Preparation of [C\textsubscript{60}]Fullerene Nanowhisker-gold Nanoparticle Composites and Reduction of 4-Nitrophenol through Catalysis

Regular Paper

Jeong Won Ko1, Jiulong Li2 and Weon Bae Ko1,2*

1 Department of Convergence Science, Graduate School, Sahmyook University, Seoul, South Korea
2 Department of Chemistry, Sahmyook University, Seoul, South Korea
*Corresponding author(s) E-mail: kowb@syu.ac.kr

Received 22 October 2015; Accepted 01 December 2015
DOI: 10.5772/62086

© 2015 Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A gold nanoparticle solution was prepared by adding sodium borohydride (NaBH\textsubscript{4}), trisodium citrate dihydrate (C\textsubscript{6}H\textsubscript{5}Na\textsubscript{3}O\textsubscript{7} \cdot 2H\textsubscript{2}O), cetyltrimethyl ammonium bromide (CTAB, (C\textsubscript{16}H\textsubscript{33}N(CH\textsubscript{3})\textsubscript{3}Br), ascorbic acid (C\textsubscript{6}H\textsubscript{8}O\textsubscript{6}), and potassium tetrachloroaurate(III)(KAuCl\textsubscript{4}) to distilled water and stirring the solution for 15 min. [C\textsubscript{60}]fullerene nanowhisker-gold nanoparticle composites were synthesized using C\textsubscript{60}-saturated toluene, the gold nanoparticle solution, and isopropyl alcohol by liquid-liquid interfacial precipitation (LLIP).

The product of the nanocomposites was characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and solid-state 13C-nuclear magnetic resonance spectroscopy. The catalytic activity of the [C\textsubscript{60}]fullerene nanowhisker-gold nanoparticle composites was confirmed in 4-nitrophenol reduction by UV-vis spectroscopy.

Keywords [C\textsubscript{60}]Fullerene Nanowhisker-gold Nanoparticle Composites, Catalyst, 4-nitrophenol, Reduction

1. Introduction

The best known fullerene is C\textsubscript{60} which consists of carbon bonded into 12 pentagonal and 20 hexagonal rings [1]. Polymerization of [C\textsubscript{60}]fullerene can occur by a cycloadditive reaction, which forms a four-membered ring between adjacent [C\textsubscript{60}]fullerenes [2]. A crystalline fibre of this carbon nanomaterial is called a [C\textsubscript{60}]fullerene nanowhisker.

[C\textsubscript{60}]fullerene nanowhiskers can act as an n-type semiconducting material, and are used in a wide range of applications, including photocatalysis, chemical sensors, solar cells, field-effect transistors, and electronic devices [2,3].

The liquid-liquid interfacial precipitation (LLIP) method relies on diffusion of a poor fullerene solvent, such as isopropyl alcohol, into a saturated toluene solution of fullerenes [4]. [C\textsubscript{60}]fullerene nanowhiskers are synthesized using the LLIP method [4], which has been widely applied [5-12]. The [C\textsubscript{60}]fullerene nanowhiskers show good electrical conductivity [13] and have a large surface area [14, 15].

