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A note on the products ((m+ 1)2 + 1)((m+ 2)2 + 1) . . . (n2 + 1)
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Abstract. We prove that for any positive integer m there exists a positive real number
Nm such that whenever the integer n ≥ Nm, neither the product Pn

m = ((m+1)2+1)((m+
2)2 + 1) . . . (n2 + 1) nor the product Qn

m = ((m + 1)3 + 1)((m + 2)3 + 1) . . . (n3 + 1) is a
square.
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1. Introduction

In 2008, J. Cilleruelo proved that
∏n

k=1(k
2 + 1) is a square only for n = 3 [3]. His

technique was applied to the products of consecutive values of other polynomials like
4x2 + 1 and 2x2 − 2x+1 by Fang [5], and to x3 +1 by Gürel and Kişisel [7]. Later,
an idea due to W. Zudilin was applied to xp + 1 by Zhang and Wang [8] and to

xpk

+ 1 by Chen et al. [2] for odd prime p. In the very recent article [6], the author
proved that while the product

∏n

k=1(4k
4 + 1) becomes a square infinitely often as

the integer n changes, the product
∏n

k=1(k
4 + 4) becomes a square only for n = 2

using techniques different from the articles mentioned above. The problem is still

open for polynomials like x2k + 1. In this paper, our purpose is to extend results
of [3] and [7] for products of sufficiently many consecutive values of the polynomial
x2 +1 and x3 +1 starting from any positive integer x = m+1 up to x = n by using
techniques similar to the ones used in the above mentioned articles. The main result
of this paper is the following theorem.

Theorem 1. For any positive integer m, there exists a positive real number Nm

such that whenever the integer n ≥ Nm, neither the product

Pn
m = ((m+ 1)2 + 1)((m+ 2)2 + 1) . . . (n2 + 1)

nor the product

Qn
m = ((m+ 1)3 + 1)((m+ 2)3 + 1) . . . (n3 + 1)

is a square.
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In order to prove the main result, we need following lemmas.

Lemma 1. If p is a prime such that p2|Pn
m or p2|Qn

m , then p < 2n.

Proof. See the proof of Theorem 1 in [3] and the proof of Lemma 1 in [7].

Now, we can write

Pn
m =

∏

p<2n

pαp , Qn
m =

∏

p<2n

pᾱp and
n!

m!
=

∏

p≤n

pβp .

Comparing the products term by term, we can easily deduce that ( n!
m! )

2 < Pn
m and

( n!
m! )

3 < Qn
m. After taking the natural logarithms of both sides, we obtain the

following inequalities under the condition that both Pn
m and Qn

m are square-full.

∑

p≤n

βp ln p <
1

2

∑

p<2n

αp ln p. (1)

∑

p≤n

βp ln p <
1

3

∑

p<2n

ᾱp ln p. (2)

Lemma 2.

If p ≡ 1 (mod 4) and p ≤ n, then
αp

2 − βp ≤ ln(n2+1)
ln p

.

If p ≡ 1 (mod 3) and p ≤ n, then
ᾱp

3 − βp ≤ ln(n3+1)
ln p

.

If p ≡ 2 (mod 3) and p ≤ n, then ᾱp − βp ≤ ln(n3+1)
ln p

.

Proof. When p ≡ 1 (mod 4), the equation x2 + 1 ≡ 0 (mod pj) has two solutions
in an interval of length pj . That can be used to bound αp as follows:

αp =
∑

j≤
ln(n2+1)

ln p

#{m < k ≤ n, pj|(k2 + 1)} ≤
∑

j≤
ln(n2+1)

ln p

2

⌈

n

pj

⌉

−
∑

j≤
ln(m2+1)

ln p

2

⌊

m

pj

⌋

.

