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Abstract. We study induced representations of Hilbert modules over locally C*-algebras
and their non-degeneracy. We show that if V' and W are Morita equivalent Hilbert modules
over locally C*-algebras A and B, respectively, then there exists a bijective correspondence
between equivalence classes of non-degenerate representations of V' and W.
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1. Introduction

Morita equivalence and induced representations of C*-algebras were first introduced
by Rieffel [16, 17]. Two C*-algebras A and B are Morita equivalent if there exists
a full Hilbert A-module E such that B is isomorphic to the C*-algebra K4(FE) of
all compact operators on E. Some properties of C*-algebras that are preserved un-
der Morita equivalence were investigated in [2, 4, 15, 21]. Indeed, Rieffel defined
induced representations of C*-algebras, that are now known as Rieffel induced rep-
resentations, by using tensor products of Hilbert modules and established an equiva-
lence between the categories of non-degenerate representations of Morita equivalent
C*-algebras. Joita [10, 11] defined the notions of Morita equivalence and induced
representations in the category of locally C*-algebras. Joita and Moslehian [12]
have recently introduced a notion of Morita equivalence in the category of Hilbert
C*-modules considered to obtain induced representations of Hilbert modules over
locally C*-algebras. This enables us to prove the imprimitivity theorem for induced
representations of Hilbert modules over locally C*-algebras.

Let us quickly recall the definition of locally C*-algebras and Hilbert modules
over them. A locally C*-algebra is a complete Hausdorff complex topological *-
algebra A whose topology is determined by its continuous C*-seminorms in the
sense that the net {a;};c; converges to 0 if and only if the net {p(a;)}icr converges
to 0 for every continuous C*-seminorm p on A. Such algebras appear in the study of
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certain aspects of C*-algebras such as tangent algebras of C*-algebras, a domain of
closed x-derivations on C*-algebras, multipliers of Pedersen’s ideal, noncommutative
analogues of classical Lie groups, and K-theory. These algebras were first introduced
by Inoue [6] as a generalization of C*-algebras and studied more in [5, 14] with
different names. A (right) pre-Hilbert module over a locally C*-algebra A is a right
A-module E compatible with the complex algebra structure and equipped with an
A-valued inner product (-,-) : E x E — A, (z,y) — (z,y), which is A-linear in the
second variable y and has the properties:

(x,y) = (y, )", and (x,z) > 0 with equality if and only if = 0.

A pre-Hilbert A-module E' is a Hilbert A-module if F is complete with respect
to the topology determined by the family of seminorms {pg},cs5(4), Where 5z (§) =
Vp((€,8)), &€ € E. Hilbert modules over locally C*-algebras have been studied
systematically in the book [8] and the papers [7, 14, 20].

Joita and Moslehian [12], and Skeide [18] defined Morita equivalence for Hilbert
C*-modules with two different methods. In the recent sense of Joita and Moslehian,
two Hilbert modules V' and W over C*-algebras A and B, respectively, are called
Morita equivalent if K 4(V') and K (W) are strong Morita equivalent as C*-algebras.
We consider this definition, which is weaker than Skeide’s definition and also fitted
to our paper.

In this paper, we first present some definitions and basic facts about locally C*-
algebras and Hilbert modules over them. In [19], Skeide proved that if E is a Hilbert
module over a C*-algebra A, then every representation of A induces a representation
of E. We use this fact to reformulate the induced representations of Hilbert C*-
modules and some of their properties which have been studied in [1]. These enable
us to obtain the notion of induced representations of Hilbert modules over locally
C*-algebras. We finally define the concept of Morita equivalence for Hilbert modules
over locally C*-algebras. We prove that two full Hilbert modules over locally C*-
algebras are Morita equivalent if and only if their underlying locally C*-algebras are
strong Morita equivalent and then we give a module version of the imprimitivity
theorem. Indeed, we show that for Morita equivalent Hilbert modules V' and W
over locally C*-algebras A and B, respectively, there is a bijective correspondence
between equivalence classes of non-degenerate representations of V and W.

