ONEĆIŠĆENJE ATMOSFERE U ZATVORENIM PROSTORIMA

K. Sega

Institut za medicinska istraživanje i medicinu rada, Zagreb

(Primljeno 17. II 1983)

Istaknuta je važnost onećišćenja unutrašnje atmosfere pri ocjenjivanju osobne izloženosti stanovnika štetnim tvarima u zraku. Dan je pregled najčešćih polutanata unutrašnje atmosfere i navedeno njihovo porijeklo. Opisana je audibna polutanata u zatvorenom prostoru i prikazan način matematičkog modeliranja vremenskog toka iznosa koncentracije uz poznate početne uvjete. Naglašena je veza između težnje za očuvanje energije i zahtjeva za kvalitetu unutrašnje atmosfere, te opisan utjecaj prirodne i prisilne ventilacije na onećišćenje zraka u zgradama.

Opisan je sindrom «nezdravih zgrada», njegovi uzruci i prikazan tip zgrada u kojima se javlja.

Navedeni su mogući načini utjecaja na kvalitetu unutrašnje atmosfere, te potrebna saznanja koja bi dovela do definiranja standarda pri projektiranju i gradnji.

Kada se govori o atmosferi zatvorenog prostora, najčešće se misli na atmosferu radnog prostora u kojem dolazi do izražaja profesionalna izloženost specifičnim polutanima koji se javljaju kao posljedica prirodno-proizvodnog procesa. Ovaj se pregled ne odnosi na taj problem, već razmatra onećišćenje unutrašnje atmosfere stambenog i poslovnog prostora, zgrada javnih službi, trgovine, ugostiteljstva itd. Kako se radi o istraživanju životne, a ne radne okoline, rezultati i iz njuh izvedeni zaključci su važni za cjelokupno stanovništvo zemlje, a ne samo za mali krug ljudi određenih profesija.

Donedavno su za ocjenu izloženosti stanovnika služili podaci o onećišćenju atmosfere otvorenog prostora na području gdje ljudi žive. Problem onećišćenja unutrašnje atmosfere, znači zatvorenog prostora u kojem ljudi borave najveći dio vremena, bio je zanemaran. Veza između tva dva vida onećišćenja zraka nije ni jednostavna ni izravna, a za pojedine polutante koji se javljaju samo u unutrašnjoj atmosferi i ne postoji.
Interes za kvalitetu zraka u zatvorenim prostorijama naglo je porastao kao posljedica težnje za štednju energije (1). Zbog smanjenja potrošnje goriva za grijanje prostorija poboljšana je toplinska izolacija zgrada, čime je smanjeno prirodno provjetravanje. Zbog istih razloga smanjen je i intenzitet prinijene ventilacije i povećan udio zraka koji se recirkulira, pa se nužno nametnula bojazan da će doći do nagomilavanja onečišćenja koja nastaju unutar zgrada. S druge strane, materijali upotrijebljeni za izolaciju mogu otpuštati štetne tvari u obliku plinova i para (npr. formaldehida ili čestica ažbest).

I konačno, u mnogim su se zemljama stanovnici i namještenici koji su boravili u velikim dobro izoliranim stambenim i poslovnim zgradama s prisilnom ventilacijom, tužili na objektivne i subjektivne potičuće vezane za boravak u tim zgradama (2, 3), pa je nastao pojam »nezdravih zgrada« (sick building sindrom).