When p ≡ 1 (mod 3), the equation x3 + 1 ≡ 0 (mod pj) has at most three solutions
in an interval of length pj . That can be used to bound ᾱp as follows:

ᾱp =
∑

j≤
ln(n3+1)

ln p

#{m < k ≤ n, pj|(k3 + 1)} ≤
∑

j≤
ln(n3+1)

ln p

3

⌈

n

pj

⌉

−
∑

j≤
ln(m3+1)

ln p

3

⌊

m

pj

⌋

.

When p ≡ 2 (mod 3), the equation x3 + 1 ≡ 0 (mod pj) has exactly one solution
in an interval of length pj (see Lemma 2 in [7]). That can be used to bound ᾱp as
follows:

ᾱp =
∑

j≤
ln(n3+1)

ln p

#{m < k ≤ n, pj |(k3 + 1)} ≤
∑

j≤
ln(n3+1)

ln p

⌈

n

pj

⌉

−
∑

j≤
ln(m3+1)

ln p

⌊

m

pj

⌋

.
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We also know that

βp =
∑

j≤
ln(n)
ln p

#{m < k ≤ n, pj |k} =
∑

j≤
ln(n)
ln p

⌊

n

pj

⌋

−
∑

j≤
ln(m)
ln p

⌊

m

pj

⌋

.

Therefore, when p ≡ 1 (mod 4),

αp

2
− βp ≤

∑

j≤
ln(n)
ln p

(⌈

n

pj

⌉

−

⌊

n

pj

⌋)

+
∑

ln(n)
ln p

<j≤
ln(n2+1)

ln p

⌈

n

pj

⌉

−
∑

ln(m)
ln p

<j≤
ln(m2+1)

ln p

⌊

m

pj

⌋

≤
ln(n2 + 1)

ln p
.

(3)

When p ≡ 1 (mod 3),

ᾱp

3
− βp ≤

∑

j≤
ln(n)
ln p

(⌈

n

pj

⌉

−

⌊

n

pj

⌋)

+
∑

ln(n)
ln p

<j≤
ln(n3+1)

ln p

⌈

n

pj

⌉

−
∑

ln(m)
ln p

<j≤
ln(m3+1)

ln p

⌊

m

pj

⌋

≤
ln(n3 + 1)

ln p
.

(4)

When p ≡ 2 (mod 3),

ᾱp − βp ≤
∑

j≤
ln(n)
ln p

(⌈

n

pj

⌉

−

⌊

n

pj

⌋)

+
∑

ln(n)
ln p

<j≤
ln(n3+1)

ln p

⌈

n

pj

⌉

−
∑

ln(m)
ln p

<j≤
ln(m3+1)

ln p

⌊

m

pj

⌋

≤
ln(n3 + 1)

ln p
.

(5)

Using this Lemma 2, we can update inequalities (1) and (2) as follows:

∑

p≡3(mod4)
p≤n

βp ln p <(
α2

2
− β2) ln 2 +

∑

p≡1(mod4)
p≤n

ln(n2 + 1) +
∑

n<p<2n

αp ln p

2
. (6)

∑

p≡2(mod3)
p≤n

2βp ln p

3
<(

ᾱ3

3
− β3) ln 3 +

∑

p≡1(mod3)
p≤n

ln(n3 + 1) +
∑

p≡2(mod3)
p≤n

ln(n3 + 1)

3

+
∑

n<p<2n

ᾱp ln p

3
.

(7)

Lemma 3. For any prime p ≤ n, βp ≥ n−m
p−1 − ln(n+1)

ln p
.
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Proof. Using the lower and the upper bounds of the prime powers in a factorial as in
Lemma 1 [1] for n andm, respectively, we can easily obtain the desired inequality.

When p = 2, if k is even k2 + 1 ≡ 1 (mod 4), otherwise k2 + 1 ≡ 2 (mod 4), so,

α2 =
⌈n

2

⌉

−
⌈m

2

⌉

≤
n−m+ 1

2

and using the preceding lemma,

β2 ≥ n−m−
ln(n+ 1)

ln 2
.

