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Abstract. We study induced representations of Hilbert modules over locally C*-algebras
and their non-degeneracy. We show that if V and W are Morita equivalent Hilbert modules
over locally C*-algebras A and B, respectively, then there exists a bijective correspondence
between equivalence classes of non-degenerate representations of V and W .
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1. Introduction

Morita equivalence and induced representations of C*-algebras were first introduced
by Rieffel [16, 17]. Two C*-algebras A and B are Morita equivalent if there exists
a full Hilbert A-module E such that B is isomorphic to the C*-algebra KA(E) of
all compact operators on E. Some properties of C*-algebras that are preserved un-
der Morita equivalence were investigated in [2, 4, 15, 21]. Indeed, Rieffel defined
induced representations of C*-algebras, that are now known as Rieffel induced rep-
resentations, by using tensor products of Hilbert modules and established an equiva-
lence between the categories of non-degenerate representations of Morita equivalent
C*-algebras. Joita [10, 11] defined the notions of Morita equivalence and induced
representations in the category of locally C*-algebras. Joita and Moslehian [12]
have recently introduced a notion of Morita equivalence in the category of Hilbert
C*-modules considered to obtain induced representations of Hilbert modules over
locally C*-algebras. This enables us to prove the imprimitivity theorem for induced
representations of Hilbert modules over locally C*-algebras.

Let us quickly recall the definition of locally C*-algebras and Hilbert modules
over them. A locally C*-algebra is a complete Hausdorff complex topological ∗-
algebra A whose topology is determined by its continuous C*-seminorms in the
sense that the net {ai}i∈I converges to 0 if and only if the net {p(ai)}i∈I converges
to 0 for every continuous C*-seminorm p on A. Such algebras appear in the study of
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certain aspects of C*-algebras such as tangent algebras of C*-algebras, a domain of
closed ∗-derivations on C*-algebras, multipliers of Pedersen’s ideal, noncommutative
analogues of classical Lie groups, and K-theory. These algebras were first introduced
by Inoue [6] as a generalization of C*-algebras and studied more in [5, 14] with
different names. A (right) pre-Hilbert module over a locally C*-algebra A is a right
A-module E compatible with the complex algebra structure and equipped with an
A-valued inner product 〈·, ·〉 : E × E → A , (x, y) 7→ 〈x, y〉, which is A-linear in the
second variable y and has the properties:

〈x, y〉 = 〈y, x〉∗, and 〈x, x〉 ≥ 0 with equality if and only if x = 0.

A pre-Hilbert A-module E is a Hilbert A-module if E is complete with respect
to the topology determined by the family of seminorms {pE}p∈S(A), where pE(ξ) =
√

p(〈ξ, ξ〉), ξ ∈ E. Hilbert modules over locally C*-algebras have been studied
systematically in the book [8] and the papers [7, 14, 20].

Joita and Moslehian [12], and Skeide [18] defined Morita equivalence for Hilbert
C*-modules with two different methods. In the recent sense of Joita and Moslehian,
two Hilbert modules V and W over C*-algebras A and B, respectively, are called
Morita equivalent ifKA(V ) andKB(W ) are strong Morita equivalent as C*-algebras.
We consider this definition, which is weaker than Skeide’s definition and also fitted
to our paper.

In this paper, we first present some definitions and basic facts about locally C*-
algebras and Hilbert modules over them. In [19], Skeide proved that if E is a Hilbert
module over a C*-algebra A, then every representation of A induces a representation
of E. We use this fact to reformulate the induced representations of Hilbert C*-
modules and some of their properties which have been studied in [1]. These enable
us to obtain the notion of induced representations of Hilbert modules over locally
C*-algebras. We finally define the concept of Morita equivalence for Hilbert modules
over locally C*-algebras. We prove that two full Hilbert modules over locally C*-
algebras are Morita equivalent if and only if their underlying locally C*-algebras are
strong Morita equivalent and then we give a module version of the imprimitivity
theorem. Indeed, we show that for Morita equivalent Hilbert modules V and W
over locally C*-algebras A and B, respectively, there is a bijective correspondence
between equivalence classes of non-degenerate representations of V and W .

2. Preliminaries

Let A be a locally C*-algebra, S(A) the set of all continuous C*-seminorms on
A and p ∈ S(A). We set Np = {a ∈ A : p(a) = 0}, then Ap = A/Np is a
C*-algebra in the norm induced by p. For p, q ∈ S(A) with p ≥ q, the surjective
morphisms πpq : Ap → Aq defined by πpq(a+Np) = a+Nq induce the inverse system
{Ap;πpq}p,q∈S(A), p≥q of C*-algebras and A = lim

←−p
Ap, i.e., the locally C*-algebra

A can be identified with lim
←−p

Ap. The canonical map from A onto Ap is denoted

by πp and ap is reserved to denote a + Np. A morphism of locally C*-algebras
is a continuous morphism of ∗-algebras. An isomorphism of locally C*-algebras is
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a morphism of locally C*-algebras which possesses an inverse morphism of locally
C*-algebras.