2. Preliminaries

Let A be a locally C*-algebra, S(A) the set of all continuous C*-seminorms on
Aand p € S(A). Weset N, = {a € A: p(a) = 0}, then A, = A/N, is a
C*-algebra in the norm induced by p. For p,q € S(A) with p > ¢, the surjective
morphisms 7, : A, = Ay defined by m,q(a+ Np) = a+ Ny induce the inverse system
{Ap; Tpg}p.gesa), p>q of C*-algebras and A = @p Ap, ie., the locally C*-algebra
A can be identified with @p Ap. The canonical map from A onto A, is denoted

by m, and a, is reserved to denote a + N,. A morphism of locally C*-algebras
is a continuous morphism of *-algebras. An isomorphism of locally C*-algebras is
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a morphism of locally C*-algebras which possesses an inverse morphism of locally
C*-algebras.

A representation of a locally C*-algebra A is a continuous *-morphism ¢ : A —
B(H), where B(H) is the C*-algebra of all bounded linear maps on a Hilbert space
H. If (¢, H) is a representation of A, then there is p € S(A) such that ||¢(a)|| < p(a),
for all @ € A. The representation (y,, H) of A, where ¢, o m, = ¢ is called a
representation of A, associated to (¢, H). We refer to [5, 11] for basic facts and
definitions about the representation of locally C*-algebras.

Suppose E is a Hilbert A-module and (F, E) is the closure of linear span of
{{z,y) : =,y € E}. The Hilbert A-module E is called full if (E,E) = A. One
can always consider any Hilbert A-module as a full Hilbert module over locally C*-
algebra (E, E). For cachp € S(A),NF = {¢ € E: pp(¢) = 0} is a closed submodule
of E and E, = E/N} is a Hilbert Aj,-module with the action (£ + NF)m,(a) =
€a+ NF and the inner product (£ + NF,n+ NJF) = m,((¢,1)). The canonical map
from E onto E, is denoted by o} and &, is reserved to denote o7 (£). For p,q € S(A)
with p > ¢, the surjective morphisms o : E, — E, defined by o/ (0} (€)) = 07 (€)

P q
induce the inverse system {E,; Ap; aﬁz, Tpq Y p,aeS(A), p>q Of Hilbert C*-modules in
the following sense:

U;Ez(gpap) = U;E;(gp)ﬂpq(ap)v &p € Ep, ap € Ay, p,g € S(A), p>gq,

<U£1(€p)a0;£1(77p)> = qu(<§pa77p>)7 Epyp € Ep, prq € S(A), p>q,

© 04 004 =04 if pgr€S(A)andp>q=>r,

ol (&) =&, E€E, peS(A).

In this case, T&np E, is a Hilbert A-module which can be identified with E. Let
FE and F be Hilbert A-modules and T : F — F an A-module map. The mod-
ule map T is called bounded if for each p € S(A) there is k, > 0 such that
pr(Tx) < k, pr(z) for all z € E. The module map T is called adjointable if
there exists an A-module map T* : F — E with the property (Tx,y) = (z,T*y)
for all z € E,y € F. It is well-known that every adjointable map is bounded.
The set La(E, F) of all bounded adjointable A-module maps from F into F be-
comes a locally convex space with the topology defined by the family of seminorms
{P}pescay, where p(T) = |[(mp)« (T L o, (B,.F,) a0d (Tp)« : LA(E, F) = La, (Ep, F)
is defined by (m,).(T)(§ + NF) = T¢ + N for all T € La(E,F), (£ € E. For
p,q € S(A) with p > ¢, the morphisms (7,q)s« : La,(Ep, Fp) — La,(Ey, Fy) defined

by (mpq)«(Tp)(0F (§)) = o, (T (0} (€))) induce the inverse system

{LAp (Epv Fp)§ (qu)*}p,qGS(A% p>q

of Banach spaces such that yilp La,(Ep, Fy) can be identified to La(E,F). In

particular, topologizing, L 4 (E, F) becomes a locally C*-algebra which is abbreviated
by La(E). The set of all compact operators K4(E) on E is defined as the closed
linear subspace of L(FE) spanned by {0, : 6,,(&) = z(y,&) for all z,y,£ € E}.
This is a locally C*-subalgebra and a two-sided ideal of L4(FE); moreover, K4(E)
can be identified to @p K, (Ep).
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Let V and W be Hilbert modules over locally C*-algebras A and B, respectively,
and U : A — Lp(W) a continuous *-morphism. We can regard W as a left A-module
by (a,y) = ¥(a)y, a € A, y € W. The right B-module V ®4 W is a pre-Hilbert
module with the inner product given by (r ® y, 2 ® t) = (y, ¥((x, 2))t). We denote
by V ®@g¢ W the completion of V ® 4 W, cf. [9] for more detailed information.

