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1. Introduction

One of the fundamental problems of contemporary differential geometry of surfaces
and hypersurfaces in standard model spaces such as the Euclidean space R™ and the
pseudo-Euclidean space R} is the investigation of the basic invariants characterizing
the surfaces. Our aim is to study and classify various important classes of surfaces
in the four-dimensional Minkowski space R} characterized by conditions on their
invariants.

Surfaces with codimension two in the Euclidean space R* have been studied in
[14] on the base of invariant functions and invariant figures in the tangent or normal
space of the surface. Further, differential geometry of surfaces in the Euclidean space
R* or R” was developed on the basis of second order invariants and the corresponding
curvature ellipses by several authors (see e.g. [1, 19, 21]).

An invariant theory of spacelike surfaces in R was developed by the present
authors in [8]. We introduced an invariant linear map v of Weingarten type in the
tangent plane at any point of the surface, which generates two invariant functions

1
k =det~ and » = —5 try. On the basis of the map v we introduced principal lines

and a geometrically determined moving frame field at each point of the surface.
Writing derivative formulas of Frenet type for this frame field, we obtained eight
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invariant functions 71, V2, V1, V2, A, 4, 81,82 and proved a fundamental theorem
of Bonnet type, stating that under some natural conditions these eight invariants
determine the surface up to a rigid motion in Rj.

The basic geometric classes of surfaces in R} are characterized by conditions
on these invariant functions. For example, surfaces with flat normal connection are
characterized by the condition 1 = v5, minimal surfaces are described by v1+v5 = 0,
Chen surfaces are characterized by A = 0, and surfaces with the parallel normal
bundle are characterized by the condition 8; = 82 = 0.

In [7], we constructed special two-dimensional surfaces in the Euclidean 4-space
R%, which are one-parameter systems of meridians of the rotational hypersurface
and called these surfaces meridian surfaces. We classified meridian surfaces with
constant Gauss curvature, constant mean curvature, and constant invariant k [7].

Similarly to the Euclidean case, in [9], we constructed two-dimensional spacelike
surfaces in the Minkowski 4-space R} which are one-parameter systems of meridians
of the rotational hypersurface with a timelike or a spacelike axis. We called these
surfaces meridian surfaces of elliptic type and meridian surfaces of hyperbolic type,
respectively. Geometric construction of meridian surfaces is different from construc-
tion of standard rotational surfaces with a two-dimensional axis. Hence, the class of
meridian surfaces is a new source of examples of two-dimensional surfaces in R}. In
[9], we found all marginally trapped meridian surfaces of elliptic or hyperbolic type.

In [10], we continued with the study of meridian surfaces in R} considering a ro-
tational hypersurface with a lightlike axis and constructed two-dimensional surfaces
which are one-parameter systems of meridians of the rotational hypersurface. We
called these surfaces meridian surfaces of parabolic type. We calculated their basic
invariants and found all marginally trapped meridian surfaces of parabolic type.

In the present paper, we consider meridian surfaces of elliptic or hyperbolic type
in R} and calculate the invariants v1, ¥a, v1, V2, A, i, 81, B2 of these surfaces. Using
the invariants we describe and classify completely meridian surfaces of elliptic or hy-
perbolic type with constant Gauss curvature (Theorem 1), constant mean curvature
(Theorem 2), and constant invariant k& (Theorem 3). In Theorem 4 we classify Chen
meridian surfaces and in Theorem 5 we give the classification of meridian surfaces
with the parallel normal bundle.

2. Preliminaries

Let R} be the four-dimensional Minkowski space endowed with the metric (,) of
signature (3,1) and let Oejesezey be a fixed orthonormal coordinate system, i.e.,
{e1,e1) = (e2,e2) = (e3,e3) = 1, (eq,e4) = —1. A surface M? : z = z(u,v), (u,v) €
D (D C R?) in R} is said to be spacelike if {,) induces a Riemannian metric g on M?.
Thus at each point p of a spacelike surface M? we have the following decomposition:

R} = T,M? & N, M?

with the property that the restriction of the metric (,) onto the tangent space T}, M?
is of signature (2,0), and the restriction of the metric (,) onto the normal space
N,M? is of signature (1,1).
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Denote by V/ and V the Levi Civita connections on R} and M?2, respectively.
Let = and y be vector fields tangent to M? and let £ be a normal vector field. The
formulas of Gauss and Weingarten give the decompositions of vector fields V.,y and
V'’ ¢ into tangent and normal components:

Viy =Vay+o(z,y);
V;f = —Ag:t + D&,

which define the second fundamental tensor o, the normal connection D and the
shape operator A¢ with respect to £. The mean curvature vector field H of M? is

defined as H = 3 tr o. Basic facts and definitions concerning the theory of spacelike

and timelike surfaces in Lorentz-Minkowski space can be found, for example, in [18].