Utvrđeno je da se postotak vremena što ga ljudi provode u zatvorenom prostoru kreće od 50% u poljoprivrednika, šumskih radnika, građevinek radnika i sličnih struka, pa sve do 100% u mladih majki, dojenčadi, bolnicima i staraca, pogotovo za vrijeme zimskog perioda (1). Prosječno vrijeme boravka u zatvorenom prostoru za odrasle ljudje u gradovima umijerenog pojasa kreće se od 75 do 85% i taj podatak govori o važnosti izučavanja onečišćenja unutrašnje atmosfe pro procjeni osobne izloženosti stanovnika štetnim tvarima u zraku. Navedeni su podaci spominje u stručnoj literaturi (4), a i mi smo ga potvrdili prilikom određivanja osobne izloženosti stanovnika zagrebačkog aerosolima i ugljik-monoksidu (5). Sve promatrane osobe provodile su najviše vremena kod kuće (30—70%). U osoba u radnom odnosu na drugom je mjestu po količini provedenog vremena bio boravak na radnom mjestu (približno 25%).

Boravak u zatvorenom prostoru može se grubo podijeliti u nekoliko skupina:
— boravak u stambenom prostoru
— boravak na radnom mjestu
— boravak u javnim zgradama (pošte, banke, trgovine, zgrade upravnih službi, ugovorni objekti itd.)
— boravak u vozilima prilikom transporta.

Svaka od ovih skupina predstavlja zaokruženu cjelinu određenih karakteristika kao što su viste izvora onečišćenja zraka, viste polutanata, vjerojatno vrijeme zadržavanja osobe u danoj okolini itd. Neke od karakteristika, kao npr. stupanj provjetravanja prostorije, variraju ovisno o načinu izgradnje zgrade, godišnjem dobu, općem klimatskim uvjetima itd.

Broj mogućih polutanata u unutrašnjoj atmosferi nadmašuje njihov broj u vanjskoj atmosferi, a kako ljudi provode u zatvorenom prostoru velik dio vremena, izučavanje unutrašnje atmosfe pro prilikom određivanja osobne izloženosti stanovnika ima primarnu važnost.
Specifično djelovanje pojedinih polutanata na zdravlje je poznato, no s obzirom na to da se kod onečišćenja atmosfere radi o dugotrajnom djelovanju vrlo niskih koncentracija uz istovremenu prisutnost drugih utjecajnih faktora, teško je donositi zaključke na osnovi rezultata akutnih trovanja za koja postoje klinički rezultati ili rezultati pokusa na životinjama. Longitudinlalna epidemiološka istraživanja teško je opće provesti zbog stalnih promjena u prisutnosti i razinama kako interferirajućih faktora tako i faktora djelovanja kojih promatramo. Utjecaj ovih elemena ublažuje se usporedom promatrane skupine s kontrolnom i testira njem značajnost razlika u nalazima. Ali nije lako naći kontrolnu skupinu koja bi bila usporediva s promatranom skupinom u svim drugim elementima, osim u stupnju izloženosti štetnoj tvari djelovanje koje istražjuju.

Još veća poteškoća se javlja pri ocjeni djelovanja mješavine niskih koncentracija različitih polutanata, te njihovog mogućeg sinergističkog, odnosno antagonističkog djelovanja. Osim toga moguće su kemijske reakcije između polutanata koje mogu dovesti do formiranja novih onečišćenja sa snažnijim djelovanjem, bilo na ljudi ili na okolinu.

Zbog toga je potrebno dobro provođiti karakterističke i ponašanje onečišćenja atmosfere zatvorenih prostora kako bi se uočili bitni problemi i našao optimalan pristup za njihovo rješavanje.

PORIJEDKO POLUTANATA

Pokraj polutanata u unutrašnjoj atmosferi je raznoliko. Najčešći i najznačajniji izvori su ovi:

a) sagorjevanje goriva
b) aktivnosti stanara u zalivenom prostoru
c) otpuštanje štetnih tvari iz građevinskih, konstrukcijskih i izolacijskih materijala ili materijala upotrijebljenih za opremu stanova
d) životinje, plijesni, pelud, produkti metabolizma ljudi
i i ostala onečišćenja biološkog porijekla
e) penetracija štetnih tvari iz vanjske atmosfere.

a) Sagorjevanje goriva zbog kuljanja i zagrijavanja stambenog i povoljnog prostora najčešći je uzrok onečišćenja unutrašnje atmosfere, no utjedno su to izvori na aktivnost kojih se može najlako i najbrže utjeći. Ovisno o upotrijebljenoj vrsti goriva, konstruktivni peći i uvjetima izgaranja goriva nastaju različite vrste polutanata i različite razine nijihovih koncentracija.