A representation of a locally C*-algebra A is a continuous ∗-morphism ϕ : A→
B(H), where B(H) is the C*-algebra of all bounded linear maps on a Hilbert space
H . If (ϕ,H) is a representation of A, then there is p ∈ S(A) such that ‖ϕ(a)‖ ≤ p(a),
for all a ∈ A. The representation (ϕp, H) of Ap, where ϕp ◦ πp = ϕ is called a
representation of Ap associated to (ϕ,H). We refer to [5, 11] for basic facts and
definitions about the representation of locally C*-algebras.

Suppose E is a Hilbert A-module and 〈E,E〉 is the closure of linear span of
{〈x, y〉 : x, y ∈ E}. The Hilbert A-module E is called full if 〈E,E〉 = A. One
can always consider any Hilbert A-module as a full Hilbert module over locally C*-
algebra 〈E,E〉. For each p ∈ S(A), NE

p = {ξ ∈ E : p̄E(ξ) = 0} is a closed submodule

of E and Ep = E/NE
p is a Hilbert Ap-module with the action (ξ + NE

p )πp(a) =

ξa+NE
p and the inner product 〈ξ +NE

p , η +NE
p 〉 = πp(〈ξ, η〉). The canonical map

from E onto Ep is denoted by σE
p and ξp is reserved to denote σE

p (ξ). For p, q ∈ S(A)

with p ≥ q, the surjective morphisms σE
pq : Ep → Eq defined by σE

pq(σ
E
p (ξ)) = σE

q (ξ)

induce the inverse system {Ep; Ap; σE
pq, πpq}p,q∈S(A), p≥q of Hilbert C*-modules in

the following sense:

• σE
pq(ξpap) = σE

pq(ξp)πpq(ap), ξp ∈ Ep, ap ∈ Ap, p, q ∈ S(A), p ≥ q,

• 〈σE
pq(ξp), σ

E
pq(ηp)〉 = πpq(〈ξp, ηp〉), ξp, ηp ∈ Ep, p, q ∈ S(A), p ≥ q,

• σE
qr ◦ σE

pq = σE
pr if p, q, r ∈ S(A) and p ≥ q ≥ r,

• σE
pp(ξp) = ξp, ξ ∈ E, p ∈ S(A).

In this case, lim
←−p

Ep is a Hilbert A-module which can be identified with E. Let

E and F be Hilbert A-modules and T : E → F an A-module map. The mod-
ule map T is called bounded if for each p ∈ S(A) there is kp > 0 such that
p̄F (Tx) ≤ kp p̄E(x) for all x ∈ E. The module map T is called adjointable if
there exists an A-module map T ∗ : F → E with the property 〈Tx, y〉 = 〈x, T ∗y〉
for all x ∈ E, y ∈ F. It is well-known that every adjointable map is bounded.
The set LA(E,F ) of all bounded adjointable A-module maps from E into F be-
comes a locally convex space with the topology defined by the family of seminorms
{p̃}p∈S(A), where p̃(T ) = ‖(πp)∗(T )‖LAp(Ep,Fp) and (πp)∗ : LA(E,F )→ LAp

(Ep, Fp)

is defined by (πp)∗(T )(ξ + NE
p ) = Tξ + NF

p for all T ∈ LA(E,F ), ξ ∈ E. For
p, q ∈ S(A) with p ≥ q, the morphisms (πpq)∗ : LAp

(Ep, Fp)→ LAq
(Eq, Fq) defined

by (πpq)∗(Tp)(σ
E
q (ξ)) = σF

pq(Tp(σ
E
p (ξ))) induce the inverse system

{LAp
(Ep, Fp); (πpq)∗}p,q∈S(A), p≥q

of Banach spaces such that lim
←−p

LAp
(Ep, Fp) can be identified to LA(E,F ). In

particular, topologizing, LA(E,E) becomes a locally C*-algebra which is abbreviated
by LA(E). The set of all compact operators KA(E) on E is defined as the closed
linear subspace of LA(E) spanned by {θx,y : θx,y(ξ) = x〈y, ξ〉 for all x, y, ξ ∈ E}.
This is a locally C*-subalgebra and a two-sided ideal of LA(E); moreover, KA(E)
can be identified to lim

←−p
KAp

(Ep).
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Let V and W be Hilbert modules over locally C*-algebras A and B, respectively,
and Ψ : A→ LB(W ) a continuous ∗-morphism. We can regardW as a left A-module
by (a, y) → Ψ(a)y, a ∈ A, y ∈ W . The right B-module V ⊗A W is a pre-Hilbert
module with the inner product given by 〈x ⊗ y, z ⊗ t〉 = 〈y,Ψ(〈x, z〉)t〉. We denote
by V ⊗Ψ W the completion of V ⊗A W , cf. [9] for more detailed information.