The growth of [C\textsubscript{60}]fullerene nanowhiskers is affected by temperature, light, ratio of poor solvent to good solvent during LLIP, and concentration of water [16-20].
Fullerene nanowhiskers are composed of C$_{60}$ molecules weakly bonded by van der Waals forces [21,22]. After electron beam irradiation, [C$_{60}$] fullerene nanowhiskers show higher Young’s modulus [24] than pristine C$_{60}$ crystals [22], and stronger thermal stability [23]. When Miyazawa et al. used Raman laser-beam irradiation, [C$_{60}$] fullerene nanowhiskers became polymerized [21,22]. Rao et al. found that the shift of A$_{g}(2)$ peak was a good indicator for [C$_{60}$] fullerene nanowhisker polymerization, as the peak A$_{g}(2)$ pentagonal pinch mode of C$_{60}$ shifted downward, from 1469 cm$^{-1}$ to 1457 cm$^{-1}$ upon photopolymerization [22,25]. Gold nanoparticles have been used for hydrogenation of aromatic nitro compounds because of their higher catalytic efficiency compared to bulk catalysts, which can be attributed to their large surface-to-volume ratio [26]. The dispersion of gold nanoparticles on nanoporous fullerene nanowhiskers is attractive for catalytic applications [27,28]. The reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH$_4$ with gold nanoparticles is a commercially important intermediate for the manufacture of analgesic and antipyretic drugs [29-32]. Examples of the use of 4-nitrophenol in classical reaction tests to evaluate catalytic properties of various metal nanoparticles, or in similar kinetic studies with gold nanoparticles dispersed in other conducting matrices, are given in the following literature [33-36]. The present authors have investigated the characterization of gold nanoparticles incorporating [C$_{60}$] fullerene nanowhiskers and their catalytic activity for 4-nitrophenol reduction in the presence of sodium borohydride (NaBH$_4$), as determined by UV-vis spectrophotometry.

2. Experiment

2.1 Reagents and instruments

Sodium borohydride (NaBH$_4$) was purchased from Kanto Chemical Co., Inc., and trisodium citrate dihydrate (C$_3$H$_6$Na$_3$O$_7$·2H$_2$O), cetyltrimethyl ammonium bromide ((C$_{16}$H$_{33}$N)(CH$_3$)$_3$Br), and toluene were obtained from Samchun Chemicals. Ascorbic acid (C$_6$H$_8$O$_6$) and potassium tetrachloroaurate (III) n-hydrate (KAuCl$_3$, nH$_2$O) were supplied by Sigma-Aldrich. [C$_{60}$] fullerene was supplied by Tokyo Chemical Industry Co., Ltd.

X-ray diffraction (XRD; Bruker, D8 Advance) analysis was used to examine the structure of the nanocomposites at 40 kV and 40 mA. Imaging of the sample surface was performed by scanning electron microscopy (SEM; JEOL Ltd., JSM-6510) at an accelerating voltage of 0.5 to 30 kV. The particle size and morphology of the sample were identified by transmission electron microscopy (TEM; AP Tech, Tecnai G2 F30 S-Twin) at an accelerating voltage of 200 kV. Solid-state 13C-CP/MAS nuclear magnetic resonance spectroscopy (Agilent Technologies Korea, DD2 700) was used for observing the chemical shift of carbon in the [C$_{60}$] fullerene nanowhisker-gold nanoparticle composites. Raman spectroscopy (Thermo Fisher Scientific, DXR Raman Microscope) was used for observing the polymerization of the composites, and UV-vis spectrophotometry (Shimazu UV-1691 PC) was used to characterize their catalytic activity.

2.2 Synthesis of [C$_{60}$] fullerene nanowhisker-gold nanoparticle composites

2.2.1 Synthesis of gold nanoparticles

A gold nanoparticle seed solution was prepared by dissolving 2.5x10$^{-4}$ M potassium tetrachloroaurate (III) (KAuCl$_3$), 2.5x10$^{-4}$ M trisodium citrate dihydrate (C$_3$H$_6$Na$_3$O$_7$·2H$_2$O), and 6 ml of 0.1M sodium borohydride (NaBH$_4$) in 5 ml of distilled water. A gold nanoparticle growth solution was prepared with 2.5x10$^{-4}$ M KAuCl$_3$ and 2.5x10$^{-4}$ M cetyltrimethyl ammonium bromide ((C$_{16}$H$_{33}$N)(CH$_3$)$_3$Br) in 20 ml of distilled water. Gold nanoparticles were prepared by mixing 5 ml of seeding solution with 15 ml of growth solution, and then adding 0.1 ml of ascorbic acid (C$_6$H$_8$O$_6$) to the solution and stirring for 15 min.