Peći na drvo, ugljen i tekuća goriva imaju redovito odvod sagorjelih plinova u dimnjak, pa samo u slučaju trošnog, neispravnog ili nepravilno projektiranog dimnjaka može doći do povrata plinova u prostoriju. Prema tome najčešći izvor onečišćenja zraka u prostorijama su plinske peći i bajleri bez odvoda dimnih plinova, i plinski štednjaci. Plin je relativno
čisto gorivo, pa se za male potrošače ranije nije smatralo potrebnim odvoditi plinove u dimnjak. Pokazalo se, međutim, da i pri izgaranju plina nastaju količine CO i NO, koje se ne mogu zanemariti, tako da koncentracije u prostoriji mogu znatno premašiti vrijednosti koje bi se smjele tolerirati. Odsisne kape s recirkulacijom zraka preko filtra od aktivnog ugljena odstranjuju neugodne mirise koji se javljaju pri kuhanju, no ne uklanjaju sve plinovite polutante koji nastaju pri izgaranju plina CO i NO za npr. permanentni plinovi i ne zadržavaju se na aktivnom ugljenu pri prolasku kroz filter, te stoga odsisne kape u kuhinjama doprinose samo prividnom poboljšanju kvalitete zraka.

b) Ljudske aktivnosti u zatvorenom prostoru razlikuju se po trajanju i učestalosti. Kretanje ljudi, spremanje stana i igra djece dovode do izrazitog porasta koncentracije lebdećih čestica u zraku, dok aktivnosti poput pranja, čišćenja, bojenja, upotrebe "sprayeva" za osobnu higijenu, tamanjenje insekata, laštenje namještaja i cipela i slično, dovode do kratkotrajnih vrlo visokih koncentracija organskih otapala, freona i drugih spojeva.

Pušenje je jedna od najjednostavnijih navika, jer sagorjevima plinovima cigareta nije izložen samo pušač nego i ostale osobe koje se nalaze u istoj prostoriji. Pušenje dovodi do porasta koncentracija lebdećih čestica, CO, CO, NO, SO i niza organskih spojeva. Naročito visoke koncentracije se mogu doseći u barovima, kavanaima i dvoranama za sastanke i konferencije u kojima pušenje nije zabranjeno. Utjecaj ovog vida onečišćenja na nepušače, a naravno i na djecu i kronične bolesnike, nije zanemariv. Kao primjer navest ćemo podatke koje nalazimo u izvještajima Svjetske zdravstvene organizacije o osobnoj izloženosti ljudi (6). Izvještajna su ujedno i funkcija, ukupno lebdećih čestica u 3,4 benzpirena u zraku prilikom masovnih skupova. Skupovi su podijeljeni u tri kategorije s obzirom na mjere koje su poduzete u vezi s očuvanjem kvalitete zraka u prostoriji:

A — postoji sistem za klimatizaciju i znakovi o zabrani pušenja, no ne zahtijeva se striktno pridržavanje
B — ne postoji sistem za klimatizaciju, niti je pušenje zabranjeno
C — postoji sistem za klimatizaciju, znakovi o zabrani pušenja i traži se striktno pridržavanje te naredbe.

