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Abstract. The purpose of this study is to determine the fine spectra of the operator for
which the corresponding upper and lower triangular matrices A(r, s, t) and B(r, s, t) are
on the sequence spaces c and ℓp, where (0 < p < 1), respectively. Further, we obtain the
approximate point spectrum, defect spectrum and compression spectrum on these spaces.
Furthermore, we give the graphical representations of the spectrum of the triangular triple-
band matrix over the sequence spaces c and ℓp.

AMS subject classifications: 47A10, 47B37

Key words: Spectrum of an operator, triple band matrix, spectral mapping theorem,
sequence spaces ℓp and c, Goldberg’s classification

1. Introduction

It is well known that matrices play an important role in operator theory. The
spectrum of an operator generalizes the notion of eigenvalues for matrices. The
spectrum of an operator over a Banach space is partitioned into three parts, i.e., the
point spectrum, the continuous spectrum and the residual spectrum. Calculation of
these three parts of the spectrum of an operator is called determination of the fine
spectrum of the operator.

By a sequence space we understand a linear subspace of the space ω = CN1

of all complex sequences containing φ, which is the set of all finitely non–zero se-
quences, where N1 denotes the set of positive integers. We write ℓ∞, c, c0 and
bv for spaces of all bounded, convergent, null and bounded variation sequences,
which are Banach spaces with the sup-norm ‖x‖∞ = supk∈N |xk|, x ∈ {ℓ∞, c0, c}
and ‖x‖bv =

∑
∞

k=0 |xk − xk+1|, while φ is not a Banach space with respect to any
norm, respectively, where N = {0, 1, 2, . . .}. Also, by ℓp, (0 < p < ∞) we denote
the sequence space of all sequences associated with a p−absolutely convergent series

which is a Banach space with the norm ‖x‖p = (
∑

∞

k=0 |xk|p)1/p, 1 ≤ p < ∞ and
‖x‖p =

∑
∞

k=0 |xk|p, 0 < p < 1.
Let A = (ank) be an infinite matrix of complex numbers ank, where n, k ∈ N,

and write
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(Ax)n =
∑

k

ankxk ; (n ∈ N, x ∈ D00(A)), (1)

where D00(A) denotes the subspace of w consisting of x ∈ w for which the sum
exists as a finite sum. For simplicity in notation, we write the summation without
limits running from 0 to ∞ and we use the convention that any term with a negative
subscript is equal to naught. More generally, if µ is a normed sequence space, we
can write Dµ(A) for x ∈ w for which the sum in (1) converges in the norm of µ. We
write

(λ : µ) = {A : λ ⊆ Dµ(A)}

for the space of those matrices sending the whole of the sequence space λ into µ in
this sense.

We give a short survey concerning the spectrum and the fine spectrum of linear
operators defined by some particular triangle matrices over certain sequence spaces.
The fine spectrum of the Cesàro operator of order one on the sequence space ℓp
was studied by Gonzàlez [17], where 1 < p < ∞. Also, weighted mean matrices of
the operator on ℓp were investigated by Cartlidge [9]. The spectrum of the Cesàro
operator of order one on the sequence spaces bv0 and bv was investigated by Okutoyi
[25, 26]. The spectrum and the fine spectrum of the Rhally operator on the sequence
spaces c0 and c were examined by Yıldırım [30]. The fine spectrum of the difference
operator ∆ over the sequence spaces c0 and c were studied by Altay and Başar
[4]. The fine spectra of the difference operator ∆ over the sequence spaces ℓp and
bvp was studied by Akhmedov and Başar [1, 2], where bvp is the space of p-bounded
variation sequences introduced by Başar and Altay [7] with 1 ≤ p < ∞. Also, the fine
spectrum of B(r, s, t) over the sequence spaces c0 and c was studied by Furkan et al.
[15]. In 2010, Srivastava and Kumar [27] determined the spectra and the fine spectra
of the generalized difference operator ∆ν on ℓ1, where ∆ν is defined by (∆ν)nn = νn
and (∆ν)n+1,n = −νn for all n ∈ N, under certain conditions on the sequence
ν = (νn), and they generalized these results by the generalized difference operator
∆uv defined by ∆uvx = (unxn + vn−1xn−1)n∈N for all n ∈ N, (see [28]). Karakaya
and Altun determined the fine spectra of upper triangular double-band matrices
over the sequence spaces c0 and c [23]. Akhmedov and El-Shabrawy [3], and El-
Shabrawy [13, 14] obtained the fine spectrum of the generalized difference operator
∆a,b, defined as a double band matrix with the convergent sequences ã = (ak) and

b̃ = (bk) having certain properties, over the sequence spaces c, ℓp, (1 < p < ∞)
and c0, respectively. Dutta and Baliarsingh [12, 8] examined the fine spectra of the
generalized rth difference operator △r

v on the sequence spaces ℓ1 and c.
Recently, Karaisa [19, 20] and Karaisa and Başar [6] have determined the fine

spectrum of matrix operators with the corresponding upper and lower triangular
matrices A(r̃, s̃) and B(r̃, s̃) with the convergent sequences r̃ = (rk) and s̃ = (sk)
having certain properties, over the sequence space ℓp for (1 ≤ p < ∞) and (1 < p <
∞), respectively. Later, Karaisa and Başar [18, 21, 22] have determined the fine
spectrum of the upper triangular triple band matrix A(r, s, t) over some sequence
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spaces. Finally, Dündar and Başar have determined the fine spectrum of the matrix
operator△+ defined by an upper triangle double band matrix acting on the sequence
space c0 [10].

