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Abstract. Let π be a Lipschitz prime and p = ππ⋆. Perfect 1-error-correcting codes in
H(Z)n

π
are constructed for every prime number p ≡ 1(mod 4). This completes a result

of the authors in an earlier work, Perfect Mannheim, Lipschitz and Hurwitz weight codes,
(Math. Commun. 19(2014), 253–276), where a construction is given in the case p ≡

3 (mod 4).
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1. Introduction

Lipschitz weight codes were introduced by Martinez et al. in [3, 4]. Shortly, consider
the ring of quaternions over the integers

H(Z) = {a0 + a1e1 + a2e2 + a3e3 | a0, a1, a2, a3 ∈ Z},

where
e21 = e22 = e23 = −1, (1)

and
e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2. (2)

A Lipschitz prime is an element π = a0 + a1e1 + a2e2 + a3e3 in H(Z) such that

p = ππ⋆ = (a0 + a1e1 + a2e2 + a3e3)(a0 − a1e1 − a2e2 − a3e3) = a20 + a21 + a22 + a23

is an odd prime number. The integer N(π) = ππ⋆ is called the norm of π.
The elements in the left ideal

〈π〉 = {λπ | λ ∈ H(Z)}

constitute a normal subgroup of the additive group of the ring H(Z). The set of
cosets to 〈π〉 in H(Z) constitute an Abelian group denoted as below:

H = H(Z)π = H(Z)/〈π〉.
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In [3], it is proved that the size of H(Z)π is equal to p2.
Let

E = {±1,±e1,±e2,±e3},

and let Eπ denote the family of cosets to 〈π〉 containing the elements of E . We define
the distance between the words (α1, . . . , αn) and (β1, . . . , βn) in the direct product
H(Z)nπ of n copies of H(Z)π ,

d((α1, . . . , αn), (β1, . . . , βn)) = 1,

if there is a j ∈ [n] and an ǫ ∈ Eπ such that βj = αj + ǫ and βi = αi, for i 6= j.
A perfect 1-error-correcting Lipschitz weight code of length n is a subset C of the

direct product Hn of n copies of the group H , such that every element in C \Hn is
at distance one from exactly one word of C.

In [1], perfect 1-error-correcting Lipschitz weight codes in H(Z)nπ are constructed
for every Lipschitz prime π such that p = ππ⋆ ≡ 3 (mod 4), for p > 3. The purpose
of this paper is to extend this result to the case p ≡ 1 (mod 4).

2. Notation

The coset a+ 〈π〉 to the left ideal 〈π〉 in the ring H(Z) is denoted by a.‡

It is important for our results that the Abelian group H(Z)π , consisting of the
cosets to the left ideal 〈π〉, is a left module over the ring H(Z), see [1]. We remind
that, as a left module over H(Z), the left distributive rule holds in H(Z)π, that is,

λ(a+ b) = λa+ λb,

is true for every λ ∈ H(Z) and a, b ∈ H(Z)π .

For example, with π = 2− 3e2, we get that 13ei = ei(2+ 3e2)(2− 3e2) ∈ 〈π〉, for
i = 1, 2, 3, and that e3 = 5e1, as

4e1(2− 3e2) ∈ 〈π〉 =⇒ 8e1 − 12e3 ∈ 〈π〉 =⇒ −12e3 ∈ −8e1 + 〈π〉.

Also used in an example below is the fact that

(2 + 2e3)−e3 = −2e3 + 2 = 2− 2e3 = 2− 10e1 = 2 + 3e1 = 2 + 3e1, (3)

and that

0 = e10 = e1(8e1 − 12e3) = −8 + 12e2 = 5− e2,

that is, e2 = 5.
Finally, we let E0 and E1 denote the following sets

E0 = {±1,±e1}, E1 = {±e2,±e3}.

‡To simplify reading of the text, one of the reviewers suggested a change of the notation used in
“Part One” [1] of this study.
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3. Preliminaries

Throughout this paper we are only concerned with the case when p = π⋆π ≡ 1(mod
4) is a prime number. It then follows from the Christmas theorem of Fermat that
p is the sum of two squares. Henceforth, we consider the case when π = a0 + a2e2,
whereby a20 + a22 is equal to a prime number p.