3. Induced representations of Hilbert modules

In this section, we first study induced representations of Hilbert C*-modules and then
we reformulate them in the context of Hilbert modules over locally C*-algebras.

LetH andK be Hilbert spaces. Then the spaceB(H,K) of all bounded operators
from H into K can be considered as a Hilbert B(H)-module with the module action
(T, S) → TS, T ∈ B(H,K) and S ∈ B(H) and the inner product defined by
〈T, S〉 = T ∗S, T, S ∈ B(H,K). Murphy [13] showed that any Hilbert C*-module
can be represented as a submodule of the concrete Hilbert module B(H,K) for some
Hilbert spaces H and K. This allows us to extend the notion of a representation
from the context of C*-algebras to the context of Hilbert C*-modules. Let V and
W be two Hilbert modules over C*-algebras A and B, respectively, and ϕ : A →
B be a morphism of C*-algebras. A map Φ : V → W is said to a ϕ-morphism
if 〈Φ(x),Φ(y)〉 = ϕ(〈x, y〉) for all x, y ∈ V . A ϕ-morphism Φ : V → B(H,K),
where ϕ : A → B(H) is a representation of A is called a representation of V .
When Φ is a representation of V , we assume that an associated representation of
A is denoted by the same lowercase letter ϕ, so we will not explicitly mention
ϕ. Let Φ : V → B(H,K) be a representation of a Hilbert A-module V . We
say Φ is a non-degenerate representation if Φ(V )(H) = K and Φ(V )∗(K) = H .
Two representations Φi : V → B(Hi,Ki) of V , i = 1, 2 are said to be unitarily
equivalent if there are unitary operators U1 : H1 → H2 and U2 : K1 → K2, such
that U2Φ1(v) = Φ2(v)U1 for all v ∈ V . Representations of Hilbert modules have
been investigated in [1, 3, 19].

Lemma 1. Let V be a full Hilbert A-module and Φ1 : V → B(H1,K1) and Φ2 :
V → B(H2,K2) two non-degenerate representations of V . If Φ1 and Φ2 are unitarily
equivalent, then ϕ1 and ϕ2 are unitarily equivalent.

Proof. Let U1 : H1 → H2 and U2 : K1 → K2 be unitary operators and U2Φ1(x) =
Φ2(x)U1 for all x ∈ V . Then we have

U1ϕ1(〈x, y〉)h = U1Φ1(x)
∗Φ1(y)h = Φ2(x)

∗Φ2(y)U1h = ϕ2(〈x, y〉)U1h,

for every x, y ∈ V and h ∈ H1. Since V is full, we conclude that U1ϕ1(a)h =
ϕ2(a)U1h for every a ∈ A and h ∈ H1, and consequently, ϕ1 and ϕ2 are unitarily
equivalent.

Skeide [19] recovered the result of Murphy by embedding every Hilbert A-module
E into a matrix C*-algebra as a lower submodule. He proved that every represen-
tation of B induces a representation of E. We describe his induced representation
as follows.
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Construction 1. Let B be a C*-algebra and E a Hilbert B-module and ϕ : B →
B(H) a ∗-representation of B. Define a sesquilinear form 〈., .〉 on the vector space
E⊗algH by 〈x⊗h, y⊗k〉 = 〈h, ϕ(〈x, y〉)k〉H , where 〈., .〉H denotes the inner product
on the Hilbert space H. By [19, Proposition 3.8], the sesquilinear form is positive
and so E⊗alg H is a semi-Hilbert space. Then (E⊗alg H)/Nϕ is a pre-Hilbert space
with the inner product defined by

〈x⊗ h+Nϕ , y ⊗ k +Nϕ〉 = 〈x⊗ h, y ⊗ k〉,

where Nϕ is the vector subspace of E ⊗alg H generated by {x ⊗ h ∈ E ⊗alg H :
〈x⊗h, x⊗h〉 = 0}. The completion of (E⊗algH)/Nϕ with respect to the above inner
product is denoted by EH. We identify the elements x⊗h with the equivalence classes
x⊗h+Nϕ ∈ EH. Suppose x ∈ E and Lxh = x⊗h then ‖Lxh‖

2 = 〈h, ϕ(〈x, x〉)h〉 ≤
‖h‖2‖x‖2, i.e. Lx ∈ B(H,E H). We define ηϕ : E → B(H,E H) by ηϕ(x) = Lx.
Then for x, x′ ∈ E, h, h′ ∈ H and b ∈ B we have 〈ηϕ(x), ηϕ(x

′)〉 = ϕ(〈x, x′〉) and
ηϕ(xb) = ηϕ(x)ϕ(b), and so ηϕ is a representation of E.