2.2.2 Synthesis of [C$_{60}$] fullerene nanowhisker-gold nanoparticle composites

40 mg of [C$_{60}$] fullerene and 40 ml of toluene were added into a 50 ml Erlenmeyer flask, and then stirred for 15 min and ultrasonicated for 45 min. [C$_{60}$] fullerene solution was dissolved in toluene and the solution was filtered through filter paper. The [C$_{60}$] fullerene solution and isopropyl alcohol were placed in the refrigerator for 20 min.

2 ml of [C$_{60}$] fullerene solution, 1 ml of gold nanoparticle solution, and 15 ml of isopropyl alcohol were placed in a 20 ml vial. The mixture solution was ultrasonicated for 10 min, and refrigerated for 24 h. The cold mixed solution was filtered through filter paper, and then dried to the solid state in an oven at 100°C for 5 h. The amount of gold nanoparticles loaded on the fullerene nanowhiskers was 0.25 mM.

2.2.3 Characterization of [C$_{60}$] fullerene nanowhisker-gold nanoparticle composites

The XRD pattern of the [C$_{60}$] fullerene nanowhisker-gold nanoparticle composites was obtained from powder X-ray diffraction with Cu Kα radiation (λ=1.54178 Å). The morphological shape of the nanocomposites was observed by SEM, and TEM was used to observe the specimen size. The composites were characterized using Raman spectroscopy, and analysed by solid-state 13C-CP/MAS nuclear magnetic resonance spectroscopy.

2.2.4 Catalytic activity evaluation through 4-nitrophenol reduction

The absorbance peak in the UV-vis spectrum of 1.5 mg (1.1 mM) 4-nitrophenol at 400 nm was monitored, as it ap-
peared in the presence of 5 mg (13.2 mM) NaBH₄ dissolved in 10 ml distilled water. 1 mg [C₆₀]fullerene nanowhisker-gold nanoparticle composites was used as the catalyst for the 4-nitrophenol reduction. The absorbance was monitored at 2 min intervals to confirm the 4-nitrophenol reduction.

3. Results and Discussion

3.1 Characterization of [C₆₀]fullerene nanowhisker-gold nanoparticle composites

The crystal structure and crystallite size of the [C₆₀]fullerene nanowhisker-gold nanoparticle composites were examined by XRD. Figure 1 shows the XRD patterns of the [C₆₀]fullerene nanowhisker-gold nanoparticle composites. Peaks at 2θ = 10.82°, 17.68°, 20.72°, 27.53°, 30.13°, and 32.14° were due to the [C₆₀]fullerene nanowhiskers, and were assigned to the (111), (220), (222), (420), (422), and (333) planes, respectively. Peaks at 2θ = 38.20°, 44.33°, 64.61°, and 77.63° were due to the gold nanoparticles, and were assigned to the (111), (200), (220), and (311) planes, respectively. The crystallite size of the gold nanoparticles was calculated using the Scherrer equation:

\[D = \lambda K / \beta \cos \theta \]

where K is a shape factor taken as 0.9, \(\lambda \) is the wavelength of powder X-ray diffraction with Cu Kα radiation (\(\lambda = 1.54178 \) Å), \(\beta \) is the full width at half maximum (FWHM), and 2θ is the angle between the incident and scattered X-rays. The Scherrer equation was used to calculate the crystallite size of the gold nanoparticles, as shown in Table 1. The mean crystallite size of the gold nanoparticles was 22.74 nm. Figure 2 shows the SEM image of the [C₆₀]fullerene nanowhisker-gold nanoparticle composites. The gold nanoparticles agglomerated on the [C₆₀]fullerene nanowhiskers, which are needle-like fibres. The many tiny crystals shown in Figure 2 are gold nanoparticles. The amount of gold nanoparticles loaded on the fullerene nanowhiskers was 0.25 mM. Figure 3 shows the Raman spectra of the nanocomposites. Raman shifts were observed for the peak of the [C₆₀]fullerene nanowhisker-gold nanoparticle composites, which showed squashing mode \(H_g(1) \) at 271 cm\(^{-1}\), breathing mode \(A_g(1) \) at 494 cm\(^{-1}\), and pentagonal pinch mode \(A_p(2) \) at 1460 cm\(^{-1}\).
Table 1. Crystallite size of gold nanoparticles, estimated using the Scherrer equation

