-+1

Hence from (15), taking into account (16), we get

0 k
Raleul) <50 [ IF@@O) =patw @)l 3 It
lt|=R k=n-+1
1 = 1
A o [ @O -pa O] X B @) ol
[{|=R k=n-+1

We shall also use the relations
(18) E; (¢ (w)) = % /TkF (1,w)dr, |lw] >7r > 1,

r
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and

(19) r>1, lw>r>1,

given in [20, p. 63-205], where
Y (7) 1

F (r,w) :w(T)—dJ(w)_T—w’ |7| > 1, |w| > 1.

3. PROOFS OF MAIN RESULTS

PROOF OF THEOREM 1.3. Let f € Ly (I'). Then by (2) we have f €
L, (T"). Since T' is Dini-smooth, we have f o € L; (T) and hence we can
associate a formal series

Z axw* Z %
k=0 =1
with the function fo € Ly (T), i
(20) £ (@ (w)) wZakw’wzm.
k=0 k=1

Let

i )\5’717,) eimﬁ

m=—n

be an even, nonnegative trigonometric polynomial satisfying the conditions

(21) L [k, @do=1,
2
(22) / 0K, (0)do <
n
0

for every natural number n and with some constant ¢4 > 0 (for example, the
Jackson kernel

no 4
T (60) = 3 (sm 5 ) .
n(2n? +1) (sin )

satisfies the above cited conditions, see [6, p. 203-204]).
Consider the integral

(23) I(H,z):—% %9 2 eG.
T
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Using the change of variables ¢ = 1 (eit) , we obtain

1(0,2) = % f (¢ (ei“—"))) %dt,

-7

and taking into account the relations (20) and (7), we can write

z) « Z ar®y (z) e 0,
k=0

Since I (0, z) € Ly ([—m,7]) and K, (0) is of bounded variation, by the gener-
alized Parseval identity [3, p. 225-228], we obtain

/K szQ—Z)\k ar®y (2),

k=0

which together with (23) implies that

f(e
47T2/K L Z/\ Jar®y, (2 zeG.

Hence we see that

Paef) 5= 1o / i [ L=
r

-7

d(, z €@,

is an algebraic polynomial of degree n.
Since the kernel K, () is an even function, we have

P (= f) = ﬁ/m () d9/ [ () + £ (s-0))] fz
0 r

and by (3) and (9), we conclude that

ds
¢ —Z

Paef) = oo / K (6)d0 [ [Tof (6)+ T f 9]

r
_ _/K (@) @)+ (T ) ()] do, e

Now let f € Eyp (G) and 2’ € G. Multiplying both side of the equality

s

1

K,(0)dd=1
2

—T
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by f*(2') we get
fE) =)= % /f+ (z") K, (0)d6 = % /2f+ (z') K, (6) db,
ka J

and hence

f&) =Pz, f)

™

=5 [Ka@ {25 )= (@) )+ (o) ()]}

0

Taking the limit 2’ — 2z € T" along all nontangential paths inside I" and using
(10), we obtain

1

FE=Paed) = 5 [ Ka®)2501 ()4 1 () = S (1) (2) - 5T0f (2)

0

St (Ti-of) (2) — 3 (T ) ()0

= —/K ) [Sr (f =Tof) (2) + Sr (f = T—o)f) (2)] db

—/K (f =Tof)(2)+ (f = T(—o)f) (2)] dO

for almost all z € T.
Taking the supremum over all functions g € Ly (T') with p(g; N) < 1 in
the last relation, we have

17 = Pa G Dl sup/|f Pllg ) |dz

<ol

r

+sup/

|9 (2)] |dz]

/K ) [Sr (f =Tof) (2) + Sr (f — T—a)f) (2)] db

/ Ko (0) [(f = Tof) (2) + (f — T ) (2)] d68| lg ()] 12|
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gsup/{ /K ) (1S (f = Tof) (2)]

4—\Sr f =T af)(2)])do} g ()| |d=

+sup/{ /K 1(F — To) )

