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Pseudo-differential operator associated with the fractional
Fourier transform
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Abstract. The main goal of this paper is to study properties of the fractional Fourier
transform on Schwartz type space %. Symbol class S;’ff is introduced. The fractional
pseudo-differential operators (f.p.d.o.) associated with the symbol a(z,&) are a continuous
linear mapping of . into .%y. Kernel and integral representations of f.p.d.o are obtained.
The boundedness property of f.p.d.o. is studied. Application of the fractional Fourier
transform in solving a generalized Fredholm integral equation is also given.
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1. Introduction

The motive of a generalization of the Fourier transform (FT) into the fractional
Fourier transform (FrFT) in the mathematical literature was formally first intro-
duced by Victor Namias in 1980 [4]. As a generalization of the FT, the FrFT is a
linear operator in the time-frequency plane. It depends on an angle 6 and can be
interpreted as a rotation by 6 in the time-frequency plane. It has many applications
in solving differential equations, quantum mechanics, signal processing, image pro-
cessing and other fields. The FrFT [1-6,12] with an angle 6 of ¢(x) € L*(R) denoted

by (FP¢)(w) = ¢°(w) is given by
(Fo)w) =) = [ K'(ww)o(e)da, o
R

where the kernel is

C? ei(achrwz)#71'900.1csce7 0 + nr,

1 —izw =T
Kf(z,w)={ ver & 2
Oz — w), 0 = 2n,
0(z + w), 0=02n—-1)m,neZ,

and C? = (2mising)~1/2%/2 = | [ 1=icotl
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If ¢?(w) € L(R), the corresponding inversion formula is given by

o(z) = / Ko(,w) 3 (w)dw, (2)
where

K9(z,w) = Qe i@ +w) <8 rimwescd _ pr=0( )

0 _ (2mising)1/2e=%/2  [1+icotd o
B 27 sin ¢ B or

From this, we conclude that the inverse of a FrFT with an angle 6 is the FrFT with
the angle —6.

Definition 1. The Schwartz space .7 is a set of rapidly decreasing complex-valued
infinitely differentiable functions ¢ on R such that for every choice of a and B of
non-negative integers it satisfies

Ya,8(¢) = sup |2 DP ()] < oo. (3)

If f is of polynomial growth and a locally integrable function on R, then f generates
a distribution in %' as follows:

(f,0) = /Rf(:c)¢(:c)dx, pe.7.

The space .7 (R) is equipped with the topology generated by the collection of semi-
norms {Ya,g}; it is a Fréchet space. The dual of .7 is denoted by .'; its elements
are called tempered distributions.

Definition 2. The Schwartz type space Sy is defined as follows: ¢ is a member of
o iff it is a compler valued C*°- function on R and for every choice of o and B of
non-negative integers it satisfies

Y 5(¢) = sup |z (A2)P(2)] < o0, (4)

where A} = — (d% + iz cot f).

Definition 3. The continuous fractional convolution of two continuous functions
é(z),y(z) € L*(R) is defined as

@r0)) = [ olahie - ae D g, o)
where xg denotes the fractional convolution operator.

Lemma 1. Let ¢(x),(x) € L*(R) be two continuous functions; then the fractional
Fourier transform of their convolution operator is given by

F (600 0)() = e M5 () F? (50" ) ), (6)
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Proof. Using equations (1) and (5), we have

P = [ Ko
= / / K% (z,w)p(x)(z — a:)e_%(z2_m2)(:°t Odx dz

/ / K'(x + y,w)d(a)i(y)e 2100 de dy

— @672w cotG/ KH I w dI/ KH y7 )67%y2cot9dy
1 —itw
— Ee 3 cotéd)e( )]_—9( cotew)( )
This completes the proof of the lemma. O

Lemma 2. Let ¢, € % C .7 and K%(x,w) be the kernel of the fractional Fourier
transform. Then

o0

0 [ @ e = [ o @) v

(i) (&%) K(w,) = (—iwese ) Ko(z,w),
(i4) (A_;)TKO(:E, w) = (iwesc )" K (z,w),
(iv) (F(Az) ¢(z)) (w) = (iwcsc 0)"¢%(w), Vr e Ny,
where A} is defined as above and Ay = (% — ix cot 9).
Proof. The proof is similar to [7, pp. 357-358]. O

Lemma 3 (Peetre). For any real number s and ¥,&,n € R, the upper boundary

(1 + |§|2) < 2|s\(1 +¢ _n|2)\8|

1+ nf?

1s satisfied.
Proof. See [11, p. 97]. O
Lemma 4. If f(z), ¢(z) € S (R). Then

(A*) ZAk T A* ) Dlgirf(x)a ke N07

where A} is the same as defined above and Ay, are constants.