We note that p ∈ 〈π〉, as p = π⋆π. Thus p = 0 in H(Z)π , and elements in H(Z)π
can be described as 4-tuples x0 + x1e1 + x2e2 + x3e3, where we may assume that
xi ∈ Zp for i = 0, 1, 2, 3. The element a0 + a2e2 is equal to 0 in H(Z)π . Hence, if we
let i denote the element −a0/a2 in the finite field Zp, then −i1 + e2 = 0 in H(Z)π ,
and furthermore, as 0 = e1(a0 + a2e2) = a0e1 + a2e3, we get that

ie1 − e3 = 0. (4)

Hence, with this notation,

x+ ye3 = x+ iye1, xe1 + ye2 = iy + xe1, (5)

and
x0 + x1e1 + x2e2 + x3e3 = x0 + ix2 + (x1 + ix3)e1,

and, trivially, in Zp we have
i2 = −1. (6)

We say that a selection of coset representatives H = H(Z)π to 〈π〉 in H(Z) is a
complete selection of coset representatives if no two elements ofH(Z)π are congruent
modulo π, and if all cosets to 〈π〉 are represented in H(Z)π , that is,

|H(Z)π | = |H(Z)π|.

As in [1], we say that the set H is E-homogeneous if

h̄ǫ = h̄′ǫ =⇒ h̄ = h̄′

for every ǫ ∈ Eπ and h̄, h̄′ ∈ H . In [1], the following proposition is proved:

Proposition 1. Let π = a0+ a1e1+ a2e2+ a3e3 be a Lipschitz prime with p = ππ⋆.
Then, for any two distinct elements ei and ej in {e0 = 1, e1, e2, e3} such that p does
not divide a2i + a2j , it is true that

Ci,j = {xiei + xjej : xi, xj ∈ Zp}

is a complete selection of coset representatives to 〈π〉 in H(Z). Furthermore, Ci,j is
E-homogeneous.

A code C is a group code if it is a subgroup of Hn, or equivalently, as Hn is a
finite group,

c, c′ ∈ C =⇒ c− c′ ∈ C.

We say that a group code C in Hn is an (n, k)-code if the size of C is equal to |H |k.
A more general version of the next theorem is proved in [1].
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Theorem 1. Let H and Eπ be constituted as above, and let H be a complete selection
of coset representatives to 〈π〉. Assume that the norm of π is an odd prime number.
Let n = (|H | − 1)/(|Eπ|). If g1 = 1, g2, ..., gn are elements in H, satisfying the
following three conditions:

(i) |giEπ| = |Eπ|, for i = 2, 3, . . . , n;

(ii) giEπ ∩ gjEπ = ∅, for i 6= j;

(iii) H \ {0} = Eπ ∪ g2Eπ ∪ . . . ∪ gnEπ;

then the null-space C of the matrix

H =
(

1 g2 . . . gn
)

is a perfect 1-error-correcting group (n, n− 1)-code in Hn.

Indeed, the code C is defined by the elements gi, for i ∈ [n], and may not be
altered by a change of these elements. It follows from the results in [2] that it suffices
that these elements have the above properties and belong to some ring R such that
H is a left module overR. For the sake of convenience in relation to the presentation
of our result,instead of H(Z) we consider the ring

H(Zp) = {a0 + a1e1 + a2e2 + a3e3 | a0, a1, a2, a3 ∈ Zp},

where e1, e2 and e3 have the properties described in Eq. (1) and Eq. (2), and where
p = ππ⋆. It follows from Proposition 1 that the Abelian group H(Z)π is isomorphic
to the Abelian group formed by the cosets to the left ideal 〈π〉 in the ring H(Zp).