3. Induced representations of Hilbert modules

In this section, we first study induced representations of Hilbert C*-modules and then
we reformulate them in the context of Hilbert modules over locally C*-algebras.

Let H and K be Hilbert spaces. Then the space B(H, K) of all bounded operators
from H into K can be considered as a Hilbert B(H )-module with the module action
(T,S) - TS, T € B(H,K) and S € B(H) and the inner product defined by
(T,S) =T*S,T,S € B(H,K). Murphy [13] showed that any Hilbert C*-module
can be represented as a submodule of the concrete Hilbert module B(H, K') for some
Hilbert spaces H and K. This allows us to extend the notion of a representation
from the context of C*-algebras to the context of Hilbert C*-modules. Let V' and
W be two Hilbert modules over C*-algebras A and B, respectively, and ¢ : A —
B be a morphism of C*-algebras. A map ® : V — W is said to a p-morphism
if (®(x),®(y)) = ¢((x,y)) for all x,y € V. A ¢-morphism ® : V — B(H,K),
where ¢ : A — B(H) is a representation of A is called a representation of V.
When @ is a representation of V', we assume that an associated representation of
A is denoted by the same lowercase letter ¢, so we will not explicitly mention
p. Let ® : V — B(H,K) be a representation of a Hilbert A-module V. We
say ® is a non-degenerate representation if ®(V)(H) = K and ®(V)*(K) = H.
Two representations ®; : V. — B(H;, K;) of V| i = 1,2 are said to be unitarily
equivalent if there are unitary operators Uy : Hi — Hs and Uy : K1 — K>, such
that Ua®4(v) = ®2(v)U; for all v € V. Representations of Hilbert modules have
been investigated in [1, 3, 19].

Lemma 1. Let V be a full Hilbert A-module and ®1 : V — B(Hy, K1) and @3 :
V — B(Ha, K3) two non-degenerate representations of V.. If ®1 and Py are unitarily
equivalent, then o1 and po are unitarily equivalent.

Proof. Let Uy : H; — Hy and Us : K1 — K3 be unitary operators and Us®4(z) =
@o(x)U; for all x € V. Then we have

Urp1((z,y))h = Ur®1(2)" @1(y)h = P2(z)" 2(y)Urh = p2((z,y)) U1 h,

for every x,y € V and h € H;. Since V is full, we conclude that Uipi(a)h =
w2(a)Urh for every a € A and h € H;, and consequently, ¢1 and o are unitarily
equivalent. O

Skeide [19] recovered the result of Murphy by embedding every Hilbert A-module
E into a matrix C*-algebra as a lower submodule. He proved that every represen-
tation of B induces a representation of E. We describe his induced representation
as follows.
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Construction 1. Let B be a C*-algebra and E a Hilbert B-module and ¢ : B —
B(H) a *-representation of B. Define a sesquilinear form (.,.) on the vector space
E®ugH by (x@h,yxk) = (h, o({x,y))k) i, where {.,.)a denotes the inner product
on the Hilbert space H. By [19, Proposition 3.8], the sesquilinear form is positive
and so E®q1q H is a semi-Hilbert space. Then (E ®quq H)/Ng, s a pre-Hilbert space
with the inner product defined by

(x@h+ Ny, y®k+Ny) = (2@ h,y®Kk),

where N, is the vector subspace of E Q@qq H generated by {x @ h € E ®qq H :
(x@h,x@h) = 0}. The completion of (EQqiq H)/N, with respect to the above inner
product is denoted by g H. We identify the elements x@h with the equivalence classes
z®h+ N, € gH. Suppose x € E and Lyh = x®h then || Lyh||? = (h, p((x,x))h) <
|hlI2|z)|?, i.e. L, € B(H,p H). We define n, : E — B(H,g H) by n,(x) = Ly.
Then for z,a’ € E, h,h' € H and b € B we have (n,(x),n,(z")) = ¢((x,2’)) and
Ny (xb) = ny(x)p(b), and so n, is a representation of E.

Lemma 2. Let p; : B — B(Hy) and @2 : B — B(Hz) be two non-degenerate
representations of B. If 1 and o are unitarily equivalent, then n,, and n,, are
unitarily equivalent.

