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Abstract. In this paper, we introduce a bivariate Kantorovich variant of the combination
of Chlodowsky and Szasz type operators and study local approximation properties of these
operators. We estimate the approximation order in terms of Peetre’s K-functional and
partial moduli of continuity. We also give some numerical error estimates and illustrations.
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1. Introduction

Bernstein-Chlodowsky polynomials are a generalization of a classical Bernstein poly-
nomial on the interval [0, a,] with o, — 00 as n — 0o. These polynomials are defined

by
5 ' B n Ck 2 k . 2 n—k kan
n(f7$)_kZ:O n(an) ( an) f(n>7
where z € [0,a,] and lim, o 5= = 0. The approximation properties of these
operators were investigated for univariate and bivariate continuous functions in
[1, 9, 10, 13, 18]. Moreover, a g-generalization of Bernstein-Chlodowsky polyno-
mials [7], Voronoskaja type theorems related to these polynomials [6, 15] and a
Bezier variant of these polynomials [19] were discussed.
The modified Szasz operators defined as

00 j .
Sm(f;y)ze_ﬁmyZMf <VL> :m e N,y e[0,00)

1
per m

were introduced by Walczak [20] and studied the approximation properties in one
and two-dimensional weighted spaces. Ispir and Atakut [12] estimated the rate of
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convergence by weighted modulus of continuity on the positive real axis in univariate
and bivariate cases.

Recently, Gazanfer and Buyukyazici [11] introduced a bivariate operator associ-
ated with a combination of Chlodowsky and modified Szasz type operators as follows

Lo (f3,9) = ZZP( )QJ Bmwf(kan,,%) 1)

k=0 j=0 m

for all n,m € N, f € C(A,,) with A, = {(z,y): 0<z < a,,0 <y < oo} and
C(Aa,) = {f: Aa, — R is continuous}. Here (o) is an unbounded sequence of
positive numbers such that lim, o (an/n) = 0 and also (), (Bm) denote the
unbounded sequences of positive numbers such that

lim 7' =0,

m—r o0

Bm/Vm = 1+O(1/7m)7
and
(I (1 - I)nik )
Q; (y (y /3Y) -

Notice that the operator L, , : C' (A, ) — C (Aa,) is the tensorial product of By,
and 4 Sn,, i.e., Lypm =4 By, 0y Sp,ym where

n k x n—~k kOén
-t (2) (-2 1 (5
-0 n

m (fia,y) =e Pmy i Mf (:c i) .

= 7 Ym

) =
) =

and

In [11], the authors studied some approximation properties of L,, ,,, operators given
by (1) in a space of continuous functions on a compact subset of A, and given
the degree of this approximation by means of total and partial modulus of conti-
nuity. Furthermore, they investigated the weighted approximation properties of the
operators Ly, ., for continuous functions with polynomial growth on [0, 00) x [0, 00) .

Summation type operators are not suitable for approximating a function f €
L,[0,1] in the L, norm. This problem is eliminated with integral type operators,
one of which is the Kantorovich operator. The Kantorovich operators allow us to
investigate the approximation properties in the uniform norm and also in the L,
norm. Some generalizations of Szasz-Kantorovich and Chlodowsky integral type
operators are studied in [2, 4, 8, 14, 16, 17].

To approximate integrable functions, we define a Kantorovich variant of the
operators given by (1) as follows

(G+1)/vm (k+1)an/n

o (i) = —%ZZPM( )Qj(ﬂmy) [ [ resas

k=07=0 J/vm ko, /n
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where the sequences (o), (Bm) , (7m) are defined as above and have the conditions

.
T =0 )
and
- 1
lim ymlzo,ﬁ—=1+0<—>. (3)
m—0o0 'm ’ym

In this paper, we investigate local approximation properties of operators Lj, . in
terms of the partial modulus of continuity and Petree’s K-functional correspond-
ing to the second modulus of continuity. We also give some numerical examples
associated with the order of approximation and some illustrations for the rate of
convergence.

2. Basic results

In this section, we give some results using the test functions e; ;(¢,s) = t's? (4,5 =
0,1,2 ). To express our results we give the following auxiliary lemmas.