Lemma 2. Let ϕ1 : B → B(H1) and ϕ2 : B → B(H2) be two non-degenerate
representations of B. If ϕ1 and ϕ2 are unitarily equivalent, then ηϕ1

and ηϕ2
are

unitarily equivalent.

Proof. Suppose U : H1 → H2 is a unitary operator such that Uϕ1(b) = ϕ2(b)U for
all b ∈ B. Then idE ⊗U : E ⊗alg H1 → E ⊗alg H2 given by x⊗ h1 7→ x⊗ h2 can be
extended to a unitary operator V from EH1 onto EH2 and V ηϕ1

(x) = ηϕ2
(x)U for

all x ∈ E. Hence, ηϕ1
and ηϕ2

are unitarily equivalent.

The above argument enables us to extend the Rieffel induced representations
from the case of C*-algebras to the context of Hilbert C*-modules. For this, let V
and W be two full Hilbert modules over C*-algebrasA and B, respectively. Let E be
a Hilbert B-module and A acts as adjointable operators on the Hilbert C*-module
E, and Φ : W → B(H,K) is a non-degenerate representation of W . Using [15,
Proposition 2.66], the formula A

Eϕ(x ⊗ h) = (a.x) ⊗ h extends to obtain a (Rieffel
induced) representation of A as bounded operators on Hilbert space EH . In view
of Construction 1, the representation A

Eϕ : A→ B(EH) of the C*-algebra A obtains
the representation ηA

E
ϕ : V → B(EH, V (EH)) of the Hilbert A-module V . The

constructed representation ηA
E
ϕ is called the Rieffel induced representation from W

to V via E and denoted by V
EΦ. The following result can be found in [1, Proposition

3.3] that we derive from Lemmas 1 and 2. Our argument seems to be shorter.

Lemma 3. Let W be a full Hilbert B-module and Φ1 : W → B(H1,K1) and
Φ2 : W → B(H2,K2) two non-degenerate representations of W . If Φ1 and Φ2

are unitarily equivalent, then V
EΦ1 and V

EΦ2 are unitarily equivalent.

Corollary 1. If Φ : W → B(H,K) and ⊕i∈IΦi : W → B(⊕i∈IHi,⊕i∈IKi) are
unitarily equivalent, then V

EΦ and ⊕i∈I
V
EΦi are unitary equivalent.

Now, we reformulate representations of the Hilbert module from the case of C*-
algebras to the case of locally C*-algebras. Let V andW be two Hilbert modules over
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locally C*-algebras A and B, respectively, and ϕ : A→ B a morphism of locally C*-
algebras. A map Φ : V →W is said to be a ϕ-morphism if 〈Φ(x),Φ(y)〉 = ϕ(〈x, y〉),
for all x, y ∈ V . A ϕ-morphism Φ : V → B(H,K), where ϕ : A → B(H) is a
representation of A, is called a representation of V . We can define non-degenerate
representations and unitarily equivalent representations for Hilbert modules over
locally C*-algebras like a Hilbert C*-modules case.

Suppose A is a locally C*-algebra, V is a Hilbert A-module and ϕ : A → B(H)
is a representation of A on some Hilbert space H . Suppose p ∈ S(A) and ϕp is
a representation of Ap associated to ϕ; then there exist a Hilbert space K and a
representation Φp : Vp → B(H,K) which is a ϕp-morphism. For details we refer to
the proof of [13, Theorem 3.1]. It is easy to see that the map Φ : V → B(H,K),
Φ(v) = Φp(σ

V
p (v)) is a ϕ-morphism, i.e., it is a representation of V .

Lemma 4. Let V be a Hilbert module over locally C*-algebra A and Φ : V →
B(H,K) a representation of V . If p ∈ S(A) and ϕp is a representation of Ap

associated to ϕ, then the map Φp : Vp → B(H,K), Φp(σ
V
p (v)) = Φ(v) is a ϕp-

morphism. Specifically, Φp is a representation of Vp and Φ is non-degenerate if and
only if Φp is. In this case, we say that Φp is a representation of Vp associated to Φ.