Let M2 : 2z = z(u,v), (u,v) € D (D C R?) be a local parametrization on a
spacelike surface in Rf. The tangent space at an arbitrary point p = z(u,v) of M? is
T,M? = span{zy, 2, }, where (z,, 24) > 0, {2y, z,) > 0. We use standard denotations
E(u,v) = (zu, zu), Fu,v) = (24, 2,), G(u,v) = (24, 2,) for coeflicients of the first
fundamental form and denote W = v EG — F?. Let {nj,n2} be a normal frame
field of M? such that (ny,n1) = 1, (na,n2) = —1, and the quadruple {2, z,,n1,n2}
is positively oriented in R}. The coefficients of the second fundamental form IT of
the surface M? are given by the following functions

I 2 0%1 0%2 . 1 0%1 0%2 N = 2 0%2 0%2
W C%l C?z 7 W C%l ng 7 W C?z ng 7
where
0%1 = <Zuua”1>§ 0%2 = <Zuva”1>§ C%Q = <Zvvvn1>§
C%l = <Zuu=n2>? 0%2 = <Zuvan2>§ 032 = <Zvv7n2>'

Note that the second fundamental form 17 is well defined and invariant up to the
orientation of the tangent space. It is invariant up to the orientation of the normal
space, as well. The second fundamental form I7 is globally defined on an oriented
surface.

The condition L = M = N = 0 characterizes points at which the space {o(x,y) :
z,y € T,M?} is one-dimensional. We call such points flat points of the surface.
These points are analogous to flat points in the theory of surfaces in R? and R*
[7]. In [8], we gave a local geometric description of spacelike surfaces consisting of
flat points proving that any spacelike surface consisting of flat points whose mean
curvature vector at any point is a non-zero spacelike vector or timelike vector either
lies in a hyperplane of R} or is part of a developable ruled surface in R{. Furthermore
we consider surfaces free of flat points, i.e., (L, M, N) # (0,0,0).

Using functions L, M, N and E, F, G in [8] we introduced a linear map ~ of
Weingarten type in the tangent space at any point of M?2. The map ~ is invariant
with respect to changes of parameters on M? as well as motions in R}. It generates
two invariant functions

LN — M? . EN+GL —-2FM

k= — =
EG - F?’ 2(EG — F?)
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It turns out that the invariant s is the curvature of the normal connection of the
surface (see [8]). As in the theory of surfaces in R? and R* the invariant k divides
the points of M? into the following types: elliptic (k > 0), parabolic (k = 0), and
hyperbolic (k < 0).

The second fundamental form /7 determines conjugate, asymptotic, and principal
tangents at a point p of M? in a standard way. A line ¢ : u = u(q), v = v(q); q €
J C R on M? is said to be an asymptotic line, or a principal line if its tangent at
any point is asymptotic, or principal. The surface M? is parameterized by principal
lines if and only if FF =0, M =0.

Spacelike surfaces in Rf whose normal mean curvature vector is lightlike at each
point are called marginally trapped. An invariant theory of such surfaces was de-
veloped in [9]. Recently, the lightlike geometry of marginally trapped surfaces in R}
was treated in [13].

Considering spacelike surfaces in R} whose mean curvature vector at any point
is a non-zero spacelike vector or timelike vector, on the basis of the principal lines
we introduced a geometrically determined orthonormal frame field {x,y,b,1} at each
point of such surface [8]. The tangent vector fields x and y are collinear with the
principal directions, and the normal vector field b is collinear with the mean curvature
vector field H. Writing derivative formulas of Frenet type for this frame field, we
obtained eight invariant functions 1, v2, v1, v2, A, i, 51, B2, which determine the
surface up to a rigid motion in R{.

The invariants v1, v2, v1, V2, A, i, 81, and By are determined by the geometric
frame field {z,y,b,1} as follows:

v = <V/ Z, b>7 V2 = <v;yv b>a A= (V;y, b>7 w= (V;y, l>a

x

n=(Viz,y),  ve=(Vyyr), Bi=(Vidbl),  Ba=(VybI). (1)

The invariants k, s, and the Gauss curvature K of M? are expressed by the
functions vy, vo, A, u as follows:

k= —4vy v i, »x= (11 — )y, K=¢c(1hv —)\2+u2),
where e = sign(H, H). The norm ||H|| of the mean curvature vector is expressed as

lv1 +va| V2 —k
2 2[p

I1H] =

If M? is a spacelike surface whose mean curvature vector at any point is a non-zero
spacelike vector or timelike vector, then M? is minimal if and only if vy + 15 = 0.