This paper is organized as follows: In Section 2, some notations and fundamental
definitions are given. In Section 3, the spectrum, the point spectrum, the residual
spectrum and the continuous spectrum of the operator A(r, s, t) on the sequence
space c have been computed. We also give the approximate point spectrum, the
defect spectrum and the compression spectrum of the operator A(r, s, t) over the
space c. In Section 4, we have computed the spectrum and the fine spectrum of the
lower-triangular triple band matrix B(r, s, t) over the sequence space ℓp, (0 < p < 1)
as well. Also, the boundedness and the norm of the operator B(r, s, t) are given.
Finally, we give the graphical representation of the spectrum of upper triangular
triple-band matrices and conclude the study.

2. Notations and known results

Let X and Y be the Banach spaces, and T : X → Y a bounded linear operator. By
R(T ) we denote range of T , i.e.,

R(T ) = {y ∈ Y : y = Tx, x ∈ X}.

By B(X) we also denote the set of all bounded linear operators on X into itself. If
T ∈ B(X), then the adjoint T ∗ of T is a bounded linear operator on the dual X∗ of
X defined by (T ∗f) (x) = f (Tx) for all f ∈ X∗ and x ∈ X .

Let X 6= {θ} be a complex normed space and T : D(T ) → X a linear operator
with domain D(T ) ⊆ X . With T we associate the operator Tα = T − αI, where α
is a complex number and I is the identity operator on D(T ). If Tα has an inverse
which is linear, it is denoted by T−1

α , that is, T−1
α = (T − αI)−1 and it is called the

resolvent operator of T .
Many properties of Tα and T−1

α depend on α, and spectral theory is concerned
with those properties. For instance, we are interested in the set of all α’s in the
complex plane such that T−1

α exists. The boundedness of T−1
α is another property

that will be essential. We shall also ask for what α’s the domain of T−1
α is dense in

X , to name just a few aspects. For our investigation of T , Tα and T−1
α , we need some

basic concepts of spectral theory, which are given as follows (see [24, pp. 370-371]):
A regular value α of T is a complex number such that

(R1) T−1
α exists,

(R2) T−1
α is bounded,

(R3) T−1
α is defined on a set which is dense in X .

The resolvent set ρ(T ) of T is a set of all regular values α of T . Its complement
C \ σ(T ) in the complex plane C is called the spectrum of T . Furthermore, the
spectrum σ(T ) is partitioned into three disjoint sets as follows: The point spectrum
σp(T ) is a set such that T−1

α does not exist. α ∈ σp(T ) is called an eigenvalue of T.
The continuous spectrum σc(T ) is a set such that T−1

α exists and satisfies (R3) but
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not (R2). The residual spectrum σr(T ) is a set such that T−1
α exists but does not

satisfy (R3).

In this section, before Appell et al. [5], we define the three more subdivisions of
the spectrum called the approximate point spectrum, the defect spectrum and the
compression spectrum, respectively.

Given a bounded linear operator T in a Banach space X , we call a sequence (xk)
in X a Weyl sequence for T if ‖xk‖ = 1 and ‖Txk‖ → 0, as k → ∞.

From now on, we call the set

σap(T,X) := {α ∈ C : there exists a Weyl sequence for T − αI} (2)

the approximate point spectrum of T . Moreover, the subspectrum

σδ(T,X) := {α ∈ C : T − αI is not surjective} (3)

is called the defect spectrum of T .

The two subspectra given by (2) and (3) form (not necessarily disjoint) subdivi-
sions

σ(T,X) = σap(T,X) ∪ σδ(T,X)

of the spectrum. There is another subspectrum,i.e.,

σco(T,X) = {λ ∈ C : R(T − αI) 6= X},

which is often called the compression spectrum in the literature. In Goldberg [16],
if T ∈ B(X), with X a Banach space, then there are three possibilities for R(T ):

(A) R(T ) = X ,

(B) R(T ) 6= R(T ) = X ,

(C) R(T ) 6= X .,

and three possibilities for T−1:

(1) T−1 exists and is continuous,

(2) T−1 exists but is discontinuous,

(3) T−1 does not exist.

If these possibilities are combined in all possible ways, nine different states are
created. These are labelled by: A1, A2, A3, B1, B2, B3, C1, C2, and C3. If
an operator is in state C2, for example, then R(T ) 6= X and T−1 exists but is
discontinuous and we can write σ(T,X)C2.