Rezultati prikazaani na tablici 1. pokazuju da je kvaliteta zraka na masovnim skupovima općenito slaba, osobito ako ne postoji zabrana pušenja. U tim skupovima koncentracije polutanata čak znatno nadmašuju koncentracije u vanjskoj atmosferi za vrijeme visokih razina onečišćenja.

c) Otpuštanje štetnih tvari iz raznih materijala za izgradnju ili izolaciju, te za izradu ili impregnaciju pokuštava, sagova, zastora i sl. također je izrazit problem koji je postao sve aktuelnijim zbog primjene sintetskih materijala pri njihovoj proizvodnji i obradi.
Sl. 1. Proračun razina koncentracija ugljik-monoksida pri različitim uvjetima provjetravanja i pušenja. Volumen sobe je 85 m³. Iznosi provjetravanja su izraženi u m³ min⁻¹ (4)

Tablica 1.

Sadržaj lebdećih čestica, ugljik-monoksida i 3,4 benzpirena u crku prilikom javnih skupova mjerena u tri različite dvorane (6)

<table>
<thead>
<tr>
<th>Dvorana</th>
<th>Broj prisutnih ljudi</th>
<th>Lebdeće čestice (µg m⁻³)</th>
<th>CO (mg m⁻³)</th>
<th>3,4 benzpiren (µg m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>I</td>
</tr>
<tr>
<td>A</td>
<td>11 806</td>
<td>323</td>
<td>42</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>8 647—10 786</td>
<td>224</td>
<td>42</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>12 000—12 844</td>
<td>305</td>
<td>42</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>13100—14 277</td>
<td>481</td>
<td>42</td>
<td>11.5</td>
</tr>
<tr>
<td>B</td>
<td>2 000</td>
<td>620</td>
<td>92</td>
<td>28.6</td>
</tr>
<tr>
<td>C</td>
<td>11 000</td>
<td>148</td>
<td>71</td>
<td>10.2</td>
</tr>
</tbody>
</table>

I — u prisutnosti ljudi
II — bez prisutnosti ljudi prije skupa

161
Otpuštanje nekih polutanata je konstantno (npr. radona iz nekih vrsta cementa), dok u drugih opada s vremenom (npr. formaldehida). Na ovu skupinu onečišćenja zraka teško se može naknadno utjecati, već treba promjenjivima u proizvodnom procesu ili izborom sirovina dobiti materijale povoljnijih svojstava.

Za materijale koji postepeno prestaju otuštati zamjetljive količine stemnih tvari potrebno bi bilo eksperimentalnim putem doći do podataka o minimalnom vremenskom periodu nakon kojeg možemo emisiju tih izvora smatrati zamensivom.

d) Razina koncentracije polutanata iz ove skupine ovisi uglavnom o higijenskim uvjetima što vladaju u prostoriji kao i o mikroklimi. Povišenje koncentracije plijesni i bakterija pogođuju visoka vlažnost i mašen broj izmjena zraka u jedinici vremena. U ovu skupinu možemo svestati i proizvode ljudskog metabolizma kao što su CO₂, vodena para, niz viših životinja.

Porastom higijenskog standarda, naobrazbe, te napose pravilno organiziranim odgojnim akcijama, ovaj se viđe onečišćenja zraka može gotovo potpuno ukloniti.

Osećenje zraka peludom ima izrazito sezonski karakter i spada u tip onečišćenja koje penetrira iz vanjske atmosfere.

e) Svi prostori, ako nisu hermetički zatvoren, izmjenjuju zrak u manjoj ili većoj mjeri s okolnom atmosferom infiltracijom i difuzijom. Osim prirodnim putem zrak izvana može ući u prostoriju i prisilnom ventilacijom.

Prirodni uvjeti odgovorni za prodiranje vanjskog zraka u zgradi su temperaturni gradijent, koji stvara razliku pritiska u zgradi i izvan nje, i efekt dimnjaka koji se javlja kao posljedica vertikalnog strujanja toplog zraka unutar zgrade prema gore, jak vjetar i propuh.