Lemma 1 (See [11]). For f € C (Aa, ), we have

Ln,m (60,0;17,24) = 17
Ln,m (61,0;$7y) =,

Ln,m (60,1;$=y) = _my7
Ym

1 a
Ln,m (ezyo;x,y) = <1 _ _) x2 + _nx7
n n
> 0,254, = — —.
n,m 7%1 7%1

Lemma 2. For f € C(A,,) and operators L}, . satisfy the following equalities

n,m

L:,,m (eo,o;xvy) = 17

«
nom (€1,07,y) = + e
Bm 1
Ly (eo1;m,y) = ="y + —,
) o .
1 " 2
L:Lm (62,0;1:73/) = (1 — —) ;[;2 + 2a_x+ a’n«27
) ” " _n
2
* . _ Mm 2 Bm 1
Lnym (6072,$,y) - ﬁy + 2ﬁy+ %
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Remark 1. By applying Lemma 2 we have

e’
L* t— x; = -
nm (= 32,y) = oo
1 n 2 "
Eﬁ&@—xﬂxw)—<1—ﬁ)ﬁ+a%7p+%%—2ﬁ—f%x+ﬁ
1 5 ap a2 x(a,—1) ol
n’ + + 3n?2 n 3n?2 (4)
Brm 1
Loy (s —yi2,y =<——1 Y+ —
m ( ) - o
* 2, ﬁ 1 ﬂm 1 2
Ln,m((s_y)vxvy)_ ?ny +2_72n +3—2_2y"y_m —2y27—m+y
Brn >2 ,, 1 ( Bun ) 1
=\—-1) vyv+—(2--1)y+t:% 5
Hence, for all (z,y) € Aa, and sufficiently large n,m, we get
Eﬁd@—wfww)zO(%ﬂtﬁ+x+l) (6)
’ n
and X
ﬁﬁd@—yfww)zO(TJ(f+y+U. (7)

Lemma 3. For f € C (A,, ), we have
[L3m (i) < N

where ||.|| is the uniform norm on C (A,,,) .

Proof. Considering the definition of L}, . (f;z,y) and by Lemma 2,

(j+1)/Vm (k‘f‘l)an/"

1L (i) € 29 33 P ( )QJ G) [ [ 15t s
" k=07=0 J/vm ko, /n
< WANES m Ceo0s 2, ) || = £
O
For Ay = [0,a] x [0,b], let C'(Aqp) denote the space of all real valued continuous
functions on Aup, equipped with the norm given by ||f[|c(a,,) = sup [f(z,y)|-
(mvy)eAab

Theorem 1. Let f € C(Ay,); then the operators Ly, ., given by (1) converge uni-
formly to f on the compact set Aqp = [0,a] x [0,b], as n,m — .

Proof. From Lemma 2 and taking into account conditions (2) and (3), we get

lim ||L;,, (eij) =0, 4,j7=0,1,2

el
n,m—oo ) ’ LINC(Aay)

The well known Volkov Theorem implies lim,, o0 HL:;,m (f) =0. O

- fHC(Aab)
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Example 1. Forn,m =5, 50 the convergence of LY, .. (f:x,y) to f(x,y) = zy*—a?y
will be illustrated in Figure 1 and Figure 2.

W ey
l:l Lgoiio(flxs}‘)
L Lis(fixy)

Figure 1: The convergence of Ly, ., (f;x,y) to f(x,y), for an = /n, Bn =n, and yn =n +/n

I:l Lgo 50 (f:x,3)
- L;j (fix:)

Figure 2: The convergence of Ly, ., (f;x,y) to f(z,y), for an = /n, Bn =n, and yn = n+In(n+1)

Example 2. For n,m = 50, the comparison of convergences of L;, ..(f;x,y) and
the modified Szasz-Kantorovich operators defined by

oo 00 (k+1)/7n (.j+1)/’77n
St (5 2,0) = vm D> Qr(Bnr)Q;(Bmy) / / f(t, s)dtds

k=03=0 k/vn J/vm

to f(x,y) = zy(z — 2)%e™Y will be illustrated in Figure 3.
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- L;D,SD (fix.y)
[ 550 (2239