Proof. See [g]. O

Theorem 1. The fractional Fourier transform @’ is a continuous linear map of &
mto Sp.

Proof. See a similar proof of Proposition 2.2 (iii) of [6, p. 242]. O
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2. Fractional pseudo-differential operators

In this section, we discuss a special class S;”Ue, which is a generalization of Hormander

class 7" [10]. For § = 7/2, the class S7%? reduces to the Hormander class.

Definition 4. Let a(z,£) be a complex valued smooth function on C*°(R xR) — C.
It belongs to symbol class S’,Ta‘g,m eR,0<0,p <1 iffVga B € Ny, there exist
Aaﬁ,myqyg > 0 such that

(14 |xcsc 9|)q‘Dg(Az)°‘a(x,§)’ < Ap.gmqo(l+ |€csc 9|)m7p‘°‘|+"m|, (7)
where A% is defined as above.
Definition 5. Let the symbol a(x,§) € Sg}f. Then a fractional pseudo-differential
operator TY associated with a(x,€) is defined by

(T06) (a / K@, Oz, ©)°(€)de, ¢ € 7. (8)

Theorem 2. Let the symbol a(x,§) € S;’f(;e. Then f.p.d.o. T? is a continuous linear
mapping from & into Sp.

Proof. Let ¢ € ¥ and k,q € Ng. Then using definitions (7)-(8), Lemma 4, Theo-
rem 1 and applying the technique of [6, p. 247] and [11, p. 66], we have

v (82)° (T6) ()
| |
~arazy [ Rt d(6) dg\

= ot [ 02 R Gote 10 ]

— 00

e [ ZBM ) K@ ) D) alw, )" €) de|

~fer [~ ZBM —ig esc0) KO (z, € D3~ a(z, )" (€) d|

< ZBﬁa|O"|/ (1+ [z escO])?| DY *a(x, )| € cscb]*|6° (€)] dE
a=0
B

< ZBB a|09|sup|¢0 |/ Ap—a,m.q.0 (1+|§CSC9|)W+06+Q(1 o) d§
a=0

< Ap gt /OO (14 [€ esc )™ de.
The integral is convergent for m + 5+ 1 < 0. Hence
I 5(T) < cc.
This completes the proof of the theorem. O
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3. Kernel and integral representations

In this section, we can write fractional pseudo-differential operators (T?$) in different
ways: For all ¢ € .%p, we have

x) = / h KOz, &)a(x, )" (£)d¢

/Kf’ /K"yé y)dy ) de

_ / / e~ H@ ) conOtiemnEs g g )o(y) dy de.

Let x — y = z; then

(T9<Z5 / / % 22 —212) cot O4iz€ csc O (x §)¢(£L' —Z) dz d§

_ /00 ko, 2)6(z — 2) dz,

— 00
where

ke(sz) — / 62(z —2xz) cot 0+1iz€ csc O (l‘,f)dﬁ

Thus

(T¢) (x / Ko(z,y)é(y) dy,

with the kernel Ky(x,y) = ko(z, 2 — y).
The function a¢ ¢(n) associated with the symbol a(z, ) and defined by

ago(n) = F°[K°(x,€)a(z,€)] (), (9)

will play a fundamental role in our investigation. An upper boundary for a¢ ¢(n) is
given by the following lemma.

Lemma 5. Let the symbol a(z,&) € Si%Y. Then the function ago(n) defined by (9)
satisfies the inequality

‘ag,g(n)| < Bim,g0(1 + |ncsc o)~ (1 + |€esc))™ T, Vi>1€N. (10)
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Proof. For r € Ny, using Lemma 2 (ii) and definition (7), we have

ago( / K'(a &[Ke(xvﬁ)a(%ﬁ)]dx

1—|—|ncsc6‘|)
- [t Sy (ﬁ)%[m(x,s)amw
rt )
5 (¢) ey [ D

r=0
x DI %a(x,&)dx
¢

Z(_ly<t>m/ K%z,n) ZBH —ig csc0) K9 (x, &)

r=0
x DI %a(x,&)dx

Therefore,
t T " [e%e]
ool <30 (1) Bea+lnesco) ™ [ feescol Dz a(e. ol
r=0 s=0 —00
t T " [e%e]
S <r> B, s(1+ |ncsc 9|)*t/ Ar_sm.q0(1+|zcsch])™?
=0 s=0 —o0
(1 + |€cscg])mHo =)t gy
< By m,q,0(1+ |ncsc 9|)_t(1 + |€esc 9|)m+t/ (1+ |zcsch|) Ydx.