Izmjena zraka u zatvorenom prostorijama uslijed prirodne ventilacije, koja iznosi od 2 do 3 izmjene na sat u stvarnim i trošnim zgradama, do 0,2—0,7 izmjena na sat u modernim, dobro topolinsko izoliranim zgradama, redovito nije dovoljno brza da bi zadržala koncentraciju polutanata prispjelih izvana na jednakoj razini s onom u vanjskoj atmosferi. To se dobro vidi na sl. 2, gdje je prikazano kretanje srednjih tjednih koncentracija olova u zraku tokom godine izvan i unutar prostorije u tri zgrade smještene u blizini talionice oliva (7).

Na sl. 3. je prikazan odnos koncentracija olova na istoj visini u vanjskom zraku i u zraku jedne prostorije na drugom katu zgrade u uskoi i prometnoj ulici kao posljedica efekta dimnjaka (7).

Općenito se utječal vanjske atmosfere na unutrašnju atmosferu može dobro prikazati odnosom koncentracije pojedinih polutanata u prostoriji i izvan nje (tablica 2). Treba naglašiti da se ovdje radi o prosjecima i da su moguće oduzimanje ovisno o specifičnim uvjetima. Tipični plinovi poluant koji prodire iz vanjske atmosfere jesu SO₂ i O₃, ispušni plinovi
Sl. 2. Kretanje srednjih tjednih koncentracija olova u toku godine van i u prostoriji u tri zgrade oko talonice olova (7)
automobilskih motora i specifične emisije lokalne industrije. Lebdeoče čestice i prašina također penetriraju izvana i pri tom mogu na sebi donijeti adsorbirane plinove koji se pri višoj temperaturi u prostoriji deonitriraju.

Prisilnom ventilacijom ubrzava se priljev vanjskog zraka u prostoriju, pa se smanjuje koncentracija polutanata kojih je izvor unutar prostorije, a povećava koncentracija onih polutanata koji prođu izvana.

Poseban problem može predstavljati neprikladan smještaj ulaznog otvora ventilacijskog sistema kroz koji ulazi zrak za obnavljanje. Npr., smještaj u blizini izvora onečišćenja radikalno će pogoršati kvalitetu zraka u zgradi.

Ako se u uređajima za ventilaciju ili recirkulaciju upotrebljavaju elektrostatski precipitatori aerosola, tada se iz ulaznog zraka gotovo potpuno uklanjaju lebdeoče čestice, no uvodi se ozon koji se stvara pri njihovom radu. Iako se koncentracija ozona zbog njegove reaktivnosti brzo smanjuje, upravo ta izražena reaktivnost (ozon je jak oksidans), kao i činjenica da precipitatori predstavljaju stalan izvor novih količina ozona, govori o ozbiljnosti tog problema.

SUDBINA POLUTANATA U ZATVORENOM PROSTORU

Ovisno o uvjetima koji vladaju u prostoriji koncentracije polutanata mogu padati ili rasti u odnosu na početno stanje. Što će se s polutanima događati u zatvorenom prostoru ovisi:
a) o vrstama polutanata,
b) o smještaju i karakteru izvora polutanata,
c) o „ponorima“ polutanata, tj. medijima i mehanizmima za njihovo spontano uklanjanje,
d) o izmjeni zraka i stupnju mišanjana zraka u prostoriji.

a) Poznavanje vrste polutanata je bitno jer govori o mogućim izvorima, o očekivanim fizičko-kemijskom ponašanju polutanata i o mogućim ponorima.

b) Izvori polutanata mogu biti smješteni unutar i/ili izvan prostorije. Prvi korak u proučavanju sudbine polutanata je identifikacija izvora i utvrđivanje njihovog smještaja, kapaciteta, trajanja (stalni, povremeni) i učestalosti njihove aktivnosti.