+! f =T o) (2)|] do} 19 (2)] |d=|,
and by Fubini’s theorem

Hf - P, ('a f)HLM(F)

< 1 K, (0) {sup/HSr (f=Tof) (2)]

2
0 r

H&U T-0)f) ()1l (2)] |d=]}d0
—/K {mj(fnﬁw

+|(f =T f) (2)]] g (2)] =] }dG

IN

1
2—/ HSF f= Tef)||LM(r)+HSF (f = Ti-0)f) HLM(F}dG
0

™

/ Y17 = Tof gy + 1 = Ticor Ly o]

0
Now applying (11), we get

If =P mww<%/K (16 = ToF gy 1 = Tl oy 0

and recalling the definition (4) of was (4, f), we obtain

T

1= Pa o Pl St%/KﬂwwM@JMG

0

IN

cr wyp(— /K )(nf+1
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Consequently from (21) and (22), we have
1
”f - P, ('7f)||LM(F) <cs wM(Evf)ﬂ
which proves Theorem 1.3. O

PrROOF OF THEOREM 1.4. Let z € I',,; 1 < r < R and p,, (z) be the best
approximating polynomial of degree at most n to the function f € Ey (GRg).
Denoting

1 - i
Lo Ed/uwmwmwwmuginWﬂ

[tl=R

Z Ej, (w (’LU tk+1

1
b= o [ @)~ ]
[t=R k=n+1
by virtue of (17), we see that
(24) R (2, ) < Iy + I,

Using relations (1) and (13), we have

= @ |
L = —_— d
: /u U;waﬁlww”q
o ) > )
< %JU@ o] 32 1 s
< —%w/ﬁ Humm}
“ Zm @ |
pFR k=n+1 [@(g)]k-’_l | ()|| §| 7

where the suprema are taken over all functions g € Ly (I') with p(¢; N) <1
and h € Ly (T) with p (h; M) < 1, respectively. By virtue of (5)

CloE f, GR {r/ (Z ]k
< sup

NS
k= n+1 C)]

_ By f,GR )" .
< sup{r/l n+1 =20 Ih(c)lldcl,p(h,M)Sl}

Ih(C)Ildcl;p(h;M)Sl}
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CllEn (f7 GR) rntl /
- o R+ (R —7r) sup |h(§)||d§|,p(h,M) <1l;,

and by (12)
(25)  sup /|h(<)| |ds|;p(h; M) <13 <14 N (1)mesI'r < ci2,
and therefore

613E£4 (f7 GR) Tn+1
< .
(26) b R R -1

Now, we estimate the integral I5. By (18) we have

5 [ lrwan- 1> 2 [ Er e

[t|=R k=ntl =,
1 1 — 7F
So- | F@®) = W) 5 > o g | [F (mw)lldr] o |dt|
tI=R jrj=r R=H
1 1
<t / O 5 [ || Il .
[t|= |7|="r

Applying Fubini’s theorem

,rnJrl
Bsgrm [FE0N o [ 160 -p @O 2 ]

|T|=r [t|=R
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and changing the variables in the last integral and using (13), we have

Iy

r 1 " (9]
s | 1) %/ 176 = O a4

|7l=r

r

n+1
< o [ |F<r,w>|{||f<<>—pn<<>||LM<rR>x

|7|=r
¢ () .
) H‘P() —¢(2) Ln(TR) } 7]
cq 71
e | P rwlEY (.Gr)

|7|=r
sup /|H<<>||dc|;p<H;N> <19])dr].
R

From this, by repeating the arguments given in (25) and using (19), we con-
clude that

c15 r Tt

Lh<—uv—
> = 7R (R —r)
Now, the inequalities (26), (27) and (24) imply that

c16 T TTEM (f,GR) 72 In r2
2r R 1 (R — ) rd—1 r2-1

(27) E) (f,Gr)

|Rn (Z7f)| <

Consequently, setting z € K and r := 1+ % in this estimate, we obtain the
inequality

B ) < s (=g B (5 G) Vi,

with ¢17 > 0. O
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