Thus, in order to prove the existence of a perfect 1-error-correcting Lipschitz
weight code of length n, it suffices to prove the existence of a partition of the space
as indicated in the theorem, where gi, for i ∈ [n], belongs to H(Zp). In fact, such
partitions are constructed in Section 5 for the cases considered in this paper.

4. Some lemmas

Throughout this section, when not stated otherwise, π = a0+ a2e2, where a
2
0 + a22 is

equal to a prime number p ≡ 1(mod 4), although some of the lemmas are true for
every Lipschitz prime π.

Let D(a+ be1) denote the set

D(a+ be1) = {±(a± be1)} ∪ {±(b± ae1)} ∪ {±(ia± ibe1)} ∪ {±(ib± iae1)}. (7)

Let Q denote the following subgroup of the multiplicative group Z
⋆
p of the finite

field Zp:
Q = {1,−1, i,−i}.

The first lemma is an immediate consequence of the fact that Q is a subgroup
of Z⋆

p.

Lemma 1. If x+ ye1 ∈ D(a+ be1), then D(x + ye1) = D(a+ be1).
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Corollary 1. There is a sequence ai + bie1, i = 1, 2, . . . , s, of elements in H(Z)π
such that the sets D(ai + bie1) partitions H(Z)π, that is,

H(Z)π \ {0} =

s
⋃

i=1

D(ai + bie1),

and

i 6= j =⇒ D(ai + bie1) ∩ D(aj + bje1) = ∅.

Proof. The corollary follows from the fact that from Lemma 1 we may deduce
that every non-zero element x+ ye1 of H(Z)π belongs to exactly one of the sets
D(a+ be1).

Lemma 2. For any element a, b ∈ Zp,

|D(a+ be1)| =

{

8, if ab(a2 + b2)(a2 − b2) = 0,
16, otherwise.

Proof. We consider the case a2 + b2 = 0, that is, when b = ia or b = −ia. The
other cases are treated similarly. From the definition in Eq. (7), we get that

D(a+ iae1) = D(a− iae1) = {±(a± iae1)} ∪ {±(ia± ae1)}.

As i 6= ±1 and a 6= 0, this is a set consisting of eight distinct elements.

Lemma 3. For any element a, b ∈ Zp,

D(a+ be1) =























aEπ, if b = 0,
bEπ, if a = 0,
(a+ ae3)Eπ, if a2 + b2 = 0,
(a+ ae1)Eπ, if a2 − b2 = 0,
(a+ be1)Eπ ∪ (b+ ae1)Eπ, if ab(a2 + b2)(a2 − b2) 6= 0.

Proof. As in the proof of the previous lemma, we just treat the case a2 + b2 = 0,
and here just when b = ia. We consider products to the left of the elements in Eπ
with elements a+ ae3, where a ∈ Zp \ {0}. For instance, we get

(a+ ae3)e2 = ia− ae1 = b− ae1 ∈ D(a+ be1),

etc.

We close this section with the following observation: Let d1, d2, ..., d(p−1)/4 be
a family of coset representatives to Q in Z

⋆
p. The following easily verified relations

are useful when deriving partitions of the set H(Z)π into cosets of Eπ:

⋃

a∈Zp\{0}

D(a+ iae1) =

(p−1)/4
⋃

i=1

(di + die3)Eπ. (8)
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⋃

a∈Zp\{0}

D(a+ ae1) =

(p−1)/4
⋃

i=1

(di + die1)Eπ. (9)

⋃

a∈Zp\{0}

D(a) =

(p−1)/4
⋃

i=1

diEπ. (10)

5. Construction of necessary partitions

Theorem 2. For every prime number p with p ≡ 1(mod 4) there is a Lipschitz
prime π, with π⋆π = p, and a sequence of t = (p2 − 1)/8 elements g1, ..., gt of
H(Zp) such that

H(Z)π \ {0} = g1Eπ ∪ . . . ∪ gtEπ ,

i 6= j =⇒ giEπ ∩ gjEπ ,

and |giEπ| = |Eπ|, for i = 1, . . . , t and j 6= i.