Proof. Let v, v′ ∈ V and pV (v − v′) = 0. Since ‖ϕ(a)‖ ≤ p(a) for all a ∈ A, we
have 〈Φ(v− v′),Φ(v− v′)〉 = ϕ(〈v− v′, v− v′〉) = 0, which shows Φp is well-defined.
We also have

〈Φp(σ
V
p (v)),Φp(σ

V
p (v

′

))〉 = 〈Φ(v),Φ(v
′

)〉 = ϕ(〈v, v
′

〉) = ϕp ◦ πp(〈v, v
′

〉)

= ϕp(〈σ
V
p (v), σV

p (v
′

)〉).

Then, by definition of Φp, the representation Φ is non-degenerate if and only if Φp

is non-degenerate.

Let V and W be two full Hilbert modules over locally C*-algebras A and B,
respectively. Let E be a Hilbert B-module, Ψ : A → LB(E) a non-degenerate
continuous ∗-morphism and Φ : W → B(H,K) a non-degenerate representation of
W . We construct a non-degenerate representation from W to V via E as follows.

Construction 2. We define a sesquilinear form 〈., .〉 on the vector space E ⊗alg H
by 〈x⊗h, y⊗k〉 = 〈h, ϕ(〈x, y〉)k〉H and make the Hilbert space EH as in Construction
1. The map A

Eϕ : A→ B(EH) defined by

A
Eϕ(a)(x ⊗ h) = Ψ(a)x⊗ h, a ∈ A, x ∈ E, h ∈ H,

is a representation of A. The representation (EH, A
Eϕ) is called the Rieffel induced

representation from B to A via E, cf. [11]. Since A acts as an adjointable operator
on Hilbert B-module E, we can construct interior tensor product V ⊗ΨE as a Hilbert
B-module. Hence, we find the Hilbert spaces EH and V⊗ΨEH. Let v ∈ V ; then the
map E × H → V ⊗ΨEH, (x, h) 7→ v ⊗ x ⊗ h is a bilinear form and so there is a
unique linear transformation EΦ(v) : E⊗alg H → V ⊗ΨEH which can be extended to
a bounded linear operator V

EΦ(v) from EH to V ⊗ΨEH. To see this, suppose q ∈ S(B),
x ∈ E, h ∈ H and (ϕq, H) is a representation of Bq associated to (ϕ,H). We have
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〈EΦ(v)(x ⊗ h) , EΦ(v)(x ⊗ h)〉 = 〈v ⊗ x⊗ h, v ⊗ x⊗ h〉

= 〈h, ϕ(〈v ⊗ x, v ⊗ x〉)h〉H

= 〈h, ϕ(〈x,Ψ(〈v, v〉)x〉)h〉H

= 〈h, ϕq ◦ πq(〈Ψ(〈v, v〉)1/2x,Ψ(〈v, v〉)1/2x〉)h〉H

= 〈h, ϕq(〈σq(Ψ(〈v, v〉)1/2x), σq(Ψ(〈v, v〉)1/2x)〉)h〉H

= 〈h, ϕq(〈(πq)∗(Ψ(〈v, v〉)1/2)(σq(x)), (πq)∗(Ψ(〈v, v〉)1/2)(σq(x))〉)h〉H

≤ q̃(Ψ〈v, v〉)〈h, ϕq(〈σq(x), σq(x)〉)h〉H

= q̃(Ψ〈v, v〉)〈h, (ϕq ◦ πq)(〈x, x〉)h〉H

= q̃(Ψ〈v, v〉)〈h, ϕ(〈x, x〉)h〉H

= q̃(Ψ〈v, v〉)〈x ⊗ h, x⊗ h〉.

The following equalities hold for every v, v
′

∈ V, x, x
′

∈ E and h, h
′

∈ H

〈x⊗ h , V
EΦ

∗(v) V
EΦ(v

′

)(x
′

⊗ h
′

)〉 = 〈VEΦ(v)(x ⊗ h) , V
EΦ(v)(x

′

⊗ h
′

)〉

= 〈v ⊗ x⊗ h , v
′

⊗ x
′

⊗ h
′

〉

= 〈h, ϕ(〈v ⊗ x, v
′

⊗ x
′

〉)h〉H

= 〈h, ϕ(〈x,Ψ(〈v, v
′

〉)x
′

〉)h
′

〉H

= 〈x⊗ h , Ψ(〈v, v
′

〉)x
′

⊗ h
′

〉

= 〈x⊗ h , A
Eϕ(〈v, v

′

〉)(x
′

⊗ h
′

)〉,

which imply 〈VEΦ(v),
V
E Φ(v

′

)〉 = V
EΦ

∗(v) V
EΦ(v

′

) = A
Eϕ(〈v, v

′

〉). That is, the map
V
EΦ : V → B(EH, V⊗ΨEH) is a A

Eϕ-morphism and so it is a representation of V .