Figure 3: The convergence of L}, ,,,(f;x,y) and S}, .., (f;x,y) to f(z,y), for an = \/n, Bn =n, and
Yo =m+/n

3. Degree of approximation by L;

For f € C(Aap), the complete modulus of continuity for a bivariate case is defined
as follows:

w(f18) = sup{|f<t, 9~ )| VDT (g < 5},

for every (¢, s), (z,y) € Agp.
Further, partial moduli of continuity with respect to x and y are defined as

W (f:6) = sup{|f<x1,y> flany)| iy € 0.5 and |z — x| < 5},
W2(f;6) = sup{|f<x,y1> ~ flaye)| i w € [0,0] and -y < 5}.

It is clear that they satisfy the properties of the usual modulus of continuity [3].
Now, we give an estimate of the rate of convergence of operators Ly, ..

Theorem 2. Let f € C(Agp); then for all (x,y) € Agp, we have

|Ly o (fs2,y) = f(z,y)| < 2w (f;0n,m)

where 6y m = (O (an/n) (x + 1)2 + O (1/vm) (y + 1)2) v

Proof. Taking into account the complete modulus of continuity of f(z,y), we can
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write
|L21m(f;x,y) - f(:c,y)l < L:z,m(lf(tv S) - f(iC, y)|7 Z, y)
<L (w (HVE=27+ 6 —9P) i2y)
1
Lo (V=P T - as2)

5n,m

< w(f;0n,m) [1 +

Applying Cauchy-Scwartz inequality, by (6) and (7), we obtain

|Lr1,m(f7w7y) - f(l',y)l

< (fidmm) |14 -

5n,m

(L5 (= 2)% + (s — y)% y)}l/Q]

n,m

<o (fian) |1+ 5 : (0 (@n/m) (@ +1)* + 0 (1/3m) (v + 1)2)1/2} .

n,m

1/2
Taking 6y m = (O (an/n) (z4+1)° + O (1/9m) (y + 1)2) , for all (z,y) € Agw, we

reach the result. O

Theorem 3. Let f € C(Aap); then the following inequalities satisfy

| Ly (f329) = fz,9)] < 2(0H(f; 00 (2)) + O (f50m (9))

where

and

for all (z,y) € Agp.

Proof. Using the definition of partial moduli of continuity of f(z,y) and applying
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the Cauchy-Schwarz inequality, we get

Ly, (f52,9) = fl2,9)]
<Ly (£t s) = fz,9)| 2, y)

S Ly ([f @ s) = f@,8)ls 2, y) + Ly, o (Lf (2,8) = fla,y)ls 2, )
<L, (|w (f;lt —al)ls @ )+L2,m(|w2(f;|8—y|)|;w,y)
fi6n) {1—!— —Lym a:|;:c,y)}
(fb) [ (s = vli.0)]

1+ i ((t—x)Q;x,y))l/Z]
W*(f;0m) {1 +— ( nam ((8 —y)* ;x,y))m} :

Taking into account (4) and (5), choosing

n 3n?
and
B =) 2, 2m=m . 1\
TYm m m
Om = v 2 3.2 ’
Vi Vi 3V
for all (x,y) € Aqp we obtain the desired result. O

Some numerical examples

1. The error of the approximation of f(x,y) = xye™¥ by using the partial moduli
of continuity of function f are listed in Table 1.

mn=m) | an=vVn,Bn=n,m=n++n| an=+n, Bn=n, 7w =n+1In(n+1)
100 2.6203 2.0571
200 2.1422 1.5441
1000 1.2156 0.7726
1100 1.1721 0.7422
1200 1.1335 0.7155
2000 0.9284 0.5788
2100 0.9106 0.5673
2200 0.8940 0.5566
3000 0.7900 0.4908
Table 1:

2. The error of the approximation of f(z,y) = arctan(z +y) by using the partial
moduli of continuity of function f are listed in Table 2
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(n=m) a7l:\/ﬁvﬁn:n7%L:n+\/ﬁ Oc7L=\/ﬁ7ﬂn:n,’yn:n+ln(n+1)
100 1.8969 1.6346
200 1.5505 1.3182
1000 0.9558 0.8207
1100 0.9288 0.7988
1200 0.9048 0.7794
2000 0.7762 0.6756
2100 0.7650 0.6665
2200 0.7545 0.6579
3000 0.6879 0.6040

Table 2:

Now we estimate the degree of approximation by operators Ly, . for the functions
satisfying the Lipschitz condition. If f € Lipas (n1,72), then

[f(t,s) = flz,y)| < M|t —a|™ [s —y[™
for n1,m2 € (0,1].
Theorem 4. Let f € Lippy(n1,m2); then we have

L5 (i) = fla,y)l| < Mo 2602,
where 6, and d,, are defined as in Theorem 3.