By the definitions given above, we can illustrate the subdivisions of the spectrum
in the following table:



Fine spectra of triangular triple-band matrices 69

1 2 3
T−1
α exists T−1

α exists T−1
α

and is bounded and is unbounded does not exist

α ∈ σp(T,X)
A R(T − αI) = X α ∈ ρ(T,X) – α ∈ σap(T,X)

α ∈ σc(T,X) α ∈ σp(T,X)

B R(T − αI) = X α ∈ ρ(T,X) α ∈ σap(T,X) α ∈ σap(T,X)
α ∈ σδ(T,X) α ∈ σδ(T,X)

α ∈ σr(T,X) α ∈ σr(T,X) α ∈ σp(T,X)

C R(T − αI) 6= X α ∈ σδ(T,X) α ∈ σap(T,X) α ∈ σap(T,X)
α ∈ σδ(T,X) α ∈ σδ(T,X)

α ∈ σco(T,X) α ∈ σco(T,X) α ∈ σco(T,X)

Table 1: Subdivisions of the spectrum of a linear operator

Proposition 1 (see [5], Proposition 1.3, p. 28). Spectra and subspectra of an operator
T ∈ B(X) and its adjoint T ∗ ∈ B(X∗) are related by the following relations:

(a) σ(T ∗, X∗) = σ(T,X),

(b) σc(T
∗, X∗) ⊆ σap(T,X),

(c) σap(T
∗, X∗) = σδ(T,X),

(d) σδ(T
∗, X∗) = σap(T,X),

(e) σp(T
∗, X∗) = σco(T,X),

(f) σco(T
∗, X∗) ⊇ σp(T,X),

(g) σ(T,X) = σap(T,X) ∪ σp(T
∗, X∗) = σp(T,X) ∪ σap(T

∗, X∗).

Relations (c)–(f) show that the approximate point spectrum is in a certain sense
dual to the defect spectrum, and the point spectrum is dual to the compression
spectrum. Equality (g) implies, in particular, that σ(T,X) = σap(T,X) if X is
a Hilbert space and T is normal. Roughly speaking, this shows that normal (in
particular, self-adjoint) operators on the Hilbert spaces are most similar to matrices
in finite dimensional spaces (see [5]).

3. Fine spectra of upper triangular triple-band matrices over

the space of convergent sequences

In this section, our main focus is on the upper triple-band matrix A(r, s, t), where

A(r, s, t) =




r s t 0 . . .
0 r s t . . .
0 0 r s . . .
0 0 0 r . . .
...
...
...
...
. . .



.
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From now on, we assume that s and t are complex parameters which do not vanish
simultaneously.

Let us introduce the operator A(r, s, t) from c to itself by

A(r, s, t)x = (rxk + sxk+1 + txk+2)
∞

k=0 where x = (xk) ∈ c.

In this section, we examine the spectrum, the point spectrum, the residual spec-
trum and the continuous spectrum of the operator A(r, s, t) on the sequence space
c. Besides, we give the approximate point spectrum, the defect spectrum and the
compression spectrum of the matrix operator A(r, s, t) over the space c.

Lemma 1 (see [29], Theorem 1.3.6, p. 6). The matrix A = (ank) gives rise to a
bounded linear operator T ∈ B(c) from c to itself if and only if

(1) the rows of A are in ℓ1 and their ℓ1 norms are bounded,

(2) the columns of A are in c,

(3) the sequence of row sums of A is in c.

The operator norm of T is the supremum of the ℓ1 norms of the rows.

Corollary 1. A(r, s, t) : c → c is a bounded linear operator and

‖A(r, s, t)‖(c:c) = |r| + |s|+ |t|. (4)

Lemma 2 (see [16], p. 59). T has a dense range if and only if T ∗ is one to one.

If T : c → c is a bounded matrix operator with the matrix A, then T ∗ : c∗ → c∗

acting on C⊕ ℓ1 has a matrix representation of the form

[
χ 0
b At

]
, where χ denotes

the characteristic of the matrix A and b is the column vector whose kth entry is
the limit of the column of A for each k ∈ N. For A(r, s, t) : c → c, the matrix
A(r, s, t)∗ ∈ B(ℓ1) is of the form

A(r, s, t)∗ =

[
r + s+ t 0

0 At(r, s, t)

]
.

Theorem 1. A(r, s, t) : c → c has a dense range if and only if α 6= r + s+ t.

Proof. First, let us show that σp[A(r, s, t)
∗,C⊕ ℓ1] = {r+ s+ t}. Suppose that α is

an eigenvalue of the operator A(r, s, t)∗ : C⊕ ℓ1 → C⊕ ℓ1. Then there exists f ∈ ℓ1
satisfying the system of equations

(r + s+ t)f0 = αf0
rf1 = αf1

sf1 + rf2 = αf2
tf1 + sf2 + rf3 = αf3

...





(5)



Fine spectra of triangular triple-band matrices 71

From the above system of linear equation, one can see that α = r + s + t is an
eigenvalue corresponding to the eigenvector (1, 0, 0, 0, . . .). Now, suppose that α 6=
r + s + t. Then, f0 = 0. Let fk be the first nonzero entry of the sequence f .
Then by the k-th equation of (5), α = r. But, the (k + 1)-th equation fk = 0 for
s 6= 0, which contraditcts our assumption. Hence there is no other eigenvalue. So
σp[A(r, s, t)

∗,C⊕ ℓ1] = {r + s+ t}.

Lemma 3 (see [16], p. 60). The adjoint operator T ∗ of T is onto if and only if T
has a bounded inverse.