The geometric meaning of the invariant A is connected with the notion of Chen
submanifolds. Let M be an n-dimensional submanifold of an (n 4+ m)-dimensional
Riemannian manifold M and let ¢ be a normal vector field of M. B.-Y. Chen [4]
defined the allied vector field a(§) of £ by the formula

@) = LIS i, a)e
k=2
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£

where {£; = m, €a,...,&n} is an orthonormal base of the normal space of M, and

A; = Ag,, i =1,...,m is the shape operator with respect to &. The allied vector
field a(H) of the mean curvature vector field H is called the allied mean curvature
vector field of M in M. B.-Y. Chen defined .A-submanifolds to be those submanifolds
of M for which a(H) vanishes identically [4]. In [11, 12] A-submanifolds are called
Chen submanifolds. 1t is easy to see that minimal submanifolds, pseudo-umbilical
submanifolds and hypersurfaces are Chen submanifolds. These Chen submanifolds
are said to be trivial Chen submanifolds. In [8], we showed that if M? is a spacelike
surface in R} with a spacelike or a timelike mean curvature vector field, then the
allied mean curvature vector field of M? is

Hence, if M? is free of minimal points, then a(H) = 0 if and only if A = 0. This
gives the geometric meaning of the invariant A: M? is a non-trivial Chen surface if
and only if the invariant A is zero.

Now we shall discuss the geometric meaning of invariants 51 and fs. It follows
from (1) that

Vib=—viz—Ay—pil; Vil=—py—pP1b;
Vy,b==Az -1y —Bal; V,l=—pz—pB20.

Hence, 1 = B2 = 0 if and only if D,b = D,b =0 (or equivalently, D,l = D,l = 0).

A normal vector field £ is said to be parallel in the normal bundle (or simply
parallel) [5] if D& = 0 holds identically for any tangent vector field x. Hence,
invariants 81 and (B2 are identically zero if and only if geometric normal vector fields
b and [ are parallel in the normal bundle.

Surfaces admitting a geometric normal frame field {b, [} of parallel normal vector
fields, are called surfaces with the parallel normal bundle. They are characterized by
the condition 8, = B2 = 0. Note that if M? is a surface free of minimal points with
a parallel mean curvature vector field (i.e., DH = 0), then M? is a surface with the
parallel normal bundle, but the converse is not true in general. It is true only in the
case ||H|| = const.

3. Invariants of meridian surfaces of elliptic or hyperbolic type

In [7], we constructed a family of surfaces lying on a standard rotational hypersur-
face in the four-dimensional Euclidean space R*. These surfaces are one-parameter
systems of meridians of the rotational hypersurface, that is why we called them
meridian surfaces. In [9], we used the idea from the Euclidean case to construct
special families of two-dimensional spacelike surfaces lying on rotational hypersur-
faces in R} with a timelike or a spacelike axis. The construction was as follows.
Let f = f(u), g = g(u) be smooth functions defined in an interval I C R, such
that f2(u) — ¢*(u) > 0, u € I. We assume that f(u) > 0, u € I. The standard
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rotational hypersurface M’ in R} obtained by the rotation of the meridian curve
m:u — (f(u),g(u)) about the Oey-axis is parameterized as follows:

M’ Z(u,w' ,w?) = f(u) (cosw' cosw?ey + cosw' sinw?es + sinw'es) + g(u)es.

The rotational hypersurface M’ is a two-parameter system of meridians. Let w! =
wh(v), w? = w?(v), v € J, J C R. We consider the two-dimensional surface M/,
lying on M’ constructed in the following way:

M, z(u,v) = Z(u,wt (v), w? (v), uel, vel

M, is a one-parameter system of meridians of M’. We call M/, a meridian surface
of elliptic type.

If we denote I(w', w?) = cosw
surface M/ is parameterized by

1 1

cosw? ey + cosw! sinw? es + sinw! e3, then the

ML z(u,v) = fu)l(v) +g(u)es, wel, veld (2)

Note that I(w!,w?) is a unit position vector of the 2-dimensional sphere S?(1)
lying in the Euclidean space R® = span{e, e2, 3} and centered at the origin O.

In a similar way, we consider meridian surfaces lying on the rotational hyper-
surface in R} with a spacelike axis. Let f = f(u), g = g(u) be smooth functions
defined in an interval I C R such that f2(u) + ¢*(u) > 0, f(u) > 0, u € I. The
rotational hypersurface M” in R} obtained by the rotation of the meridian curve
m:u — (f(u),g(u)) about the Oe;-axis is parameterized as follows:

M Z(u,w', w?) = g(u)er+f(u) (coshw' cosw?es + coshw' sinw?es + sinhw'ey) .

If w! = w!(v), w? = w?(v), v € J, J C R, we construct a surface M/, in R} in the
following way:

ML z(uyv) = Z(u,wh (v), w? (v), uel, vel

M is a one-parameter system of meridians of M”. We call M!, a meridian surface
of hyperbolic type.

If we denote l(wl7 w2) = cosh w! cos w? ey + cosh w! sin w? e + sinh w! ey, then
the surface M is given by

M z(uyv) = fu)l(v) +g(u)er, wel, vel, (3)

I(w!, w?) being the unit position vector of the de Sitter space S7(1) in the Minkowski
space R} = span{es, e3,¢e4}, i.e. S2(1) ={V € R} : (V,V) =1}.