Proof. The theorem follows immediately from Corollary 1, Lemma 2 and Lemma 3,
as for every element g ∈ H(Zp),

|gEπ| ≤ |Eπ| = 8 .

In order to be able to apply Theorem 1 we note that the set

{a+ be1 ∈ C0,1 | p 6 |a2 + b2} ∪ {a± ae3 ∈ C0,3 | p 6 |a ∈ Zp},

forms a complete set of coset representatives to 〈π〉 in H(Zp).
We illustrate the construction described in the proof above in the next example.

Example 1. Let π = 2− 3e2. Then p = 13, i = 2/3 = 5, e2 = 5 and e3 = 5e1, see
Section 2 and Section 3.

The group Q = {±1,±5} has for example the coset representatives d1 = 1, d2 = 2
and d3 = 4 in the multiplicative group of the field Z13. To form the partition of the
set H(Z)π into left cosets of Eπ we begin by using equations (8), (9) and (10) letting

gi = di + die3, g3+i = di + die1, g6+i = di,

for i = 1, 2, 3. This provides nine of the (p2 − 1)/|Eπ| = (132 − 1)/8 = 21 requested
left cosets giEπ to Eπ.

The remaining cosets to Eπ are formed recursively using Lemma 1 and the case
ab(a2 + b2)(a2 − b2) 6= 0 of Lemma 3. We obtain “the next two cosets g2(k+1)Eπ and

g2(k+1)+1Eπ” by first choosing an element a+ be1 such that

a+ be1 6∈ g1Eπ ∪ g2Eπ ∪ . . . ∪ g2k+1Eπ,

(where we assume that k ≥ 4). We then let g2k+2 = a + be1 and g2k+3 = b + ae1.
When this procedure terminates, we have obtained the requested partition of H(Z)π.
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For example, we may let

g10= 1 + 2e1, g11= 2 + e1, g12= 1 + 3e1, g13= 3 + e1, g14= 1 + 4e1, g15= 4 + e1,

g16= 1 + 6e1, g17= 6 + e1, g18= 2 + 4e1, g19= 4 + 2e1, g20= 2 + 6e1, g21= 6 + 2e1.

The element 1 of H(Z)π belongs to the coset d1Eπ. For the error-correcting
procedure we may thus form the matrix

H =
[

1 1 + e3 2 + 2e3 4 + 4e3 1 + 2e1 2 + e1 1 + e1 1 + 3e1 3 + e1 · · ·
]

.

The perfect 1-error-correcting code C is the null space in H(Zp)
21 of H, the

number of words of C is |C| = 16920. If, after a transmission, the word x1 x2 . . . x21

is received by giving the syndrome

H







x1

...
x21






=

[

2 + 3e1
]

,

then the error ǫ = −e3 has appeared in the third coordinate position as from Section 2

2 + 3e1 = (2 + 2e3)(−e3).

From the theorem above and Theorem 1, we immediately get the following corol-
lary:

Corollary 2. To every prime number p such that p ≡ 1(mod 4) there is a Lipschitz
prime π of norm N(π) = p such that there exists a perfect 1-error-correcting Lipschitz
weight code in H(Z)nπ, where n = (p2 − 1)/8.

Thus, combining with the results of [1], we get

Theorem 3. To every prime number p > 3§ there is a Lipschitz prime π of norm
N(π) = p such that there exists a perfect 1-error-correcting Lipschitz weight code in
H(Z)nπ, where n = (p2 − 1)/8.

A final remark is that the crucial part in our construction of perfect 1-error-
correcting Lipschitz weight codes is the derivation of a partition of H(Z)π into left

cosets of Eπ. As soon as this problem is solved, we can easily extend the construction
with parity-check matrices, like in Theorem 4 in “Part One” of this study [1], in order
to obtain codes of other lengths and sizes. Thus we now know, cf. Section 5.2 of
[1], that for every prime number p > 3 there is a perfect 1-error-correcting Lipschitz
weight code C of length n = (p2l−1)/8 and size |C| = p2k, where k = (p2l−1)/8− l,
and l is any non-negative integer.
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