Proof. Suppose U : Hy — Hs is a unitary operator such that Ui (b) = ¢2(b)U for
allb € B. Then idg ®U : F ®qig Hi = E ®q1g Ho given by x ® hy — = ® hy can be
extended to a unitary operator V from gpH; onto gHs and Vi, (x) = 1y, (x)U for
all x € E. Hence, 1,, and 7,, are unitarily equivalent. [l

The above argument enables us to extend the Rieffel induced representations
from the case of C*-algebras to the context of Hilbert C*-modules. For this, let V'
and W be two full Hilbert modules over C*-algebras A and B, respectively. Let F be
a Hilbert B-module and A acts as adjointable operators on the Hilbert C*-module
E, and ® : W — B(H,K) is a non-degenerate representation of W. Using [15,
Proposition 2.66], the formula 4¢(z ® h) = (a.z) ® h extends to obtain a (Rieffel
induced) representation of A as bounded operators on Hilbert space gH. In view
of Construction 1, the representation 4y : A — B(gpH) of the C*-algebra A obtains
the representation na, : V.= B(gH, v(gH)) of the Hilbert A-module V. The
constructed representation Nay is called the Rieffel induced representation from W

to V via F and denoted by gq). The following result can be found in [1, Proposition
3.3] that we derive from Lemmas 1 and 2. Our argument seems to be shorter.

Lemma 3. Let W be a full Hilbert B-module and ®, : W — B(Hi,K;) and
Oy ¢ W — B(Hs, K3) two non-degenerate representations of W. If ®1 and P
are unitarily equivalent, then %, ®1 and % ®o are unitarily equivalent.

Corollary 1. If ® : W — B(H,K) and ®;c1®; : W — B(®ierHi, ®ic1 K;) are
unitarily equivalent, then L ® and ®;e1 %P; are unitary equivalent.

Now, we reformulate representations of the Hilbert module from the case of C*-
algebras to the case of locally C*-algebras. Let V and W be two Hilbert modules over



90 KH. KARIMI AND K. SHARIFI

locally C*-algebras A and B, respectively, and ¢ : A — B a morphism of locally C*-
algebras. A map ® : V — W is said to be a p-morphism if (®(z), ®(y)) = ¢({z,y)),
for all z,y € V. A @-morphism ® : V — B(H,K), where ¢ : A — B(H) is a
representation of A, is called a representation of V. We can define non-degenerate
representations and unitarily equivalent representations for Hilbert modules over
locally C*-algebras like a Hilbert C*-modules case.

Suppose A is a locally C*-algebra, V' is a Hilbert A-module and ¢ : A — B(H)
is a representation of A on some Hilbert space H. Suppose p € S(A) and ¢, is
a representation of A, associated to ¢; then there exist a Hilbert space K and a
representation @, : V,, - B(H, K) which is a ¢p-morphism. For details we refer to
the proof of [13, Theorem 3.1]. It is easy to see that the map ® : V — B(H, K),

®(v) = ®p(0) (v)) is a p-morphism, i.e., it is a representation of V.

Lemma 4. Let V be a Hilbert module over locally C*-algebra A and ® : V. —
B(H,K) a representation of V. If p € S(A) and ¢, is a representation of A,
associated to ¢, then the map ®, : V, = B(H,K), ®,(0) (v)) = ®(v) is a ©p-
morphism. Specifically, ®, is a representation of V,, and ® is non-degenerate if and

only if ®, is. In this case, we say that ®, is a representation of V,, associated to ®.

Proof. Let v,v" € V and Dy, (v — v') = 0. Since ||p(a)| < p(a) for all a € A, we
have (®(v —v'), (v —v')) = ¢({v —v',v — ")) = 0, which shows ®,, is well-defined.
We also have

(@, (0 (1)), @p(0, (v))) = (B(0), B(v)) = @((v,0)) = @pomy((v,0))

’

= {0y (v), 0, (v))).

Then, by definition of ®,, the representation ® is non-degenerate if and only if ®,
is non-degenerate. O

Let V and W be two full Hilbert modules over locally C*-algebras A and B,
respectively. Let FE be a Hilbert B-module, ¥ : A — Lp(F) a non-degenerate
continuous #-morphism and ® : W — B(H, K) a non-degenerate representation of
W. We construct a non-degenerate representation from W to V via E as follows.