In [9], we found all marginally trapped meridian surfaces of elliptic or hyper-
bolic type. In the present section, we shall find geometric invariant functions
Y1, Y2, V1, V2, A\, i, 01, B2 of meridian surfaces of elliptic or hyperbolic type.

Elliptic case:
First, we consider the surface M/, parameterized by (2). We assume that the
smooth curve ¢ : [ = I(v) = l(w!(v),w?(v)), v € J on S%(1) is parameterized by the
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arc-length, i.e., (I'(v),I'(v)) = 1. Let ¢t(v) = I'(v) be the tangent vector field of c.
Since (t(v),t(v)) =1, {{(v),l(v)) = 1, and (t(v),l(v)) = 0, there exists a unique (up
to a sign) vector field n(v), such that {i(v),¢(v),n(v)} is an orthonormal frame field

in R®. With respect to this frame field, we have the following Frenet formulas of ¢
on S2(1):

; (4)

where x(v) = (t'(v),n(v)) is the spherical curvature of c.
Without loss of generality, we assume that f2(u)— ¢*(u) = 1. The tangent space
of M/ is spanned by the vector fields:

zu=fl4+ges  zo=ft,

so the coefficients of the first fundamental form of M/ are E = 1; F = 0; G =
f?(u) > 0. Hence, the first fundamental form is positive definite, i.e., M/, is a

spacelike surface.
z
Denote X = z,, Y = =X =t and consider the following orthonormal normal

f
frame field: .
ny = n(v); ny = g(u)l(v) + f(u)eq.
Thus we obtain a frame field {X, Y, n1, na} of M/, such that (n1,n1) =1, {(na,ng) =
—1, <n1,n2> =0.
Taking into account (4) we get the following derivative formulas:

Vi X = Kom, N23 V'¢ni = 0;
VY =0; yn = Ty,
f
VX = ;y; "Ny = o X (5)
v'yyz—fx o+ g Vine = gy,
f f f f

where k,, denotes the curvature of the meridian curve m, i.e., fm,(u) = f(u)j(u) —
g(u) f(u).
The invariants k, s, and the Gauss curvature K are given by the following

formulas [9]:
AL ON
T Rw

The equality > = 0 implies the following statement.

Q)

»x = 0; =——"=

fu)

Proposition 1. The meridian surface of elliptic type M., defined by (2) is a surface
with flat normal connection.
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We distinguish the following three cases:

L. x(v) = 0, i.e., the curve c is a great circle on S?(1). In this case, n; = const,
and M/ is a planar surface lying in the constant 3-dimensional space spanned by
{Xa Ya n?}'

II. K (u) = 0, i.e., the meridian curve m is part of a straight line. In such case,
k=3=K =0, and M/, is a developable ruled surface.

L. Ky (u) £(v) # 0, i.e., ¢ is not a great circle on S%(1) and m is not a straight
line.

In the first two cases the surface M/, consists of flat points. So, we consider the
third (general) case, i.e., we assume that k,, # 0 and x # 0.

It follows from (5) that the mean curvature vector field H of M/, is expressed
as

H = %nl + % no.
Using that ¢2(u) = f2(u) — 1 and K, (u) = L, we get
f2u) =1

©
—1
e AT b il

ATV

Since k # 0, the surface M/ is non-minimal, i.e., H # 0. The case M/ is a
marginally trapped surface, i.e., H # 0 and (H, H) = 0 was described in [9]. So,
here we consider the case (H, H) # 0.

Note that the orthonormal frame field {X,Y,n1,na} of M/, is not the geometric
frame field defined in Section 2. The principal tangents of M!  are

(6)

Lo Xty —X+Y
NP

In the case (H, H) > 0, i.e., k2(f2 —1) — (ff 4+ f2 —1)? > 0, the geometric normal
frame field {b,1} is given by

b= 1 (“\/f.2—1nl+(ff'+f2—1)n2);

VR = 1) = (Ff + 72— 12

l= 1 ((ff—l—fQ—l)nl—l—/m/fQ—an).

VR = 1) = (FF + 72— 1)

In this case, the normal vector fields b and [ satisfy (b,b) =1, (b,1) =0, (I,1) = —1.
In the case (H, H) <0, i.e., k*(f2—1)—(ff+f*—1)* <0, the geometric normal
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frame field {b,1} is given by

b= — ! <m/f2—1n1+(ff+f2—1)n2);

VUF+f -2 =22 -1

l= 1 ((ff+f2—1)n1+m/f2—1n2).