Proof. Since f € Lipas(m,n2), we can write

Ly (Fr2y) = fla,y)| < Ly, (1 (85) = fz,y)] 2, y)
< Lo (Mt =2 s —y|™ s 2,y)
<M B, (|t - 17|771 12, Y) ySm (|8 — y|772 ;7. Y)
Now, using the Hélder’s inequality with
2 2 2 2

wp = —,u1 = ,andwgz—,u2:
m 2—m 72 2—1n9

we have
Ly (f32,) = F(2,)| < M 2By (e0.03,y) 7™
X ySm ((5 —y)° ;CC,y)m/Q S (€0.0; 1, y)(2—nz)/2
< Mem/2gm2/2,
which implies the desired result. -

Now, let O(j)(Aab) = {f c C(Aab) . f(i-,j) c O(Aab), 1<i4,j< 2}7 where f(i,j)
is the (i,7) th-order partial derivative with respect to z,y of f, endowed with the
norm

11l (au) = IFllocan + 1o + 111,
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where
1116 ) = {If(fr,y)l,If(l’o)(x,y)I,If(o’l)(af,y)l}
m,ye ab
and
NAIE ) =S {|f($ay)|a|f(1’0)|567y)=|f(0’1)|(:b,y)7|f(2’0)(;v,y)|,|f(1’1)(;v,y)|,
x,Y)EAab

£ ()|}
Theorem 5. Let f € C™) (Ay). Then we have

Ly (Fr 2, 9) = [ (@, 9)| < el 6+ [ fyll 6m,

where 6n, d0m are defined as in Theorem 3.

Proof. From the hypothesis we can write

t s
ft.5) = $o) = [ Fulwos)dw+ [ e
x y
Applying L, ,,,(.;,y) on both sides, we get

|L;kz,m(f7$7y) - f(l',y)l

t s
<., ( / |fw<w,s>|dw;x,y)+f:z,m ( / Ifu(I,U)IdU;x,y>-
x Yy

/Ifw(w,S)ldeIIfmll it — and/ fula,w)| du < 1,15 — 91,
T Yy

Since

we have

(L3 2,y) = f(@, )| < el Ly (I8 = 2l529) + [ fyll Ly (I8 = 9l5 2, 9) -

Applying the Cauchy-Schwarz inequality and by (4) and (5) we obtain

Lo (i) = @)l < Ifll (B3 (= 2)%52,9)) > (L (e0,052,9)) 72

(L (5 — )% 2 w)) 7 (L, (co.032,y)?
Lo (F32,9) = F@ )] < (1 fell 8+ 1 Fy O

O

Next, we shall give an estimate for the order of approximation of the sequence
{L;, . (f)} to the function f € C (Aqp) in terms of the Peetre’s K-functional defined
as

K(fi0)= _inf {11 = gllowan +0llollow a0 > 0}
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It is also known that the following inequality

K(f;6) < Mi{wz(f;V5) + min(L, 8)|| flloa,,) (8)

holds for all § > 0 ([5], p. 192). The constant M; is independent of 6 and f and
wz(f;V/9) is the second order complete modulus of continuity.

Theorem 6. If f € C (Aw), then we have
Ly (f52,9) = f (2,9)]

2nx + an, ? 2Bmy +1 i
< B - a5 T o~
<AK (f; Fom (2,y)) + w \/< o “’) * ( 2Ym, )

=n
n

wheran_’m(a:,y):O(a )(;1;24_1;4_1)—1-0(%) (y2—|—y+1)~

Furthermore,

Ly o (fi2,y) — f (2,9)]
< 01 {3 (fiy/Fuom (o)) 1 (1, Fo (e} e |

2nx + o, 2 28my + 1 2
+w — =] | —— -y .