<table>
<thead>
<tr>
<th></th>
<th>Peak</th>
<th>2-Theta</th>
<th>FWHM(B)</th>
<th>Crystallite size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>38.20</td>
<td>0.3545</td>
<td>24.87 nm</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>44.33</td>
<td>0.4923</td>
<td>18.20 nm</td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>64.61</td>
<td>0.3545</td>
<td>27.87 nm</td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td>77.63</td>
<td>0.5317</td>
<td>20.02 nm</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>22.74 nm</td>
<td></td>
</tr>
</tbody>
</table>

Jeong Won Ko et al.

3.2 Catalytic and kinetic activity of [C₆₀]fullerene nanowhisker-gold nanoparticle composites for 4-nitrophenol reduction

Figure 6 shows the catalytic activity of the [C₆₀]fullerene nanowhisker-gold nanoparticle composites for the 4-nitrophenol reduction using NaBH₄. The UV-vis spectrum shows that the peak at 400 nm, related to the formation of 4-nitrophenolate ions under alkaline conditions after the addition of NaBH₄, was diminished. A new peak at 300 nm simultaneously appeared due to 4-aminophenol production in the presence of the [C₆₀]fullerene nanowhisker-gold nanoparticle composites. In Figure 6(a), without the composites, the peak due to the 4-nitrophenolate ion remained unaltered for 40 min, showing the inability of NaBH₄ to reduce the 4-nitrophenolate ion to 4-aminophenol, even though it is known to be a strong reducing agent. Therefore, the [C₆₀]fullerene nanowhisker-gold nanoparticle composites operated as a catalyst for the 4-nitrophenol, as shown in Figure 6(b). Figure 7 shows the kinetic activity in the reduction of 4-nitrophenol using the composites as a catalyst. In previous studies, the Langmuir-Hinshelwood model has been applied to study the kinetics of 4-nitrophenol reduction [37-40]. The kinetic equation can be written as follows: ln(C/C₀) = -kt, where C₀ is the initial concentration, C is the concentration at time t, and k is the rate constant. The reduction of 4-nitrophenol obeyed a pseudo-first-order rate law. The [C₆₀]fullerene nanowhisker-gold nanoparticle composites, as compared to the other system, exhibited similar catalytic efficiency [33,35].
Figure 5. Solid-state 13C-CP/MAS NMR spectrum of [C$_{60}$]fullerene nanowhisker-gold nanoparticle composites.

Figure 6. UV-vis spectra of 4-nitrophenol reduction with NaBH$_4$ (a) in the absence of and (b) in the presence of [C$_{60}$]fullerene nanowhisker-gold nanoparticle composites.
4. Conclusions

[C₆₀]fullerene nanowhisker-gold nanoparticle composites were synthesized from gold nanoparticle solution, [C₆₀]fullerene-saturated toluene, and isopropyl alcohol solution, using the LLIP method. The composites were characterized by XRD, Raman spectroscopy, SEM, TEM, and solid-state ¹³C-CP/MAS NMR spectroscopy. The reduction of 4-nitrophenol when applied with NaBH₄ resulted in good catalytic activity of the composites using UV-vis spectroscopy. The catalytic activity of the 4-nitrophenol reduction with the [C₆₀]fullerene nanowhisker-gold nanoparticle composites showed pseudo-first-order reaction kinetics.

5. Acknowledgements

This study was supported by research funding from Sahmyook University, South Korea.

6. References

morphology of crystalline C$_{60}$. Journal of Nano-
science and Nanotechnology 12(8): 6380-6384.

onal fullerene (C$_{60}$) nanosheets at liquid-liquid
interface. Journal of the American Chemical Society
129(45): 13816-13817.