We now show that V
EΦ is non-degenerate. To see this, recall that Ψ(A)(E) = E and

〈V, V 〉 = A, which imply Ψ(〈V, V 〉)(E) = E. Suppose x, x
′

∈ E and h ∈ H, we have

‖(x− x
′

)⊗ h‖2 = 〈h, ϕ(〈x− x
′

, x− x
′

〉)h〉H

≤ ‖h‖2‖ϕ(〈x− x
′

, x− x
′

〉)‖

≤ ‖h‖2q(〈x− x
′

, x− x
′

〉) = ‖h‖2q̄E(x− x
′

).

Given ǫ > 0, there exist vi, v
′

i ∈ V and xi ∈ E such that q̄E(
∑

i Ψ(〈vi, v
′

i〉)xi−x) < ǫ.

In view of the above inequality, the term
∑

iΨ(〈vi, v
′

i〉)xi ⊗ h approximates x⊗ h in

EH. But we have
∑

i

Ψ(〈vi, v
′

i〉)xi ⊗ h =
∑

i

A
Eϕ(〈vi, v

′

i〉)(xi ⊗ h)

=
∑

i

V
EΦ

∗(vi)
V
EΦ(v

′

i)(xi ⊗ h)

=
∑

i

V
EΦ

∗(vi)( v
′

i ⊗ xi ⊗ h),

which implies V
EΦ(V )∗(V⊗ΨEH) = EH. The equality V

EΦ(V )(EH) = V ⊗ΨEH fol-
lows from the definition of V

EΦ, i.e.,
V
EΦ is non-degenerate.
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Definition 1. The representation V
EΦ in Construction 2 is a called Rieffel induced

representation from W to V via E.

Theorem 3. Let V and W be two full Hilbert modules over locally C*-algebras A
and B, respectively. Let E be a Hilbert B-module, Ψ : A→ LB(E) a non-degenerate
continuous ∗-morphism and Φ : W → B(H,K) a non-degenerate representation.
If q ∈ S(B) and (ϕq, H) is a non-degenerate representation of Bq associated to
(ϕ,H), then there is p ∈ S(A) such that Ap acts non-degenerately on Eq and the

representations V
EΦ and

Vp

Eq
Φq ◦ σV

p of V are unitarily equivalent.

Proof. Continuity of Ψ implies that there exists p ∈ S(A) such that q̃(Ψ(a)) ≤ p(a)
for each a ∈ A, which guarantees Ψp : Ap → LBq

(Eq), Ψp(πp(a)) = (πq)∗(Ψ(a)) is a
∗-morphism of C*-algebras. Moreover, Ψp is non-degenerate since

Ψp(Ap)(Ep) = Ψp(πp(A))(σE
p (E)) = (πq)∗(Ψ(A)σE

q (E))

= σE
q (Ψ(A)(E))

= σE
q (E) = Eq.

If Φq is a non-degenerate representation of Wq associated to Φ, then
Vp

Eq
Φq : Vp →

B(Eq
H , Vp⊗ΨqEq

H) defined by
Vp

Eq
Φq(σ

V
p (v))(σE

q (x) ⊗ h) = σV
p (v) ⊗ σE

q (x) ⊗ h is a

non-degenerate representation of Vp which is also a
Ap

Eq
ϕq-morphism. Indeed,

Vp

Eq
Φq is

the Rieffel induced representation from Wq to Vp via Eq. Hence,
Vp

Eq
Φq ◦ σ

V
p is a non-

degenerate representation of V and it is a
Ap

Eq
ϕq ◦ πp-morphism. The representations

(AEϕ , EH) and (
Ap

Eq
ϕq ◦ πp , Eq

H) of A are unitarily equivalent by [11, proposition

3.4]. We define the linear map U1 : E ⊗alg H → Eq ⊗alg H , U1(x ⊗ h) = σE
q (x) ⊗ h

which satisfies

〈U1(x ⊗ h), U1(x⊗ h)〉 = 〈σE
q (x)⊗ h, σE

q (x)⊗ h〉

= 〈h, ϕq(〈σ
E
q (x), σE

q (x)〉)h〉H

= 〈h, ϕq(πq(〈x, x〉))h〉H

= 〈h, ϕ(〈x, x〉)h〉H

= 〈x⊗ h, x⊗ h〉,

for all x ∈ E and h ∈ H . Then U1 can be extended to a bounded linear operator,
which is again denoted by U1 from EH onto Eq