Proof. We define the following auxiliary operator

2nx + oy 28my +1
2n 7 29m

Tt (fimy) = Lo (Fray) — f ( ) ).

Then, by Lemma 2, we get

f;i,m(el,o;x,y) =, Efz,m(eo,l;%y) =Y.
Hence,
Lyt =) sy) = 0,17 (s = 9)3,) = 0.
Let g € C®(Ay) and t,s € Agy,. Using Taylor’s theorem, we can write

g(t,s) —g(z,y) = g(t,y) — g(x,y) + g(t,s) — g(t,y)

= 8ggzy)(t—x)+/x (t—u)a %(ulgy)du—l- 895,;1;”(3—3;)

s 9?g(x,v)
+‘/U (S _’U)Tdv.
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Applying the operator E;‘lm(f, z,y), we obtain
T ~ ¢ 0%g(u,
Ly, o (g52,y) —g(2,y) = Ly, (/ (t —u) 8( - )du T y)
-~ 5 9?g(x,v)
+Ly (/ (s —v)————=dv;z,y
y ov?

. (/:(t—u)%d - y)

/2m:2+an o + a, 829(’&, y) p
- 2n b uz Y
S 82
+Ly (/y (s — v)%dv; x, y)
2Bmy+1

o

Hence, using (6) and (7) and taking into account conditions (2) and (3), we have

L mlgi,9) — 9 w,9)] < L3, (/u ’Mduxy>

(2ﬁmy +1

2nztan

| 2nx + ay, 2nx + oy, 9?g(u,y)
_ _ I d

+/z 2n “Ton ‘ Ou? “

) ’ &*g(z,v)
+Ly, </y |s — v ‘ 902 dv;x,y

/ S 2By + 1 ‘ 0%g(w,v)

+ -0 dv

Y 2%m ov?

2nr + « 2
* 2 n 2
< {an ((t — 517) ,I,y)-l- <T — I> } HgHC(2)(Aab)
28my + 1 2
* 2 m 2
+{Ln,m((s—y) ;I,y)+<277m —y) }Igllcmmab)
n n) 2 1 2 (Bm — Ym 1\?
(O(a_)+(a_) +O<_>+( (B — )y + > )
n n Ym 29m
x ||9||2c<2)(,4ab)

a, 1 2
o) o)

2nx + an 28my + 1
2vm

IN

IN

Also, from Lemma 3,

L (fiz,y) ’ |Ly o (fi2,y |+}f(

<3 fllecag, -

)|+ 520
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Therefore, for f € C (Agw),
Ly o (fi2y) — f (2,0)]

m<f;x,y>—f<x,y>+f(2”““”,25’”y“> —f(x,y)‘

< |L*
" 2n 2%Ym

< |Lanl(f = 9)i29)| + | nlgs,y) — g (@,9)
19 @.y) = f (@.9)| + | Li (g2 9) — g (2.9)]
‘f (Qna:—l—an Qﬂmy—l—l) —f(a?,y)‘

29m
(679 2 1 2 2
<alF = logant (0 (GF) e+ 0 (= ) (P +u+1) ) ol

2nx —|— an 28my + 1
+|/ 2
TYm

f(:v,y)’

(o™ 1
< 4 Hf - gHC(Aab)+ (O (7) (;[;2+5E+1)+ O (ﬂy—) (y2+y+1)> ||gH2C(2)(Aab)

2 n 28m 1
(=) )

Taking the infimum on the right-hand side over all g € C®) (A,;) and using inequal-
ity (8), we obtain

|Ly o (fim,y) — f (2,9)|

2nx + o, 2 28my + 1 2
< . — I —
= Wb ) e \/( 2n x) ! ( .

<M {w_2 (f7 Fn,m (ZC, y)> + min {1’ Fn’m (:c,y)} ”f”C(Aab)}

2 2
2nT + oy 26y + 1
+w — —x| + l—y ,

where F, ,, (z,y) = O (& )(I2+x+1)+0( )(y +y+1). 0

=n
n
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