Before giving the main theorem of this section, we should note the following
remark. In this paper, from now on, if z is a complex number, then by

√
z we

always mean the square root of z with a nonnegative real part. If Re(
√
z) = 0, then√

z represents the square root of z with Im(
√
z) > 0. The same results are obtained

if
√
z represents the other square roots.

Theorem 2. Let s be a complex number such that
√
s2 = −s and define the set D1

by

D1 =
{
α ∈ C : 2

∣∣r − α
∣∣ ≤

∣∣−s+
√
s2 − 4t(r − α)

∣∣
}
.

Then, σc[A(r, s, t), c] ⊆ D1.

Proof. Let y = (yk) ∈ ℓ1. Then, by solving the equation Aα(r, s, t)
∗x = y for

x = (xk) in terms of y, we obtain

x0 =
y0

r + s+ t− α
,

x1 =
y1

r − α
,

x2 =
y2

r − α
+

−sy1
(r − α)2

,

x3 =
y3

r − α
+

−sy2
(r − α)2

+
(s2 − t(r − α))y1

(r − α)3
,

...

and if we denote a1 = 1/(r−α), a2 = −s/(r−α)2, a3 = [s2 − t(r−α)]/(r−α)3, we
have

x0 =
y0

r + s+ t− α
,

x1 = a1y1,

x2 = a1y2 + a2y1,

x3 = a1y3 + a2y2 + a3y1,

...

xn = a1yn + a2yn−1 + · · ·+ any1 =

n∑

k=1

an+1−kyk for n ≥ 1. (6)
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Now, we must find an. We have yn = txn−2 + sxn−1 + (r − α)xn, for n ≥ 3 and if
we use relation (6), we have

yn = t
n−2∑

k=1

an−1−kyk + s
n−1∑

k=1

an−kyk + (r − α)
n∑

k=1

an+1−kyk

= y1[tan−2 + san−1 + (r − α)an] + y2[tan−3 + san−2 + (r − α)an−1]

+ · · ·+ yn−1[sa1 + (r − α)a2] + yna1(r − α) for alln ≥ 3.

This implies that tan−2 + san−1 + (r − α)an = 0, tan−3 + san−2 + (r − α)an−1 =
0, . . .,sa1+(r−α)a2 = 0, (r−α)a1 = 1. In fact, this sequence is obtained recursively
by letting

a1 =
1

r − α
, a2 =

−s

(r − α)2
and tan−2 + san−1 + (r − α)an = 0 for all n ≥ 3.

The characteristic equation of the recurrence relation is (r − α)λ2 + sλ + t = 0. If
∆ = s2 − 4t(r − α) 6= 0, then the straightforward calculation gives that

an =
λn
1 − λn

2√
s2 − 4t(r − α)

for all n ≥ 1, λ1 =
−s+

√
∆

2(r − α)
, λ2 =

−s−
√
∆

2(r − α)
. (7)

By (6), one can see that

|xn| ≤
n∑

k=1

|an+1−k||yk|, for all n ∈ N1,

and we have

|x0|+ |x1|+ · · ·+ |xn| ≤
|y0|

|r + s+ t− α| +
1∑

k=1

|a2−k||yk|+
2∑

k=1

|a3−k||yk|

+ · · ·+
n∑

k=1

|an+1−k||yk|

=
|y0|

|r + s+ t− α|+
n∑

j=1

|aj ||y1|+
n−1∑

j=1

|aj ||y2|+ · · ·+
1∑

j=1

|aj ||yn|

≤ |y0|
|r + s+ t− α| +

n∑

j=1

|aj |(|y1|+ |y2|+ · · ·+ |yn|)

for all n ∈ N. By letting n → ∞, we get

‖x‖1 ≤ |‖y‖1
∞∑

j=1

|aj |+
|y0|

|r + s+ t− α| .

We must show that
∑

∞

j=1 |aj | < ∞. There are two cases here:
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Case 1. If ∆ = s2 − 4t(r − α) 6= 0, relation (7) holds for all k ∈ N1. Now, we
show that if |λ1| < 1, |λ2| < 1. Assume that |λ1| < 1. So we have

∣∣∣−s+
√
s2 − 4t(r − α)

∣∣∣ < |2(r − α)| .

Since
√
s2 = −s, one can see that

∣∣∣∣∣1 +
√
1− 4t(r − α)

s2

∣∣∣∣∣ <
∣∣∣∣
2(r − α)

−s

∣∣∣∣ .

Since |1−√
z| ≤ |1 +√

z| for any z ∈ C, we get
∣∣∣∣∣1−

√
1− 4t(r − α)

s2

∣∣∣∣∣ <
∣∣∣∣
2(r − α)

−s

∣∣∣∣ .

It follows that |λ2| < 1. Now, for |λ1| < 1 we can see that

∞∑

j=1

|aj | ≤
1

|
√
∆|




∞∑

j=1

|λ1|j +
∞∑

j=1

|λ2|j


 .

x = (xk) ∈ ℓ1 since |λ1| < 1. Hence, Aα(r, s, t)
∗ is onto. By Lemma 3, Aα(r, s, t)

has a bounded inverse. This means that

σc[A(r, s, t), c] ⊆
{
α ∈ C : 2

∣∣r − α
∣∣ ≤

∣∣−s+
√
s2 − 4t(r − α)

∣∣
}
= D1.