VUF+72 =12 —s2(j2 - 1)

In this case, we have (b,b) = —1, (b,1) =0, (I,1) = 1.
Applying formulas (1) to the geometric frame field {z,y,b,1} of M/ and deriva-
tive formulas (5), we obtain the following invariants of M :

71 =72 = —i;
NeT;
== — (P o)~ (1 + - 1)
2fr/f2 -1
. RPE-DsPPo(Por
20/ F2 — 1\ a2 (2 — 1) = (FF + 2 - 1)?)
_ wf .
= - — ’
Velr2(f2 = 1) = (FF + 2 - 1)2)
e (7)
5 (2 - 1)

V2e(r2(f2 = 1) = (ff + 2 = 1)?)

d [ ff+f*=1 d,  ff+f2-1)\
N\ T 7 —%(H)% ;
fr-1 A fA=1

v (f2 _ 1).. v
VB (1) - (7 + - 1)

WP B FED Sk ) BN S et
du /f-2_1 dv NP ’

where ¢ = sign(H, H).

P2 =

Hyperbolic case:

Let M/ be the surface parameterized by (3). Assume that the curve ¢ : [ =
l(v) = l(w'(v),w?(v)),v € J on S?(1) is parameterized by the arc-length, i.e.,
(U'(v),I'(v)) = 1. Similarly to the previous case, we consider an orthonormal frame
field {I(v),t(v),n(v)} in R}, such that t(v) = I'(v) and (n(v),n(v)) = —1. With
respect to this frame field, we have the following decompositions of vector fields
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U=t
t/=—kn-—I; (8)

n = —kt,

which can be considered as Frenet formulas of ¢ on S7(1). The function x(v) =
(t'(v),n(v)) is the spherical curvature of ¢ on S%(1).
2y

We assume that f2(u)+¢%(u) = 1. Denote X =z, = fl+ge;, Y = 7 =t and

consider the orthonormal normal frame field defined by:
ni = §(u)l(v) = f(u)er; ng =n(v).

Thus we obtain a frame field {X, Y, n1,n2} of M/ . such that (n1,n1) = 1, (ng, na) =
—1, <7’L1,7’LQ> = O
Taking into account (8) we get the following derivative formulas:

X = — K N1 Visni = km X;
VY =0; Ving = % Y;
VX = §Y; V'yng = 0; (9)
V’YY:—fX L e Ty,
f f f f

where k., is the curvature of the meridian curve m.

The invariants k, s, and the Gauss curvature K of the meridian surface M/ are
expressed by the curvatures £, (u), £(v), and the function f(u) in the same way as
the invariants of the meridian surface of elliptic type, i.e.,

The following statement holds since s = 0.

Proposition 2. The meridian surface of hyperbolic type M!  defined by (3), is a
surface with flat normal connection.

Again we have the following three cases:

I. k(v) = 0. In this case, ng = const, and M/ is a planar surface lying in the
constant 3-dimensional space spanned by {X,Y,n,}.

II. Kp(u) = 0. In such case, k = » = K = 0, and M/, is a developable ruled
surface.

I K (u) k(v) # 0.
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In the first two cases, M/ is a surface consisting of flat points. So, we consider the
third (general) case, i.e., we assume that k,, # 0 and x # 0.
Using (9) we get that the mean curvature vector field H of M/ is

_ g+fl€m K
H__T 1—ﬁn2.
Having in mind 200 = 1 — f2 R () .
ving in mind that §°(u) =1 — f*(u) and Ky, (u) = . , we obtain
1— f3(u)
H=7ff+f2_1n1—23n2. (10)
2f1/1 — f2 f

The surface M!", is non-minimal since k # 0. The case M/ is marginally trapped
was described in [9]. So, we consider the case (H, H) # 0, i.e., (ff + f2 —1)% —
k21— f2) #0.

Similarly to the elliptic case, we find the geometric frame field {x, y, b, 1} of M .
Applying formulas (1) for this frame field and using derivative formulas (9), we
obtain the following invariants of M/ :

71—72——\/%0;
v = vy = e\ [e(ff + 2~ 12— 21— )
2f1/1— f2
L RA-P-pPPra-pR
_E . . . . ’
201 = F2Jo((FF + 72— 12 = k21 - f2))
kf
= P— —)
Ve(FF+ 2 =12 —r2(1 = )
5 ~(1- /) )
L VR P2 R2(1- )
LN IR S ) N S sk g
du /1—f2 dv 12 ’
By = . .“‘fz) :
VE((FF+ P12 = w21 2)
e N i
4 (gl 1) i)
1 f2 F1- f2

where ¢ = sign(H, H).
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In the following sections, using the invariants of meridian surfaces M/, and M,
we shall describe and classify some special classes of meridian surfaces of elliptic or
hyperbolic type.

4. Meridian surfaces with constant Gauss curvature

The study of surfaces with constant Gauss curvature is one of the main topics in
classical differential geometry. Surfaces with constant Gauss curvature in Minkowski
space have drawn the interest of many geometers, see for example [6], [17], and the
references therein.

In the present section, we give a classification of meridian surfaces of elliptic or
hyperbolic type in R} with constant Gauss curvature.