Ako je izvor smješten izvan prostorije, može već u toku penetracije doći do promjene fizičkih svojstava, jednako i do selektivnog uklanjanja polutanata koji prodire (vidi i poglavlje 2 e.).

c) Na koji će način polutan biti uklonjen iz zraka ovisi će o njihovoj reaktivnosti i agregatnom stanju. Neki od plinovitih polutanata lako se i brzo vežu adsorpcijom ili kemijskom adsorpcijom za zidove i druge površine (sagove, zavjese, premaze itd.) ili se razlažu (npr. ozon). Drugi koji su inertni razrjeđuju se mišanjem i postepeno gube dituzijom. Leđeće čestice se postepeno talože, a ako dopri izvana kroz kanale, pore ili pu-kotine, onda se već putem djelomično uklanjaju pri čemu ne samo da im se snizuje koncentracija, nego dolazi i do izražite promjene u spektru veličina čestica, a i kemijskog sastava. Promjene u temperaturi i vlažnosti zraka i elektrostatski efekti mogu pri tom imati znatnu ulogu.

d) Ako poluant koji nije reaktivni nastaje u prostoriji, njegovu se uklanjanje može pospješiti samo povećanjem brojem izmjena zraka u jedinici vremena. U neprometnom smjeru zraka postant će se gomilati i njegova koncentracija može doseći znatne vrijednosti. Do gosišta izrada može doći i zbog znatnog udjela recirkulariziranog zraka pri prisilnoj ventilaciji.

Dobro mišanjanje zraka omogućuje bolji kontakt onečišćenja s površinama koje služe kao poron.

Sudbinu polutanata u prostorijama može se definirati jednačinama, ako se poznavaju početni uvjeti i vrijednosti konstanta u proračunu. Da je određivanje relacije između onečišćenja vanjske i unutrašnje atmosfere, odnosno osečišćenog zraka, vrlo složen, ali i zanimljiv problem, svjedoči i velik broj novijih radova iz tog područja (8, 9, 10, 11, 12). Bit tih radova prikazat će se u idućem poglavlju.

MATEMATIČKI MODELI ODREĐIVANJA KONCENTRACIJA

Za održavanje potrebne kvalitete zraka u zatvorenom prostoru veoma je važna procjena i izučavanje koncentracija onečišćenja pri danim uvjetima kao što su volumen prostorije, stupanj provjetranja, vrijeme aktivnosti izvora onečišćenja, njihova izdašnost itd.
Vrijednosti u tablici su ilustrativne i ne predstavljaju srednje vrijednosti pri mjerenjima.
Moguće je učiniti matematičke modele kojima se opisuje kretanje vrijednosti koncentracije polutanta u zatvorenom prostoru. Ovakve jednadžbe stanja moguće je postaviti bilo za pojedinačne polutante, bilo za njihovu smjesu (6).

Promjena ukupne količine polutanta u prostoriji \(m_p \) može se prikazati izrazom:

\[
\frac{dm_p}{dt} = V \frac{dC}{dt}
\]

gdje je \(V \) volumen prostorije, \(C \) koncentracija polutanta u prostoriji i \(t \) vrijeme u kojem se ta promjena zbiva. Količina polutanta se može početi bilo zbog prodora izvana, bilo zbog postojanja aktivnog izvora polutanta unutar prostorije. Izdašnost izvora označava se sa \(Q \) i ima dimenziju \(MT^{-1} \). Doprinos izvana opisuje se preko vanjske koncentracije \(C_1 \) i protoka zraka kroz prostoriju \(F \).

Do smanjenja količine polutanta dolazi uslijed postojanja uponora polutana, tj. ujesta i načina njihove eliminacije odnosno rekombina-
cije. Djelovanje ponora se opisuje preko veličine \(D \) koja predstavlja mjeru gubitka polutanta i ima dimenziju \(T^{-1} \).

Do smanjivanja dolazi također uslijed toga što u ravnotežnom stanju prostoriju mora napustiti jednaka količina zraka koja u nju i ulazi. Pri tom treba uzeti u obzir da se zrak pridostao izvana ne miša potpuno sa zrakom unutar prostorije, što znači da će dio tog vanjskog zraka ne-

promijenjen i izaci. Miješanje se opisuje bezdimenzionalnim faktorom miješanja \(k \). Za savršeno miješanje vrijednost \(k \) bi bila jednaka jedinicim. U praksi se vrijednosti \(k \) kreće između 0,1 i 0,4.