Case 2. If ∆ = s2 − 4t(r− α) = 0, calculation on the recurrence sequence gives

an =

(
2n

−s

)[ −s

2(r − α)

]n
for all n ≥ 1. (8)

Now, for | − s| < 2|r − α| we can see that

lim
n→∞

∣∣∣∣
an

an−1

∣∣∣∣ =
∣∣∣∣

−s

2(r − α)

∣∣∣∣ < 1.

Since
∑

∞

k=1 |ak| is convergent, x = (xk) ∈ ℓ1. Hence, Aα(r, s, t)
∗ is onto. By Lemma

3, Aα(r, s, t) has a bounded inverse. This means that

σc[A(r, s, t), c] ⊆
{
α ∈ C : 2

∣∣r − α
∣∣ ≤

∣∣−s
∣∣} ⊆ D1.

Theorem 3. Define D2 by

D2 =
{
α ∈ C : 2

∣∣r − α
∣∣ <

∣∣−s+
√
s2 − 4t(r − α)

∣∣
}
.

Then σp[A(r, s, t), c] = D2 ∪ {r + s+ t}.
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Proof. Let A(r, s, t)x = αx for θ 6= x ∈ c. Then, by solving the system of linear
equations

rx0 + sx1 + tx2 = αx0

rx1 + sx2 + tx3 = αx1

rx2 + sx3 + tx4 = αx2

...

rxk−2 + sxk−1 + txk = αxk−2

...





we have

x2 =
−s

t
x1 −

r − α

t
x0

x3 =
s2 − t(r − α)

t2
x1 +

s(r − α)

t2
x0

...

xn =
an(r − α)n

tn−1
x1 −

an−1(r − α)n

tn−1
x0





(9)

for all n ≥ 2. Assume that α ∈ D2. Then we choose x0 = 1 and x1 = 2(r −
α)/[−s+

√
s2 − 4t(r − α)]. We will show that xn = xn

1 for all n ≥ 2. Since λ1 and
λ2 are roots of the characteristic equation (r − α)λ2 + sλ+ t = 0, we must have

λ1λ2 =
t

r − α
and λ1 − λ2 =

√
∆

r − α

combining x1 = 1/λ1 with relation (9) one can see that

xn =
an(r − α)n

tn−1
x1 −

an−1(r − α)n

tn−1
x0 (10)

=

(
r − α

t

)n−1

(r − α)(−an−1x0 + anx1) (11)

=
1

(λ1λ2)n−1

r − α√
∆

(−λn−1
1 + λn−1

2 + λn−1
1 − λn

2λ
−1
1 )

=
1

λn−1
1 λn−1

2

(
1

λ1 − λ2

)
λn−1
2

(
λ1 − λ2

λ1

)

=
1

λn
1

= xn
1 . (12)

The same result is obtained in the case △ = 0 as follows; ∆ = 0 implies that

s2 − 4t(r − α) = 0. Thus, r − α = s2

4t and λ1 = λ2 = − 2t
s . By (8), we get

an =

(
2n

−s

)(−2t

s

)n

. (13)
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Then, substituting (11) and choosing x0 = 1 and x1 = − s
2t , we can write

xn =

(
s

−2t

)2n−2
s2

4t

[
2n− 2

s

(−2t

s

)n−1

− 2n

s

(−2t

s

)n (
s

−2t

)]

=

(
s

−2t

)2n−2 (−2t

s

)n−1
s2

4t

(
2n− 2

s
− 2n

s

)

=

(
s

−2t

)n (−2t

s

)
s2

4t

(−2

s

)

=

(
s

−2t

)n

= xn
1 .

Since |x1| < 1 and x1 = 1, i.e., α = r + s + t, x = (xn) ∈ c. This shows that
D2 ∪ {r + s+ t} ⊆ σp[A(r, s, t), c].

Now, we assume that α /∈ D2, i.e, |λ1| ≤ 1. We must show that α /∈ σp[A(r, s, t), c].
In this situation, we examine the following three cases.

Case 1. |λ2| < |λ1| < 1. In this case, we have s2 6= 4t(r − α) and from relation
(9) we obtain that

xn =
an(r − α)n

tn−1
x1 −

an−1(r − α)n

tn−1
x0

=

(
r − α

t

)n−1

(r − α)(−an−1x0 + anx1)

=
r − α√

∆(λ1λ2)n−1
(−λn−1

1 x0 + λn−1
2 x0 + λn−1

1 x1 − λn
2x1)

=
r − α√

∆

[(
1

λn−1
1

− 1

λn−1
2

)
x0 +

(
λ1

λn−1
2

− λ2

λn−1
1

)
x1

]

=
r − α√

∆

[
1

λn−1
1

(x0 − λ2x1) +
1

λn−1
2

(−x0 + λ1x1)

]
.

Now, if −x0 + λ1x1 = 0 and x0 − λ2x1 = 0, then we have λ1 = λ2, which is a
contradiction. Otherwise, x = (xk) /∈ c.