When p = 3, k3 + 1 ≡ 0 (mod 3t) has only one solution for t = 1 and two solutions
for t > 1. So,

ᾱ3 ≤ (
⌈n

3

⌉

−
⌊m

3

⌋

) + 2(
⌈n

9

⌉

−
⌊m

9

⌋

) + · · · ≤
5(n−m)

6
+ 3 +

3 lnn

ln 3
−

3 lnm

ln 3

and using the preceding lemma again,

β3 ≥
n−m

2
−

ln(n+ 1)

ln 3
.

Lemma 4. If p > n, then αp ≤ 2 and ᾱp ≤ 3 .

Proof. If p > n, and αp ≥ 3, then it is easy to see that there exist distinct j, k, l

such that p|j2 + 1, p|k2 + 1, and p|l2 + 1. Then p|(j − k)(j + k), so p|j + k, and
similarly, p|j + l. Then p|k − l, a contradiction. A similar argument can be applied
to ᾱp, as in [7].

Using Lemma 3 and Lemma 4, inequalities (6) and (7) become

∑

p≡3(4)
p≤n

(n−m) ln p

p− 1
<(

α2

2
− β2) ln 2 +

∑

p≡1(mod4)
p≤n

ln(n2 + 1) +
∑

p≡3(mod4)
p≤n

ln(n+ 1)

+
∑

n<p<2n

ln p.

(8)

∑

p≡2(mod3)
p≤n

2(n−m) ln p

3(p− 1)
<(

ᾱ3

3
− β3) ln 3 +

∑

p≡1(mod3)
p≤n

ln(n3 + 1)

+
∑

p≡2(mod3)
p≤n

ln(n3 + 1)

3
+

∑

p≡2(mod3)
p≤n

2 ln(n+ 1)

3

+
∑

n<p<2n

ln p.

(9)

Employing the estimates for α2, β2, replacing ln(n+1) by ln(n2+1) and replacing
∑

p≡3(mod4)
p≤n

ln p+
∑

n<p<2n

ln p
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by
∑

p<2n

ln p,

the right-hand side of inequality (8) gets larger,

∑

p≡3(4)
p≤n

(n−m) ln p

(p− 1)
<

(1− 3n+ 3m) ln 2

4
+

∑

p≤n

ln(n2 + 1) +
∑

p<2n

ln p. (10)

Dividing both sides by n−m we obtain

∑

p≡3(4)
p≤n

ln p

(p− 1)
<

(

1

4(n−m)
−

3

4

)

ln 2 +
π(n) ln(n2 + 1)

n−m
+

∑

p<2n ln p

n−m
. (11)

Likewise, employing the estimates for ᾱ3, β3, replacing ln(n+ 1) by ln(n3 + 1) and
replacing

∑

p≡2(mod3)
p≤n

2 ln p

3

by
∑

p≤n

ln p,

the right-hand side of inequality (9) gets larger,

∑

p≡2(mod3)
p≤n

2(n−m)ln p

3(p− 1)
<

(9− n+m) ln 3

9
+

∑

p≤n

ln(n3 + 1) +
∑

p<2n

ln p.
(12)

Dividing both sides by 2(n−m)
3 we obtain

∑

p≡2(mod3)
p≤n

ln p

(p− 1)
<

(

3

2(n−m)
−

1

6

)

ln 3 +
3π(n) ln(n3 + 1)

2(n−m)
+

3
∑

p<2n ln p

2(n−m)
. (13)

Since
π(n) ∼

n

lnn
and

∑

p<2n

ln p ∼ 2n,

the limiting values of the right-hand sides in (12) and (13) are 16−3 ln 2
4

∼= 3.48013

and 45−ln 3
6

∼= 7.31689, respectively. However, the left hand sides of these inequalities
are divergent series exceeding the right-hand sides for some values of Nm for each
inequality. That means any of these inequalities will no longer be satisfied and it
will contradict Pn

m and/or Qn
m is square-full, which proves our theorem.
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[6] E.Gürel, On the products

∏n

k=1
(4k4 + 1) and

∏n

k=1
(k4 + 4), to appear.
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