Sada je moguće opisati ukupnu promjenu količine polutanta u prostoriji izrazom:

\[
\frac{dm_p}{dt} = V \frac{dC}{dt} = Q + FC_1 - DCV - (1 - k) FC_1 - kFC
\]

Iz toga slijedi:

\[
\frac{dC}{dt} = \frac{Q}{V} + \frac{kF}{V} C_1 - DC - \frac{kF}{V} C
\]

Faktor \(kF/V \) obilježava se sa \(S \) i nazivamo ga iznosom efektivne izmje-
ne zraka u prostoriji. Jednadžba (3) sada poprima oblik:

\[
\frac{dC}{dt} = \frac{Q}{V} + SC_1 - (D + S) C
\]

Iz jednadžbe (4) se vidi da je u ravnotežnom stanju iznos koncentra-
cije \(C \) opisan izrazom:

167
C = \left(D + S \right)^{-1} \left(\frac{Q}{V} + SC_t \right) \tag{5}

Pretpostavi li se da su veličine Q, D, S i C_t konstantne što najčešće i
odgovara prirodnim uvjetima za relativno duga razdoblja, tada rješenje
jednadžbe (4) glasi:

C = C_0 \left[e^{-\left(S + D \right) \left(t - t_o \right)} + \left(\frac{Q}{V} + SC_t \right) \left(S + D \right)^{-1} \left(1 - e^{-\left(S + D \right) \left(t - t_o \right)} \right) \right] \tag{6}

gdje je C_0 = C(t_o) koncentracija polutanta u prostoriji u trenutku po-
četka promjene t_o.

Nakon dovoljno dugog vremena koncentracija se ustaljuje, pa ekspo-
enecijalni članovi trnu i iznos koncentracije teži ravnotežnoj koncen-
traciji opisanoj izrazom (5).

Preko općeg rješenja (6) moguće je opisati pojedine specifične sluča-
jeve koji su od interesa u praksi.

Ako u prostoriji ne postoje izvori i ponori polutanta, tada će se njego-
va koncentracija mijenjati prema izrazu oblika:

C = C_0 \left[e^{-S \left(t - t_o \right)} + C_t \left(1 - e^{-S \left(t - t_o \right)} \right) \right] \tag{7}

Ukoliko je vanjska koncentracija zanemarivo malena spram unutraš-
jenje ili jednaka nuli, ovaj se izraz reducira na još jednostavniji oblik:

C = C_0 e^{-S \left(t - t_o \right)} \tag{8}

Teorijski dobivena rješenja ovog tipa uspoređivana su s eksperimental-
alno dobivenim rezultatima i pri tom su dala zadovoljavajuće rezultate
za ponašanje koncentracija CO, CO2, NO i NO2 u zatvorenim prostorij-
ima, dok je slaganje za O₃ bilo slabo (13).

Izdašnosti pojedinih izvora polutantata Q određuju se preciznim labo-
rorijskim analizama, no ponekad ih je moguće odrediti i iz mjerenja
obavljениh na terenu.