Case 2. |λ2| = |λ1| < 1. In this case, we have s2 = 4t(r − α) and using the
formula

an =

(
2n

−s

)[ −s

2(r − α)

]n
for all n ≥ 1. (14)

Substituting (14) into (11), we get the following

xn =
2(r − α)

sλn−1
1

[x0(n− 1)− nx1λ1] .

If x0 = x1 = 0, then x = θ, which is a contradiction. Otherwise, x = (xk) /∈ c since
1/|λ1| > 1.
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Case 3. |λ2| = |λ1| = 1. In this case, we have s2 = 4t(r − α) and so we have
| − s/2t| = 1. Substituting (13) into (11), we obtain the following

xn =

(−s

2t

)n−1 [
−(n− 1)

−s

2t
x0 + nx1

]
.

If x0 = x1 = 0, then x = θ, which is a contradiction. Otherwise, x = (xk) /∈ c, which
means α /∈ σp[A(r, s, t), c]. Thus σp[A(r, s, t), c] ⊆ D2 ∪ {r + s+ t}. This completes
the proof.

Theorem 4. σr[A(r, s, t), c] = σp[A
∗(r, s, t), c∗] \ σp[A(r, s, t), c] = ∅.

Proof. For α ∈ σp[A
∗(r, s, t), c∗] \ σp[A(r, s, t), c], the operator A(r, s, t)−αI is one

to one. Thus, [A(r, s, t) − αI]−1 exists. On the other hand, A(r, s, t)∗ − αI is not
one to one. Hence, A(r, s, t) − αI does not have a dense range in c by Lemma 2.
From Theorem 3 and Theorem 1, we have σr[A(r, s, t), c] = ∅. This completes the
proof.

Theorem 5. Let s be a complex number such that
√
s2 = −s. Then,

σ[A(r, s, t), c] = D1.

Proof. The inclusion
{
α ∈ C : 2

∣∣r − α
∣∣ <

∣∣−s+
√
s2 − 4t(r − α)

∣∣
}
⊆ σ[A(r, s, t), c]

holds by Theorem 3. Since the spectrum of any bounded operator is closed [24] , we
have

{
α ∈ C : 2

∣∣r − α
∣∣ ≤

∣∣−s+
√
s2 − 4t(r − α)

∣∣
}
⊆ σ[A(r, s, t), c]. (15)

Again, Theorems 2-4 give that

σ[A(r, s, t), c] ⊆
{
α ∈ C : 2

∣∣r − α
∣∣ ≤

∣∣−s+
√
s2 − 4t(r − α)

∣∣
}
. (16)

By combining (15) and (16), one can observe that σ[A(r, s, t), c] = D1, as desired.

Theorem 6. σc[A(r, s, t), c] = D3 \ {r + s+ t}, where

D3 =
{
α ∈ C : 2

∣∣r − α
∣∣ =

∣∣−s+
√
s2 − 4t(r − α)

∣∣
}
.

Proof. Since the sets σc[A(r, s, t), c], σr[A(r, s, t), c] and σp[A(r, s, t), c] are pairwise
disjoint and their union is σ[A(r, s, t), c]. Thus the proof is immediate from Theorems
3-5.

Theorem 7. If |t| > | − s|, r ∈ σ[A(r, s, t), c]A3.
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Proof. From Theorem 3, r ∈ σp[A(r, s, t), c]. Thus, [A(r, s, t)−αI]−1 does not exist.
It is sufficient to show that A(r, s, t)− Ir is onto and for given y = (yk) ∈ c, we have
to find x = (xk) ∈ c such that [A(r, s, t)− Ir]x = y. Solving this equation, we get

xk =
1

t

k−2∑

i=0

(−s

t

)k−2−i

yi +

(−s

t

)k

x1 (17)

for k ≥ 2. By (17), xk satisfies

xk =
−s

t
xk−1 +

yk−2

t

for k ≥ 2. Since|−s
t | < 1 and (yk−2/t) ∈ c, by Lemma 2.1 [3], x = (xk) ∈ c. The

operator A(r, s, t)− Ir is onto. Hence, r ∈ σ[A(r, s, t), c]A3.

Theorem 8. The following statements hold:

(i) σap[A(r, s, t), c] = D1,

(ii) σδ[A(r, s, t), c] = D1\{r},
(iii) σco[A(r, s, t), c] = {r + s+ t}.
Proof. (i) From Table 1, σap[A(r, s, t), c] = σ [A(r, s, t), c] \σ [A(r, s, t), c]C1. By
Theorem 4, we get σr[A(r, s, t), c] = σ [A(r, s, t), c]C1 ∪ σ [A(r, s, t), c]C2 = ∅. Again
by Table 1, one can see that σ [A(r, s, t), c]C1 = σ [A(r, s, t), c]C2 = ∅. Hence,
σap[A(r, s, t), c] = D1.

(ii) The following equality

σδ[A(r, s, t), c] = σ[A(r, s, t), c]\σ [A(r, s, t), c]A3

can be deduced from Table 1. By using Theorems 5 and 7 we conclude that
σδ[A(r, s, t), c] = D1\{r}.

(iii) From Table 1, we have

σco[A(r, s, t), c] = σ [A(r, s, t), c]C1 ∪ σ [A(r, s, t), c]C2 ∪ σ [A(r, s, t), c]C3.

Thus, σco[A(r, s, t), c] = {r + s+ t} by Theorems 1 and 4.