H . It is easy to see that U1 is a unitary
operator. We define the linear map U2 : V ⊗alg E ⊗alg H → Vp ⊗alg Eq ⊗alg H by
U2(v ⊗ x⊗ h) = σV

p (v)⊗ σE
q (x) ⊗ h. For every v ∈ V , x ∈ E and h ∈ H we have

〈U2(v ⊗ x⊗ h), U2(v ⊗ x⊗ h)〉 = 〈σV
p (v)⊗ σE

q (x) ⊗ h, σV
p (v)⊗ σE

q (x) ⊗ h〉

= 〈h, ϕq

(

〈σV
p (v)⊗ σE

q (x), σV
p (v)⊗ σE

q (x)〉
)

h〉H

= 〈h, ϕq

(

〈σE
q (x),Ψp(〈σ

V
p (v), σV

p (v)〉)σE
q (x)〉

)

h〉H

= 〈h, ϕq

(

〈σE
q (x),Ψp(πp(〈v, v〉))σ

E
q (x)〉

)

h〉H
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〈U2(v ⊗ x⊗ h), U2(v ⊗ x⊗ h)〉 = 〈h, ϕq

(

〈σE
q (x), (πq)∗(Ψ(〈v, v〉))σE

q (x)〉
)

h〉H

= 〈h, ϕq

(

〈σE
q (x), σE

q (Ψ(〈v, v〉)x)〉
)

h〉H

= 〈h, ϕq

(

πq(〈x,Ψ(〈v, v〉)x)
)

h〉H

= 〈h, ϕ(〈x,Ψ(〈v, v〉)x)h〉H

= 〈v ⊗ x⊗ h, v ⊗ x⊗ h〉,

and so U2 can be extended to a bounded linear operator U2 from V⊗ΨEH onto

Vp⊗ΨqEq
H . It is easy to see that U2 is unitary. Moreover, U2

V
EΦ(v) = (

Vp

Eq
Φq ◦

σV
p ) U1(v) for all v ∈ V . Hence, the representations V

EΦ and
Vp

Eq
Φq ◦σ

V
p are unitarily

equivalent.

Theorem 4. Let Φ1 : W → B(H1,K1) and Φ2 : W → B(H2,K2) be two non-
degenerate representations of W . If Φ1 and Φ2 are unitarily equivalent, then V

EΦ1

and V
EΦ2 are unitarily equivalent, too.

Proof. Let q, q′ ∈ S(B), (ϕ1 q, H1) be a representation of Bq associated to ϕ1 and let
(ϕ2 q′ , H2) be a representation of Bq′ associated to ϕ2. Consider r ∈ S(B) such that

q, q
′

≤ r. By Theorem 3, there exists p ∈ S(A) such that Ap acts non-degenerately

on Er and the representation V
EΦi is unitarily equivalent to

Vp

Er
Φi r ◦ σV

p for i = 1, 2.
Since Φ1 r and Φ2 r are unitarily equivalent representations of Wr, Lemma 3 implies

that the representations
Vp

Er
Φ1 r and

Vp

Er
Φ2 r are unitarily equivalent.

Corollary 2. If Φ : W → B(H,K) and ⊕i∈IΦi : W → B(⊕i∈IHi,⊕i∈IKi) are
unitarily equivalent, then V

EΦ and ⊕i∈I
V
EΦi are unitarily equivalent.

Proof. Let q ∈ S(B) and Φq : Wq → B(H,K) be a representation of Wq associated
to Φ. For every i ∈ I, define Φi q : Wq → B(Hi,Ki) by Φi q(σ

W
q (w)) = Φi(w).

If σW
q (w) = 0, then Φq(σ

W
q (w)) = 0 and so Φ(w) = 0. Since Φ and ⊕i∈IΦi are

unitarily equivalent, we conclude that ⊕i∈IΦi(w) = 0 and therefore, Φi(w) = 0 for
each i ∈ I. It proves that Φi q is well-defined for any i ∈ I. It is easy to see that Φq

is unitarily equivalent to ⊕i∈IΦi q. By Theorem 3, there exists p ∈ S(A) such that

Ap acts non-degenerately on Eq and the representations V
EΦ and

Vp

Eq
Φq ◦ σ

V
p of V are

unitarily equivalent. The representations V
EΦi and

Vp

Eq
Φi q ◦ σV

p , i ∈ I are unitarily

equivalent, too. On the other hand, Corollary 1 implies that the representations
Vp

Eq
Φq

and ⊕i∈I
Vp

Eq
Φi q of Vp are unitarily equivalent. Consequently, the representations

Vp

Eq
Φq ◦ σV

p and ⊕i∈I(
Vp

Eq
Φi q ◦ σV

p ) of V are unitarily equivalent.

4. The imprimitivity theorem for Hilbert modules

In this section, we introduce the concept of Morita equivalence between Hilbert
modules over locally C*-algebras and give a module version of the imprimitivity
theorem.