The integral is convergent for ¢ > 1. Hence we have
|ag,o(n)| < Bt.m.qo(1+ nescd) (1 + [€cscd])™ .
This completes the proof of the lemma. O

Theorem 3. For any symbol a(z,§) € S’;”UG, the associated operator TY can be
represented by

(T?9)(a / / Kz, mac o () (€)dy de, ¢ € S,

where all involved integrals are convergent.

Proof. Since -
aco(n) = / K (2, ) K7z, E)alx, £))dr,

by the inversion formula, we have

K(e.€)aw§) = [ K@ macati)an
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Therefore,
(T2 $)(x / KO, Oalx, )¢ (€)de
N /_ /_ K(x,m)ae,o(n)¢” (€)dn de.

Since ¢?(€) € .7, we have
16°(6)] < Eo (1+|€csc) ™, ¥ q>0.
Now using the above upper boundary and Lemma 5, we have

(T06)(x)
<|09|/ / lag.o(n)] 16°(€)|dn de

< / / Bimgo(1+ nesc) 711+ [EescO))™ T Ep (1 + |€ cscf])"9dn dE

< B / (1+ |E csc 0]y -7de / (1 + fyescbl)~tdn,

for choosing ¢ sufficiently large such that ¢ > m +¢+1 and ¢t > 1, we can make the
integral convergent. [l

4. Boundedness property of fractional pseudo-differential op-
erators

Definition 6 (see Prasad et al. [9]). A tempered distribution ¢ € .7,(R) is said
to belong to the generalized Sobolev spaces H*Y(R), s € R, if its fractional Fourier
transform ¢° satisfies

el = ([

— 00

o0

/2
|(1+ |€csc b)) )*/2¢9 (€) )] d{) < 00. (11)
Lemma 6. Let the symbol a(z,§) € S;’?&‘g. Then we have

(@) 46 = ey | K @O0+ B ata e,

(i) [a°(€,m)] < Crm.go(1+ [nescd]) ™7 (1+ € esc? )71/,

Proof. (i) Using Lemma 2 (i) and (iii) and applying the technique of [6, p. 247]



122 A.PRASAD AND P. KUMAR

and [11, p. 66], we have

1 o0 _
W/_ K%(2,6)(1 + Ay)'a(x, n)da

t (1) (@ atemaa

W / K’ (x, s>;0
B io (i) m /_Z(A_S‘c)rlf"(w,g) a(z,n)dx
=32 (1) oy [ e ) o

= 1+ 4€csch

t

_ m /_Z K2, (:) (i€ csc0)” a(z, n)da

=0

1 oo
= W/— K%z, 6)(1 + ifcsch) a(z,n)dx

=a’(&.n).

(ii) Using definition (7) and the technique of [7, p. 359], we have

.3
t
60 = [ty | K092 ) “a(z n)d]

~[rrigaar [ @02 (1)

r=

a(x n)dw‘
0
>|Ce|(1+§2csc 0) t/2/ (z,n)|dz

ZZIdzI ||| D3 a(@, )|dx

>|09|(1+§2csc 6)~t/?
—00 5=0 1=0

IN
(]
AAA+

;) DD ldi] [CF)(1 + €2 ese? 0) 12

s=01=0

M~

oo

A st [0+ e s

— 00
’

< A L o(1+ &% csc? 9)4/2(1 + |ncscl])mtte

t,m,q,

x/ (14 |zcsch)) T dx.

— 00

The integral is convergent for ¢ > ¢ + 1. Hence there exists a constant Cy . q,1,0 > 0
such that

|d9(§, N)| < Cimogio(l+ €2 csc? 9)4/2(1 + |nesch])m .

This completes the proof of the lemma. O
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Theorem 4. Let the symbol a(z,§) € S’g‘(’,‘g. Then the fractional Fourier transform
of T?¢ can be represented as:

FleA e (T10)](6) = C7 go(6), @ € Fo(R),
where -
90() =[ ¢ (m)e™ =W 0G0 (& — 1)y,
Proof. Using definitions (5) and (8), we have
(T3 9) (@

8\/

Wa(x, n)ée (n)dn

—

— 00

L A Y A e T

— 00

I
Q

o0 . .
e—%:ﬂ cot 6 / Ke(x,g _ n)e%(n2_2£n) cot O+ixn CSC‘gge(f)dé
oo

I
R

= Cre it [ R, go(€)d
_ @efémz cote]_-fe [90]($)
Therefore . L
FOLexOm U TT)] (€) = C7 go(&).
This completes the proof of the theorem. O

Theorem 5. Let the symbol a(z,§) € S;’f;,e and T? ¢ be associated with f.p.d.o. Then
there exists anﬁqﬁsytﬁg >0 s.t.
T30l oo @) < My g o |l8ll meericom, ¢ € Fo(R),
Vs € R and m,q,t,o as above.
Proof. From Theorem 4, we have
(14 [€ esc ) /27 [e2 0 (1)) (€)
= CO(1+ [€ escB]*)* gy €)

o0

)
CO(1 + | csco)?)™/? ¢ (m)em(E=m ot 038 (¢ —p n)dn

_ 7 * (14 |€csch
[

|
1+ [ncsch)?)s/2

235/2

(14 Inescd]?)*/26° (n)e" = <068 (¢ — n, ).
Using Lemma 3, we have
Q2
(14 [€esc0?) 2 F0 [e2 0" (T I6)] (€))]

< IWI?S'/?/OO (14 1€ —m) esc8*)*2(1+ Inesc8]*)/2(0" ()] 1@ (€ — n.m)ldn.