4. Fine spectra of triangular triple-band matrices over the

space of ℓp, (0 < p < 1)

In this section, we determine the fine spectra of a lower triangular triple-band matrix
over the sequence spaces ℓp, where (0 < p < 1).

A lower triple-band infinite matrix is of the following form:

B(r, s, t) =




r 0 0 0 . . .
s r 0 0 . . .
t s r 0 . . .
0 t s r . . .
...
...
...
...
. . . .



.
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Let us begin with a theorem concerning the bounded linearity of the operator
B(r, s, t) acting on the sequence space ℓp, (0 < p < 1).

Theorem 9. The operator B(r, s, t) : ℓp → ℓp is a bounded linear operator and

‖B(r, s, t)‖(ℓp:ℓp) = |r|p + |s|p + |t|p. (18)

Proof. The linearity of the operator B(r, s, t) is clear. Now, we prove that (18)
holds on the space ℓp. Let us take e(0) = (1, 0, 0, · · · ) ∈ ℓp. Then B(r, s, t)e(0) =
(r, s, t, 0, . . .) and observe that

‖B(r, s, t)‖(ℓp:ℓp) ≥
‖B(r, s, t)e(0)‖p

‖e(0)‖p
= |r|p + |s|p + |t|p,

which gives the following

‖B(r, s, t)‖(ℓp:ℓp) ≥ |r|p + |s|p + |t|p. (19)

Let x = (xk) ∈ ℓp, where 0 < p < 1. Then, by using the triangle inequality and
taking x−1 = 0, we have

‖B(r, s, t)x‖p =

∞∑

k=0

|rxk + sxk−1 + txk−2|p

≤
∞∑

k=0

|rxk|p +
∞∑

k=0

|sxk−1|p +
∞∑

k=0

|txk−2|p

= |r|p
∞∑

k=0

|xk|p + |s|p
∞∑

k=0

|xk−1|p + |t|p
∞∑

k=0

|xk−2|p

= |s|p‖x‖p + |r|p‖x‖p + |t|p‖x‖p
= (|r|p + |s|p + |t|p)‖x‖p,

which gives

‖B(r, s, t)‖(ℓp:ℓp) ≤ |r|p + |s|p + |t|p. (20)

Therefore, by combining inequalities (19) and (20) we complete the proof.

If T : ℓp −→ ℓp is a bounded matrix operator with the matrix A, then it is known
that the adjoint operator T ∗ : ℓ∗p −→ ℓ∗p is defined by the transpose of the matrix A
and the dual space ℓ∗p of ℓp is isomorphic to ℓ∞, where 0 < p < 1.

Theorem 10. σ[B(r, s, t), ℓp] = D1.

Proof. It is known from Cartlidge [9] that if a matrix operator A is bounded on
c, then σ(A, c) = σ(A, ℓ∞). So we have σ[A(r, s, t), ℓ∞] = D1. By Proposition
1, σ[B(r, s, t), ℓp] = σ[B∗(r, s, t), ℓ∗p] = σ[A(r, s, t), ℓ∞] = D1, which completes the
proof.

Theorem 11. σp[B(r, s, t), ℓp] = ∅.



Fine spectra of triangular triple-band matrices 79

Proof. Consider B(r, s, t)x = αx with x 6= θ = (0, 0, 0, . . .) in ℓp. Then, by solving
the system of linear equations

rx0 = αx0

sx0 + rx1 = αx1

tx0 + sx1 + rx2 = αx2

tx1 + sx2 + rx3 = αx3

...

Let xk be the first nonzero entry of x. Then the system of equations reduces to

rxk = αxk

sxk + rxk+1 = αxk+1

txk + sxk+1 + rxk+2 = αxk+2

txk+1 + sxk+2 + rxk+3 = αxk+3

...

From the first equation we get α = r and using the other equations in the given
order we get s, t = 0, which contradicts the fact that s, t 6= 0.

Theorem 12. σp[B
∗(r, s, t), ℓ∗p] = σp[A(r, s, t), ℓ∞] = D1.

Proof. Assume that α ∈ D1. By using the methodology used in the proof of
Theorem 3, and it is easy to see that α ∈ D1 implies |x1| ≤ 1, we can see that
(xn) = (x1)

n, as in equation (12). Thus xn ∈ ℓ∞. Moreover, assume that α /∈ D2,
which implies |λ| < 1. Using the same reasoning given in Case 1 and Case 2 in the
proof of Theorem 3, xn /∈ ℓ∞. Therefore σp[A(r, s, t), ℓ∞] = D1.

Theorem 13. σr[B(r, s, t), ℓp] = D1.

Proof. We show that the operatorB(r, s, t)−αI has an inverse andR[B(r, s, t)− αI]
6= ℓp for α satisfying 2

∣∣r − α
∣∣ ≤

∣∣−s+
√
s2 − 4t(r − α)

∣∣. For α 6= r, B(r, s, t) − αI
is a triangle so it has an inverse. For α = r, the operator B(r, s, t) − αI is
one to one by Theorem 11. So it has an inverse. By Theorem 12, the opera-
tor [B(r, s, t) − αI)]∗ = B(r, s, t)∗ − αI is not one to one for α ∈ C such that
2
∣∣r − α

∣∣ ≤
∣∣−s+

√
s2 − 4t(r − α)

∣∣. Hence the range of the operator B(r, s, t)− αI
is not dense in ℓp by Lemma 2. So, σr[B(r, s, t), ℓp] = D1.