94 Kh.Karimi and K. Sharifi

Let A and B be locally C*-algebras. We say that A and B are strongly Morita
equivalent, written A ∼M B, if there is a full Hilbert A module E such that locally
C*-algebras B and KA(E) are isomorphic. Joita [10, Proposition 4.4] showed that
strong Morita equivalence is an equivalence relation in the set of all locally C*-
algebras. The vector space Ẽ := KA(E,A) is a full Hilbert KA(E)-module with the
following action and inner product

(T, S) → TS, S ∈ KA(E), T ∈ KA(E,A),

〈T, S〉 = T ∗S, T, S ∈ KA(E,A).

Since locally C*-algebras B and KA(E) are isomorphic, Ẽ may be regarded as
a Hilbert B-module. Moreover, the linear map α from A to KB(Ẽ) defined by
α(a)(θb,x) = θab,x is an isomorphism of locally C*-algebras by [10, Lemma 4.2 and Re-

mark 4.3]. It is easy to see that for each p ∈ S(A), the linear map Up : (Ẽ)p → Ẽp

defined by Up(T +N Ẽ
p ) = (πp)∗(T ) is unitary and so the Hilbert KAp

(Ep)-modules

(Ẽ)p and Ẽp are the same.

Definition 2. Suppose V and W are Hilbert modules over locally C*-algebras A
and B, respectively. The Hilbert modules V and W are called Morita equivalent if
KA(V ) and KB(W ) are strong Morita equivalent as locally C*-algebras. In this case,
we write V ∼M W .

Lemma 5. Let V be a full Hilbert module over locally C*-algebra A. Then KA(V )
is strong Morita equivalent to 〈V, V 〉.

Proof. The module Ṽ = KA(V,A) is a full Hilbert KA(V )-module by [10, Corollary
3.3]. Then locally C*-algebras KKA(V )(Ṽ ) and KA(A) are isomorphic by Lemma

4.2 in [10]. Since 〈V, V 〉 = A ≃ KA(A), locally C*-algebras KA(V ) and 〈V, V 〉 are
strong Morita equivalent.

Corollary 3. Two full Hilbert modules over locally C*-algebras are Morita equiva-
lent if and only if their underlying locally C*-algebras are strong Morita equivalent.

Theorem 5. Let V and W be two full Hilbert modules over locally C*-algebras
A and B, respectively, such that V ∼M W . If E is a Hilbert A-module which
gives the strong Morita equivalence between A and B, and Φ is a non-degenerate
representation of V , then Φ is unitarily equivalent to V

Ẽ
(WE Φ).

Proof. Let p ∈ S(A) and Φp be a non-degenerate representation of Vp associated to
Φ. Using [11, Lemma 4.1], there is q ∈ S(B) such that Ap ∼M Bq and Ep gives the

strong Morita equivalent between Ap and Bq. The representations ϕp and
Ap

Ẽp
(
Bq

Ep
ϕp)

of Ap are unitarily equivalent by [15, Theorem 3.29]. Then the representations Φp

and
Vp

Ẽp
(
Wq

Ep
Φp) of Vp are unitarily equivalent by Lemma 2 and consequently, the

representations
Vp

Ẽp
(
Wq

Ep
Φp) ◦ σV

p and Φp ◦ σV
p = Φ of V are unitarily equivalent. In

view of Theorems 3 and 4, we have

• the representations W
E Φ and

Wq

Ep
Φp ◦ σW

q of W are unitarily equivalent,
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• the representations V
Ẽ
(WE Φ) and V

Ẽ
(
Wq

Ep
Φp ◦ σW

q ) of V are unitarily equivalent,
and

• the representations V
Ẽ
(
Wq

Ep
Φp ◦ σW

q ) and
Vp

ẼP
(
Wq

Ep
Φp ◦ σW

q )q ◦ σV
p of V are

unitarily equivalent.

The assertion now follows from the fact that (
Wq

Ep
Φp ◦ σW

q )q =
Wq

Ep
Φp.

We now reformulate the imprimitivity theorem within the framework of Hilbert
modules as follows.

Theorem 6. Let V and W be two Hilbert modules over locally C*-algebras A and B,
respectively. If V ∼M W , then there is a bijective correspondence between equivalence
classes of non-degenerate representations of V and W .

Proof. By replacing the underlying C*-algebras A and B, we may assume that V
and W are full Hilbert modules over A and B, respectively. Let E be a Hilbert A-
module which gives strong Morita equivalence between A and B. Then, by Theorems
4 and 5, the map Φ 7→ W

E Φ from the set of all non-degenerate representations of V to
the set of all non-degenerate representations ofW induces a bijective correspondence
between equivalence classes of non-degenerate representations of V and W .
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