Let M/, and M/ be meridian surfaces of elliptic and hyperbolic type, respec-
tively. The Gauss curvature in both cases depends only on the meridian curve m
and is expressed by the formula

__Jw
K= oL (12)

Theorem 1. Let M., (resp. M. ) be a meridian surface of elliptic (resp. hyper-
bolic) type from the general class. Then M., (resp. M. ) has constant non-zero
Gauss curvature K if and only if the meridian m is given by

f(u) = acosVEKu + BsinvVKu, if K >0;
fw) = acoshv/—Ku+ Ssinhv/—Ku, if K <0,

where o and B are constants, g(u) is defined by g(u) = \/f2(u) — 1 in the elliptic
case and g(u) is defined by §(u) = /1 — f2(u) in the hyperbolic case.

Proof. Using (12) we obtain that the Gauss curvature K = const # 0 if and only
if the function f(u) satisfies the following differential equation

fu) + K f(u) =0.
The general solution of the above equation is given by

f(u) = acosvVKu+ BsinvVKu, if K >0;
f(u) = acoshv/—Ku+ Bsinhv/—Ku, if K <0,

where « and 3 are constants. In the case of a meridian surface of elliptic type, the
function g(u) is determined by (u) = /f2(u) — 1 and in the case of a meridian

surface of hyperbolic type, ¢(u) = /1 — f2(u).

O
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5. Meridian surfaces with constant mean curvature

Constant mean curvature surfaces in arbitrary spacetime are important objects for
their special role in the theory of general relativity. The study of constant mean
curvature surfaces (CMC surfaces) involves not only geometric methods but also
PDE and complex analysis; that is why the theory of CMC surfaces is of great
interest not only to mathematicians but also to physicists and engineers. Surfaces
with constant mean curvature in Minkowski space have been studied intensively in
the last years. See for example [15], [16], [20], [3], [2].

In this section, we classify meridian surfaces of elliptic or hyperbolic type with
constant mean curvature.

Let M/, and M/ be meridian surfaces of elliptic and hyperbolic type, respec-
tively. Equality (6) implies that the mean curvature of the meridian surface of elliptic
type M., is given by

||H|| — \/5(K2(f2 _1)2_.gff+f2 _1)2)' (13)
Af2(f2-1)

Similarly, from (10) it follows that the mean curvature of the meridian surface of
hyperbolic type M/, is

e((ff+ 2 =12 —r2(1 - /%))

1| = - . (14)
Af2(1—f?)

Theorem 2. Let M, (resp. M/ ) be a meridian surface of elliptic (resp. hyper-

bolic) type from the general class.

(i) M., has constant mean curvature ||H|| = a = const, a # 0 if and only if the
curve ¢ on S%(1) has constant spherical curvature k = const = b, b # 0, and
the meridian m is determined by f = y(f), where

1 t b2 2at\
y(t) = \/1 + e <C’ + 5\/ b2 — 4a2t2 £ 1a arcsin %) , C = const,
a

g(u) is defined by g(u) = ¢/ f2(u) — 1.

(i) M, has constant mean curvature ||H|| = a = const, a # 0 if and only if the
curve ¢ on S?(1) has constant spherical curvature k = const = b, b # 0, and
the meridian m is determined by f = y(f), where

1 t b2 2at \?
y(t) = \/1 = (C + 3 b2 — 4a?t? + . arcsin %) , C = const,

g(u) is defined by §(u) = /1 — f2(u).
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Proof. (i) It follows from (13) that ||H|| = a if and only if

_ 4a? ) (£ () — 1) + (f)f(u) + f2(u) - 1)
fAu) -1

K (v)

3

which implies
Kk = const =b, b#0;
! .. , . 15
40 2(u)(f200) — 1) + (F(u) ) + f2) — 12 = 122~ ()
The first equality in (15) implies that the spherical curve ¢ has constant spherical

curvature x = b, i.e., ¢ is a circle on S?(1). The second equality in (15) gives the
following differential equation for the meridian m:

(2 =17 = (2 = )" — 4’ /7). (16)

Further, if we set f = y(f) in equation (16), we obtain that the function y = y(t)
is a solution of the following differential equation

t
SW +y? 1= /42 — 102 — 4a222.

The general solution of the above equation is given by the formula

1 t b 2at \ *
y(t) = \/1 + o) (C + 3V b? — 4a?t? £ a arcsin %) ) C =const.  (17)
a

The function f(u) is determined by f = y(f) and (17). The function g(u) is defined

by 9(u) = y/72(u) — 1.

(ii) Similarly to the elliptic case, from (14) it follows that ||H|| = a if and only if
the curve ¢ on $?(1) has constant curvature x = b, and the meridian m is determined
by the following differential equation:

(fF+ 2 =17 = (1= f2)(0° +4a° 7). (18)
Setting f = y(f) in equation (18), we obtain

1 t b 2at\?
y(t) = \/1 -5 (C’ + 5\/ b% — 4a2t? + 1 arcsin %) , C = const,
a

In this case, the function g(u) is defined by g(u) = 1/1 — f2(u).