Theorem 14. σc[B(r, s, t), ℓp] = ∅.

Proof. Since the parts σc[B(r, s, t), ℓp], σr[B(r, s, t), ℓp] and σp[B(r, s, t), ℓp] are
pairwise disjoint and their union is σ[B(r, s, t), ℓp], the proof is immediate, from
Theorems 10, 11 and 13.

Theorem 15. If |t| > | − s|, r ∈ σ[B(r, s, t), ℓp]C1.
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Proof. From Theorem 13, r ∈ σr[B(r, s, t), ℓp]. It is sufficient to show that the
operator [B(r, s, t) − Ir]−1 is continuous. By Lemma 3, it is enough to show that
[B(r, s, t)−Ir]∗ is onto and for given y = (yk) ∈ ℓ∗p = ℓ∞, we have to find x = (xk) ∈
ℓ∞ such that [B(r, s, t)− Ir]∗x = y. Solving the system of linear equations

sx1 + tx2 = y0

sx2 + tx3 = y1

sx3 + tx4 = y2

...

sxk + txk+1 = yk−1

...

one can easily observe that

xk =
1

t

k−2∑

i=0

(−s

t

)k−2−i

yi +

(−s

t

)k

x1.

We can easily see that x = (xk) ∈ ℓ∞ since |t| > | − s|. This shows that [B(r, s, t)−
Ir]∗ is onto. Hence, r ∈ σ[B(r, s, t), ℓp]C1.

Theorem 16. The following statements hold:

(i) σap[B(r, s, t), ℓp] = D1\{r} for |t| > | − s|,

(ii) σδ[B(r, s, t), ℓp] = D1,

(iii) σco[B(r, s, t), ℓp] = D1.

Proof. (i) From Table 1, we get σap[B(r, s, t), ℓp] = σ [B(r, s, t), ℓp] \σ [B(r, s, t), ℓp]C1.
By Theorem 15, one can obtain σ [B(r, s, t), ℓp]C1 = {r}. Hence, σap[B(r, s, t), ℓp] =
D1\{r}.

(ii) The following equality

σδ[B(r, s, t), ℓp] = σ[B(r, s, t), ℓp]\σ [B(r, s, t), ℓp]A3

is obtained from Table 1. By Theorems 10 and 11 σδ[B(r, s, t), ℓp] = D1.

(iii) From Table 1, we have

σco[B(r, s, t), ℓp] = σ [B(r, s, t), ℓp]C1 ∪ σ [B(r, s, t), ℓp]C2 ∪ σ [B(r, s, t), ℓp]C3 = σp[B
∗(r, s, t), ℓ∗p].

By Theorem 12, it is immediate that σco[B(r, s, t), ℓp] = D1.
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5. Graphical representation

In this section, we give the graphical representations of the spectrum of the triangular
triple-band matrix over the sequence space c.

If we choose r = t = 1, s = −2, we get

σ[A(1,−2, 1), c] =
{
α ∈ C :

∣∣1−√
α
∣∣ ≤ 1

}
.

Then, in polar coordinates, the boundary of σ[A(1,−2, 1), c] is as follows:
Let α = ρeiθ. Then,

1 =
∣∣∣1−√

ρe
iθ
2

∣∣∣

=

[
1−√

ρ cos

(
θ

2

)]2
+

[
−√

ρ sin

(
θ

2

)]2

= −2
√
ρ cos

(
θ

2

)
+ ρ+ 1

ρ = 4 cos2
(
θ

2

)
, −π < θ < π.

Figure 1: The continuous spectrum of the operator A(r, s, t) over the space c

Figure 2: The point spectrum of the operator A(r, s, t) over the space c
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Figure 3: The spectrum of the operator B(r, s, t) and A(r, s, t) over the spaces ℓp and c

Conclusion

In this paper, we determine the spectrum, the continuous spectrum, thepoint spec-
trum and the residual spectrum of the operator triple-band matrix over the sequence
spaces ℓp and c and give their graphical representations. We also obtain a new type
of subspectral classes.

Finally, we should note that in the case t = 0, the operator A(r, s, t) defined by
an upper triangular triple-band matrix reduces to the operator U(r, s) defined by an
upper triangular double band matrix, and in the case r = 1, s = −1 and t = 0, the
operator A(r, s, t) is reduced to △+ defined by an upper triangular difference matrix.
Our results are more general and more comprehensive than the corresponding results
obtained by Karakaya and Altun [23], and Dündar and Başar [10], respectively.
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[2] A.M.Akhmedov, F. Başar, On the fine spectra of the difference operator ∆ over the

sequence space bvp, (1 ≤ p < ∞), Acta Math. Sin. Eng. Ser. 23(2007), 1757–1768.
[3] A.M.Akhmedov, S. R.El-Shabrawy, On the fine spectrum of the operator ∆a,b

over the sequence space c, Comput. Math. Appl. 61(2011), 2994–3002.
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