Construction 2. We define a sesquilinear form (.,.) on the vector space E Qg1 H
by (x®@h, yQk) = (h, o({x,y))k) g and make the Hilbert space g H as in Construction
1. The map 4 : A — B(pH) defined by

ao(a)(x@h) =V(a)zr@h, a€ A, 2 € E, h€ H,

is a representation of A. The representation (g H, ggo) is called the Rieffel induced
representation from B to A via E, cf. [11]. Since A acts as an adjointable operator
on Hilbert B-module E, we can construct interior tensor product V @y E as a Hilbert
B-module. Hence, we find the Hilbert spaces g H and vg,zH. Let v € V; then the
map E x H — yg,eH, (x,h) = v®x ® h is a bilinear form and so there is a
unique linear transformation g®(v) : EQqg H = vgyrH which can be extended to
a bounded linear operator },®(v) from pH to vg,pH. To see this, suppose q € S(B),
x € E, he H and (¢4, H) is a representation of By associated to (g, H). We have
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(E®()(x®@h) , gPW)(r®h)=(vRTRh,vRTQh)

= (h,o((v®@z,v®1))h)H

= (h, o((z, ¥((v,v))2))h) 1

= (h, pq 0 mg((U((v,v))?2, ¥ ((v,0))"2))h) i

= (h,0q({0 (U ((v,0)) /%), 0 (T ((v, 0)) ) h)

= (B, g ()« (T (v, 0))/?) (04 (), () (¥ ((v,0))/?) (04 ()))) )
< 4(¥{w, v)){h, 0q((og(2), 04 () )

= q(¥(v,v))(h (<PqO7Tq)(< z))h)m

= q(¥(v,v))(h, p({z,2))h) r

= (U (v,0)){x ® h,x @ h).

The following equalities hold for every v,v eV, z, 2 € E and h, heH
(e@h, 5 (v) (o) @ 1)) = (F2)@@h) , FO() @ b))
vRTh, ’U/ ®x/®h/>
oo 2,0 @2 )hy
oo W (0,0 ) DR i
@h, U((v,v))z @h)
=@®h, ge((v,v)(= @h),
which imply (B®), 5 ®0)) = Lo*(v) LeWw) = Ao((v,v')). That is, the map
Vo :V — B(gH, vey,rH) is a ap-morphism and so it is a representation of V.
We now show that Y.® is non-degenerate. To see this, Tec/all that U(A)(E) = E and
(V,V)y = A, which imply W((V,V))(E) = E. Suppose z,x € E and h € H, we have
@ =) @h|* = (ho(w—2" 2 -2 )h)u
< Bl — 2",z — 2 )|
< IWPgle =o' x =) = |hlPap(z - ).
Given € > 0, there exist v;,v; € V and z; € E such that ae (>0, (v, v ))ai—1) < €.

In view of the above inequality, the term 3, W ((vi, v;))z; @ h approzimates x @ h in
rH. But we have

Z‘IJ Vi,V 1>)I1 ®h - Z E@(<UU z>)(‘r1 ®h)

=
= (h,
=
= (z

_Z VO (v;) Bh®(v;)(z; @ h)
:Z £ (vi) (v, @ 2 @ h),

which implies L ®(V)*(voy,rH) = pH. The equality y®(V)(gH) = ve,rH fol-
lows from the definition of %.®, i.e., %® is non-degenerate.
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Definition 1. The representation %® in Construction 2 is a called Rieffel induced
representation from W to V wvia E.

Theorem 3. Let V and W be two full Hilbert modules over locally C*-algebras A
and B, respectively. Let E be a Hilbert B-module, ¥ : A — Lg(FE) a non-degenerate
continuous *-morphism and ® : W — B(H,K) a non-degenerate representation.
If ¢ € S(B) and (pq, H) is a non-degenerate representation of By associated to
(p, H), then there is p € S(A) such that A, acts non-degenerately on E, and the

) v . :
representations % ® and ;f ®, o 0'1‘7/ of V' are unitarily equivalent.
q

Proof. Continuity of ¥ implies that there exists p € S(A) such that §(¥(a)) < p(a)
for each a € A, which guarantees ¥, : A, — L, (Eq), V,(mp(a)) = (14)«(¥(a)) is a
s-morphism of C*-algebras. Moreover, ¥,, is non-degenerate since

\IJP(AP)(EP) = \I]P(WP(A))(UE(E)) Wq)*(\I’(A)@;E(E))
(U(A)(E))
(E) = E,.