6. Meridian surfaces with constant invariant &k

Let M/, and M be meridian surfaces of elliptic and hyperbolic type, respectively.
Then the invariant k is given by the formula

R R()

RO "
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f(u) f(u)

in the elliptic case, and K, (u) = ——=—=—= in the

fAu) —1 L= f2(u)

where K, (u) =

hyperbolic case.
In the following theorem, we describe the meridian surfaces of elliptic or hyper-
bolic type with constant invariant k.

Theorem 3. Let M), (resp. M., ) be a meridian surface of elliptic (resp. hyper-
bolic) type from the general class.

(i) M., has a constant invariant k = const = —a?, a # 0 if and only if the curve
c on S?(1) has constant spherical curvature k = const = b, b # 0, and the
meridian m is determined by f = y(f), where

2 2
y(t):\/l—i-(C:I:%) , C = const,

g(u) is defined by g(u) = ¢/ f2(u) — 1.

(ii) M’ has a constant invariant k = const = —a?, a # 0 if and only if the curve
c on S?(1) has constant spherical curvature k = const = b, b # 0, and the
meridian m is determined by f = y(f), where

at?\ >
y(t) =1/1— <C:F %> ; C = const,
g(u) is defined by g(u) = /1 — f2(u).

Proof. (i) It follows from (19) that k = const = —a?, a # 0 if and only if

) P 1)
F2(w)

The last equality implies
Kk =const =b, b#0;
a®f(u)(f*(w) = 1) = b f*(u).

Hence, the curve ¢ has constant spherical curvature x = b and the function f(u) is
a solution of the following differential equation:

B f2—a?f2(f?-1)=0 (20)

Setting f = y(f) in equation (20), we obtain that the function y = y(t) is a
solution of

b
5(3/2)’ = dat\/y? — 1.
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The general solution of the above equation is given by

2\ 2
y(t) = \/1 + (C + %) ., C=const. (21)

The function f(u) is determined by f = y(f) and (21). The function g(u) is defined

by g(u) =/ f*(u) — 1.

(ii) Similarly to the elliptic case, we obtain that M! has a constant invariant
k = const = —a?, a # 0 if and only if ¢ has constant curvature k = const = b, b # 0,
and the meridian m is determined by the following differential equation:

BF2 - a?f2(1 - f2) = 0.

Again, setting f = y(f) we obtain

at?\”
y(t) =4/1— (C F E) , C = const.

7. Chen meridian surfaces

Let M/, and M be meridian surfaces of elliptic and hyperbolic type, respectively.
The invariants of M/, and M/ are given by formulas (7) and (11), respectively.
Recall that a spacelike surface in R} is a non-trivial Chen surface if and only if
A = 0. In the following theorem, we classify all Chen meridian surfaces of elliptic or
hyperbolic type.

Theorem 4. Let M, (resp. M/ ) be a meridian surface of elliptic (resp. hyper-
bolic) type from the general class.

(i) M., is a Chen surface if and only if the curve ¢ on S*(1) has constant spherical
curvature Kk = const = b, b # 0, and the meridian m is determined by f =

y(f), where

2¢+1 a

g(u) is defined by g(u) =/ f2(u) — 1.

(it) M}, is a Chen surface if and only if the curve ¢ on SF(1) has constant spherical
curvature Kk = const = b, b # 0, and the meridian m is determined by f =

y(f), where

+1 b2\ °
y(t)——\/4ti2+a<ti2——) , a = const # 0,

2¢+1 a

g(u) is defined by g(u) = /1 — f2(u).

+1 b2\
y(t) = \/4ti2 —a|t*+2 —) , a = const # 0,
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Proof. (i) It follows from (7) that A = 0 if and only if

(f2(u) = 1)% = f2(w)f>(w)
fAu) -1

K2 (v) = ;
which implies
Kk =const =0b, b#0;

(f2(w) = 1) = f2(u) f2(u) = 0*(f?(u) — 1).

Hence, the curve ¢ has constant spherical curvature x = b and the function f(u)
is a solution of the following differential equation:

(=12 = f2f2 =0*(* - 1), (22)
The solutions of differential equation (22) can be found as follows. Setting f =
y(f) in equation (22), we obtain that the function y = y(¢) is a solution of the
equation:
t? 2
7 (@) =@ -2 =0"(y" - 1), (23)
We set z(t) = y?(t) — 1 and obtain
t
) 2 =422 - b2z
The last equation is equivalent to

2 2
e 24
Vz2 — b2z t (24)

Integrating both sides of (24), we get

b2
5 7 + /22 — b2z = ctt?, ¢ = const. (25)
It follows from (25) that
(at*2 — b?)?
Z(t)Z—W, a = 2c.