Obayashi A, Kuwabara M (2003) Structural charac-
terization of C$_{60}$ nanowhiskers formed by liquid/
liquid interfacial precipitation method. Surface and
Interface Analysis 35(1): 117-120.

Electrochemical characterization of catalytic activities of C$_{60}$ nanowhiskers to oxygen in aqueous
solution. Fullerenes, Nanotubes and Carbon
Nanostructures 23(6): 509-512.

rous fullerene nanowhiskers. Chemistry of Materia-
ls 19(10): 2398-2400.

ratio and water on the growth of C$_{60}$ nanowhiskers.

nanotubes by liquid–liquid interfacial precipitation
method: Influence of solvent ratio, growth tempera-
ture, and light illumination. Diamond and Related
Materials 17(4-5): 529-534.

[18] Tachibana M, Kobayashi K, Uchida T, Kojima K,
Tanimura M, Miyazawa K (2003) Photo-assisted
growth and polymerization of C$_{60}$ 'nano'whiskers.

the stability of C$_{60}$ fullerene nanowhiskers. Journal

ment of C$_{60}$ fullerene nanowhiskers. Nano 3(5): 355.

characterization of fullerene nanowhiskers by liquid-liquid interfacial precipitation: influence of C$_{60}$ solubility. Molecules 17: 3858-3865.

zation of C$_{60}$ nanowhiskers. Journal of Nanotech-
nology 2012: 101243-101248.

Structural investigation of heat-treated fullerene
nanotubes and nanowiskers. Diamond and Related

Buckling of C$_{60}$ nanowhiskers. Applied Physics
Letters 89(7): 017912.

D S (1993) Photoinduced polymerization of solid
C$_{60}$ films. Science 259(5097): 955-957.

of gold nanoparticles using pluronic® F127NF
under microwave irradiation and catalytic effects.
Journal of Nanoscience and Nanotechnology 11(1):
734-737.

Yan F (2012) Polyppyrole nanotube-supported gold
nanoparticles: An efficient electrocatalyst for
oxygen reduction and catalytic reduction of 4-
nitrophenol. Applied Catalysis A: General 413-414(31):
230-237.

[29] Li H, Jo J K, Zhang L, Ha C S, Suh H and Kim I L
(2010) A General and Efficient Route to Fabricate
Carbon Nanotube-Metal Nanoparticles and Carbon
Nanotube-Inorganic Oxides Hybrids. Advanced

Synthesis, characterization and application of well-
defined environmentally responsive polymer brushes on the surface of colloidal particles. Polymer

[31] Jana S, Ghosh S K, Nath S, Pande S, Praharaj S,
of silver nanoshell-coated cationic polystyrene
beads: A solid phase catalyst for the reduction of 4-
nitrophenol. Applied Catalysis A: General 313(1):
41-48.

[32] Nemeth T, Jankovics P, Nemeth-palotas J, Koszegi-
Szalai H (2008) Determination of paracetamol and
its main impurity 4-aminophenol in analgesic
preparations by micellar electrokinetic chromatog-
raphy. Journal of Pharmaceutical and Biomedical
Analysis 47: 746-749.

synthesis of Ag nanoparticles on tea polyphenols-
modified graphene and their catalytic reduction
activity of 4-nitrophenol. Colloids and Surfaces A:

[34] Xia J, He G, Zhang L, Sun X, Wang X (2016) Hydro-
genation of nitrophenols catalyzed by carbon black-
supported nickel nanoparticles under mild
conditions. Applied Catalysis B: Environmental
180: 408-415.

Basic concepts and recent advances in nitrophenol
reduction by gold-and other transition metal
nanoparticles. Coordination Chemistry Reviews

[36] Premkumar T, Lee K, Geckeler K (2011) Shape-
tailoring and catalytic function of anisotropic gold

[37] Feng J, Su L, Ma Y, Ren C, Guo Q, Chen X (2013)
CuFe$_2$O$_4$ magnetic nanoparticles: A simple and