g

Sl

g

If ®, is a non-degenerate representation of W, associated to ®, then g’; L
v, .
B(g,H , v,04,5,H) defined by Eszq(og(v))(of(x) ®@h) =0y (v)@cF(z)@his a
non-degenerate representation of V,, which is also a gz pg-morphism. Indeed, g‘; o, is
the Rieffel induced representation from W, to V,, via E;. Hence, gp ®4 0 0) is anon-
q
degenerate representation of V and it is a gz pq © mp-morphism. The representations
(4o, pH) and (’g: ©q © Ty, g,H) of A are unitarily equivalent by [11, proposition
3.4]. We define the linear map U; : E Qqig H = E; Qqig H, U1(z @ h) = of(:v) Qh

which satisfies

<U1($ ® h), Ul(l' ® h)> =

for all z € F and h € H. Then U; can be extended to a bounded linear operator,
which is again denoted by Uy from g H onto g, H. It is easy to see that U; is a unitary
operator. We define the linear map Uz : V ®qig E ®aig H = V), @a1g £y @aig H by
Us(v@x @ h) =0 (v) @) (x) @h. Forevery v € V, z € E and h € H we have

({Us(v @z ®@h),Us(v@a@h)) = (o) (v) 0L (z) @ h,o) (v) ® 0L () @ h)

(v) @ 0 (), 0} (1) @ o F (@) ) )
L Wp((oy) (v), 0y () () ) )
W,

E
(T (0, 0)oF (2)) ) )

ag
h7 Pq <U;‘7/

)®
(o} @)
= (hq (0 ()
(0F (@)

= (h,@q| (0, (x

)



INDUCED REPRESENTATIONS OF HILBERT MODULES 93

Ua(v©z©h), U0 h) = (ho((oF (@), (m)-(U((,0)of @) ) h)
= (h,og ((0F (@), 0 £ (W (0, 0)a)) ) W)

(s eq (mal(@, O((0,0))2) ) )

= (h, (2, U((v,v))2)h) 1
= vz ®hv®rh),

and so Uy can be extended to a bounded linear operator Us from vyg,gH onto
V,@u, B, . 1t is easy to see that Us is unitary. Moreover Us YO(v) = (ﬁqu o

o)) Ui(v) for all v € V. Hence, the representations & and o A oo} are unitarily
equivalent. O

Theorem 4. Let ®; : W — B(Hy, K1) and &2 : W — B(Hs, Ks) be two non-
degenerate representations of W. If ®1 and ®2 are unitarily equivalent, then %®;
and E(I)Q are unitarily equivalent, too.

Proof. Let q,¢' € S(B), (¢14, H1) be arepresentation of B, associated to ¢ and let
(¢2 4+ H2) be a representation of B s associated to ¢o. Consider r € S(B) such that
¢,q <r. By Theorem 3, there exists p € S(A) such that A, acts non-degenerately
on E, and the representation gfbi is unitarily equivalent to EPT P, o a;/ fori=1,2.
Since ®;, and P, are unitarily equivalent representations of W,., Lemma 3 implies

that the representations gpr P4, and ECDQT are unitarily equivalent. O

Corollary 2. If @ : W — B(H,K) and ®;e1®; : W — B(®ic1H;, ®ic1 K;) are
unitarily equivalent, then L ® and ®ic; HP; are umtamly equivalent.

Proof. Let ¢ € S(B) and ®, : W, — B(H, K) be a representation of W, associated
to ®. For every i € I, define ®;, : W, — B(H;, K;) by ®;4(0}" (w)) = ®;(w).
If o)V (w) = 0, then ®,(c}" (w)) = 0 and so ®(w) = 0. Since ® and ®;c;P; are
unitarily equivalent, we conclude that @®;c;®;(w) = 0 and therefore, ®;(w) = 0 for
each i € I. It proves that ®;, is well-defined for any ¢ € I. It is easy to see that ®,
is unitarily equivalent to @®;e;®;4. By Theorem 3, there exists p € S(A) such that

A, acts non-degenerately on F, and the representations }® and VP <I> o O'V of V are

unitarily equivalent. The representations % ®; and g‘; ®;, o oV, i€ I are unitarily