—0o0
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We note that
(14 |€cscO))™ 7 < Ly yo0(l + |Ecscd)?)mH0)/2 ¢ e R, (12)

where L, ;.59 = max[1,27F7/2],
Moreover, from (12) and Lemma 6 (ii), we get

8% =10,m)| < Lin,t,0,6Ctm,q0(1 + Inesc0]) T2 (14 (6 =) esc6]) 72 (13)
Therefore
|(1+ g esc 02)/2 FO [e2 Lot (T )] (¢)|
< LontinaComgolCTRV? [~ (14 Iese 042540023 )
X (14 |(€ —n)csch>) /2d_77
— [ e min say)
= (/"% g")(9).
Now if t > s +2, ¢° = (14 |(€ — n)cscd]?)5=D/2 € LY(R). Also, since ¢? € .7,

FO = (1 + |nesc)?)mtst9)/2|46 ()| € L2(R). Then (f¢ x ¢?)(€), V€ € R exists and
belongs to L?(R). Hence

()2 co
(1 + [€ esc0]) 2 F0 [e3 07 UTI) | (€)||L2(m) < My g.s.t.0

(7 % 9|2 my-
Therefore
i 2
||62(.) cotG(Tg¢)(§)||Hsg ® < M‘9 qstg||f9||L2 )||g9||L1(1R)
This implies that

’
He0R) < M7r€,q,s,t,a||¢||Hm+5+w’9(R)'

(T2 9)(©)

This completes the proof of the theorem. O

5. Application of the fractional Fourier transform to a gener-
alized Fredholm integral equation

Fredholm integral equations of the second kind occur in a natural way while solving
a large class of boundary value problems of mathematical physics. It is very rare
that exact solutions of such integral equations can be determined completely. Before
describing the generalization, we need to note that it has recently been recognized
that Fredholm’s solution can afford a tool for obtaining analytic solutions.

In this section, we discuss the method of the fractional Fourier transform that can
be used to solve a generalized Fredholm integral equation of the second kind in
fractional convolution form.
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We consider the generalized Fredholm integral equation of the second kind with the
fractional convolution kernel in the form

/_OO Ko(z,t) f(t)dt + Af(z) = u(z), = €R, (14)

where kernel Ky (z,t) = g(z — t)e_%(w2_t2) ©tf is in L?(R?), while a known function
u(r) and an unknown function f(z) are in L?(R) and \ is a known parameter.
Equation (14) can be re-written in the convolution form as

(f 0 9)(x) + Af () = u(x). (15)

Applying the FrFT to both sides of equation (15) and using (6), we have
FO(f %0 9)(@) + M’ (w ) i (w)
1 1w? co R —i()?co ~
el O F0(w)F (e 50) “09) (w )+ AP (w) = @b (w).

Thus
2 @)

fe w) = 7 7 .
( ) %6_7“}2 cot 6 79 (6_5(')2 cotég) (w) Y
The inverse fractional Fourier transform leads to a formal solution

fo) = [ et g - (16)

e %e—%aﬂcoté‘pe(e 2(.)2coteg)(w)+/\

In particular, if A =1 and g(x) = (‘ ‘) so that

]_-9 (e ()2 cotég) (w) _ c? e%w2 cot 6
iwcsc o ’
then equation (16) reduces to the form
/ K9(z,w) iwcsc 0f (w)dw (17)
1 + iwesc ’
Now
i 1 i, ,2
]_-0 —i()%cot0 _—(.) _ 00 tTw cotﬁ' 18
(e ’ © )(w) 1+ dwcesch ¢ (18)
Using Lemma 2 (iv) and (18)
/ K (z,w) 75“’2 cott o (67%(')2 Cowe*('))(w) FOlAu](w)dw

/ Kz w)]-'e[Au*ge 3(.)% cot 6 e V] (w)dw

[Auxg e —3()’ Cowe_(')](:v)

/ A’U, 7[(x7y)+%(x7y)2 cot 0] efé(zzfyz)cot de

= [ Au(y) exp[(y — x)(1 + iz cot §)]dy.
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