Hence, the general solution of differential equation (23) is given by

+1 b2\ >
y(t) = \/4ti2—a <ti2— —) ) a = const # 0.

2¢+1 a

(ii) In a similar way, in the hyperbolic case we obtain that A = 0 if and only if

the curve ¢ has constant curvature k = b, b # 0 and the function f(u) is a solution
of

(L= 2 =22 =020 7).
By doing similar calculations as in the previous case, we obtain

+1 b2\ °
y(t)=2ti1\/4ti2+a(ti2—z) , a = const # 0.
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8. Meridian surfaces with the parallel normal bundle

In this section, we shall describe meridian surfaces of elliptic or hyperbolic type with
parallel normal bundle. Recall that a surface in R} has parallel normal bundle if
and only if g1 = B2 = 0.

Theorem 5. Let M. (resp. M. ) be a meridian surface of elliptic (resp. hyper-
bolic) type from general class.

(i) M., has parallel normal bundle if and only if one of the following cases holds:
(a) the meridian m is defined by
fuw) = £vVu? 4 2cu + d;
gu) = vz —dInju+ c+ Vu? + 2cu+ d| + a,

where a, ¢, and d are constants, ¢* > d;

(b) the curve ¢ on S*(1) has constant spherical curvature x = const = b,
b # 0, and the meridian m is determined by f = y(f), where

24+ 1)#2 4 2act + 2
YORFSMGRD AL AL

g(u) is defined by g(u) = 1/ f2(u) — 1.

(i) M has parallel normal bundle if and only if one of the following cases holds:

a = const #0, ¢ = const,

(a) the meridian m is defined by
f(u) = £vVu? + 2cu + d;
g(u) =+tvVd— 2 Inlu+ c+ vu? + 2cu + d| + a,

where a, ¢, and d are constants, d > c¢?;

(b) the curve ¢ on S7(1) has constant spherical curvature k = const = b, b #
0, and the meridian m is determined by f = y(f), where

y(t):i\/(l—az)t2+2act—02
t )

g(u) is defined by §(u) = /1 — f2(u).

Proof. (i) By using formulas (7), we get that 51 = f2 = 0 if and only if

a = const #0, ¢ = const,

d (ff+f2-1\ d  ff+f-1_

— K 0;
du f2—1 dv()f/f-2_1
L L (26)
PRI P S S IR i o et S

(k)
du fo_1 dv f /f2—1
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It follows from (26) that there are two possible cases:
Case (a): ff+ f2—1 = 0. The general solution of this differential equation
is f(u) = £vu? + 2cu +d, ¢ = const, d = const. Using that g2 = f2 — 1, we get
2 —d
g% = 07, and hence ¢? —d > 0. By integrating both sides of the equation
u? +2cu+d
2 —d

() = +——ve %
g(w) vVu? +2cu+d

we obtain g(u) = £v¢? — d In ju+ c+ Vu? + 2cu + d| + a, a = const. Consequently,
the meridian m is defined as described in (a).
(2
Case (b): Jrer-t =a = const, a # 0 and k = b = const, b # 0. Hence, in
V-1
this case the curve ¢ has constant spherical curvature x = b and the meridian m is
determined by the following differential equation:

ff+fP=1=a\/f2-1, a = const # 0. (27)

The solutions of differential equation (27) can be found in the following way.
Setting f = y(f) in equation (27), we obtain that the function y = y(t) is a solution
of the equation:

t
W)+ —1=aVy’ -1 (28)
If we set z(t) = \/y2(t) — 1, we get
- 1 a
2+ -z==.
t t
. D c+at
The general solution of the above equation is given by the formula z(t) = .

¢ = const. Hence, the general solution of (28) is

2+ 1)t2 4 2act + 2
y(t)z:l:\/(a +1) t+ ac +C, ¢ = const.

(ii) In a similar way, considering meridian surfaces of hyperbolic type we obtain
that 81 = B2 = 0 if and only if one of the following cases holds.

Case (a): ff+ f2—=1=0. In this case, we get

f(u) = +£vVu?+2cu+d; glu)=EtVd—c Inlu+c+ Vu2+2cu+d| +a,

where a, ¢, and d are constants, d > c2.

g
-1
Case (b): It =a = const, a # 0 and kK = b = const, b # 0. By doing

\/1— f2
similar calculations as the calculations for solving (27), we obtain
V(1 —a2) 2+ 2act — 2
t )

y(t) =+ ¢ = const.
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Similarly to the elliptic or hyperbolic type, one can study the invariants of the

meridian surfaces of parabolic type. The classes of meridian surfaces of parabolic
type with constant Gauss curvature, constant mean curvature, constant invariant k,
the Chen meridian surfaces of parabolic type, and the meridian surfaces of parabolic
type with the parallel normal bundle can be described in an analogous way.
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