2
equivalent, too. On the other hand, Corollary 1 implies that the representations EZ ®,
and Djer g‘; ®;, of V,, are unitarily equivalent. Consequently, the representations

g‘; ®, o 0, and @ie[(gl; ®;q © 0y ) of V are unitarily equivalent. O

4. The imprimitivity theorem for Hilbert modules

In this section, we introduce the concept of Morita equivalence between Hilbert
modules over locally C*-algebras and give a module version of the imprimitivity
theorem.
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Let A and B be locally C*-algebras. We say that A and B are strongly Morita
equivalent, written A ~,; B, if there is a full Hilbert A module E such that locally
C*-algebras B and K 4(F) are isomorphic. Joita [10, Proposition 4.4] showed that
strong Morita equivalence is an equivalence relation in the set of all locally C*-
algebras. The vector space E := K 4(E, A) is a full Hilbert K 4(E)-module with the
following action and inner product

(T,S) =TS, SeKa(E), T e Ka(E,A),
(T,S) =T*S, T,S € Ka(E, A).

Since locally C*-algebras B and K 4(F) are isomorphic, E may be regarded as
a Hilbert B-module. Moreover, the linear map « from A to Kp(FE) defined by
a(a)(0p,z) = Oab.o 1s an isomorphism of locally C*-algebras by [10, Lemma 4.2 and Re-
mark 4.3]. It is easy to see that for each p € S(A), the linear map U, : (E), — E,
defined by U, (T + Nf) = (mp)«(T") is unitary and so the Hilbert K 4, (E,)-modules
(E), and E, are the same.

Definition 2. Suppose V and W are Hilbert modules over locally C*-algebras A
and B, respectively. The Hilbert modules V' and W are called Morita equivalent if
KA(V) and Kp(W) are strong Morita equivalent as locally C*-algebras. In this case,
we write V ~p W

Lemma 5. Let V' be a full Hilbert module over locally C*-algebra A. Then K4 (V)
is strong Morita equivalent to (V,V).

Proof. The module V = K 4(V, A) is a full Hilbert K 4(V')-module by [10, Corollary

3.3]. Then locally C*-algebras K ,(v)(V) and K4(A) are isomorphic by Lemma

4.2 in [10]. Since (V,V) = A ~ K 4(A), locally C*-algebras K4(V) and (V, V) are
strong Morita equivalent. O

Corollary 3. Two full Hilbert modules over locally C*-algebras are Morita equiva-
lent if and only if their underlying locally C*-algebras are strong Morita equivalent.

Theorem 5. Let V and W be two full Hilbert modules over locally C*-algebras
A and B, respectively, such that V ~p W. If E is a Hilbert A-module which
gives the strong Morita equivalence between A and B, and ® is a non-degenerate
representation of V, then ® is unitarily equivalent to g(%vq))

Proof. Let p € S(A) and @, be a non-degenerate representation of V, associated to
®. Using [11, Lemma 4.1}, there is ¢ € S(B) such that A, ~y B, and E, gives the

strong Morita equivalent between A, and B,. The representations ¢, and gp (gz ©p)
P

of A, are unitarily equivalent by [15, Theorem 3.29]. Then the representations &,

and g’;(g;" ®,,) of V,, are unitarily equivalent by Lemma 2 and consequently, the

representations gp (gj ®,) o 0’1‘)/ and ®, o a;/ = & of V' are unitarily equivalent. In

view of Theorems 3 and 4, we have

w

o of W are unitarily equivalent,

. w,
e the representations ¥ ® and e, ®p © 0
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e the representations g(g’@) and E(YEV: ®, o UZV ) of V are unitarily equivalent,
and

: vV (Wa w Vo (Wq w v
e the representations ;(5'®, o o4 ) and Ep(Ep ®, o 0, ) o o, of V are

unitarily equivalent.

The assertion now follows from the fact that (EV; P, 0 o)V)y = Effl)p. O

We now reformulate the imprimitivity theorem within the framework of Hilbert
modules as follows.

Theorem 6. Let V and W be two Hilbert modules over locally C*-algebras A and B,
respectively. IfV ~pr W, then there is a bijective correspondence between equivalence
classes of non-degenerate representations of V. and W.

Proof. By replacing the underlying C*-algebras A and B, we may assume that V'
and W are full Hilbert modules over A and B, respectively. Let E be a Hilbert A-
module which gives strong Morita equivalence between A and B. Then, by Theorems
4 and 5, the map ® — YE‘/(I) from the set of all non-degenerate representations of V' to
the set of all non-degenerate representations of W induces a bijective correspondence
between equivalence classes of non-degenerate representations of V' and W. O
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