Brzina prirodne izmjene zraka u prostorijama je također podatak od
vitalnog značenja pri izučavanju onečišćenja unutrašnje atmosfere. Ona
se kreće u granicama od 0,2 do 2 pa i više izmjena na sat. Određuju se
uglavnom eksperimentalno. Jedna od metoda zasniva se na upotrebi pli-
na za obilježavanje (tracer gas). U prostoriju se pušta 10 do 100 puta ve-
ća koncentracija plina za obilježavanje od one koju je moguće otkriti
instrumentima kojima se koristimo. Pomoću jednadžbe (8) uz mjerenje
koncentracija u različitim trenucima t i uz pretpostavku dobrog mijeka-
nja zraka u prostoriji dolazi se do iznosa brzine izmjerne zraka. Kao plin
za obilježavanje se najčešće upotrebljavaju N₂O, CO₂ i SF₆. Drugi je pri-
stup da se u prostoriji održava stabilna koncentracija plina za obilježava-
nje, a brzina izmjerne zraka se računa preko vrijednosti izvo-
ra Q, potrebne za održavanje stalne koncentracije i jednadžbe (5) koja se u ovom slučaju uz D, C₁ = 0 reducira na oblik:

\[S = \frac{Q}{VC} \]

(9)

Druga metoda, koja se često primjenjuje u praksi, svodi se na mjerenje struje zraka koja izlazi iz prostorije pri održavanju konstantnog natpisnog iznosnog površina u njoj. Iako se pri korištenju ove metode dolazi do iznosa izmjene zraka posrednim putem, ona ima predeo pred prvočovnom što je neosjetljiva na smjer i brzinu vjetra izvan zgrade.

GLAVNE VRSTE POLUTANATA UNUTRASNJE ATMOSFERE

Lebdeće čestice

Porijeklo lebdećih čestica u unutrašnjoj atmosferi raznoliko je kao i njihov sastav. Čestice nastaju sagorijevanjem, penetracijom izvaha, brončenjem površina, šiljenjem, bruženjem, bušenjem, trošenjem materijala, upotrebom izolacije, kretanjem ploha, pucnjem, čišćenjem stana, kemijskim reakcijama iz plinova itd. Prisutne su uvijek u većem ili manjem broju, a njihov sastav i raspodjela po veličini ovisi o porijeklu. Stetno djelovanje čestica, koje nisu toksične ili potencijalno kancerogene, očituje se u mehaničkim podražajima respiratornog trakta, otapanjem topljivih čestica na sluznici respiratornog trakta, alergijskim reakcijama na čestice organskog sastava itd. Sastav čestica i njihova raspodjela po veličini razlikuju se od slučaja do slučaja i relativno su neovisni o sastavu i spektru čestica u vanjskoj atmosferi, osim pri visokim iznosima brzine izmjena zraka kao što je slučaj kod prisilne ventilacije, odnosno provijetranja.

Interpretacija rezultata mjerenja koncentracija čestica ovisi o njihovom sastavu i raspodjeli po veličini koji određuju stepanj stetnosti za ljudsko zdravlje (14, 15).

Dok se udio čestica biološkog porijekla u biti ne mijenja tokom godina, u novije vrijeme dolazi do sve većeg izražaja prisutnosti anorganских čestica (azbesta i mineralne vune) u unutrašnjoj atmosferi. Ovaj je problem izražen kako u novijim zgradama tako i u onim starijim u kojima je naknadno izvedena nova toplinska izolacija.

Ugljik-monoksid

Ugljik-monoksid predstavlja značajan problem onečišćenja unutrašnje atmosfere, naročito tokom zimskog perioda kao posljedica izgaranja velikih količina goriva, odnosno cijeje godine u blizini prometnica s intenzivnim prometom.
Izvori ugljik monoksidu u unutrašnjoj atmosferi, koji najviše doprinose osobnoj izloženosti, svakako su plinski štednjaci, plinski bojleri i peći bez odvoda u dimnjak, te napose štetna navika pušenja.

Prisutnost ugljik-monoksidu treba susbijati prvenstveno provjerom načina izgara goriva u ložistama i plamenicima, upotrebom pravilno konstruiranih i održavanih dimnjaka kao i održavanjem dovoljne izmje- ne zraka u prostorijama.

Mjerenja osobne izloženosti ugljik-monoksidu provedena u Zagrebu tokom sezone 1980/81. (5) pokazuju visu površinu u načinu grijanja slamb- neg i poslovnom prostoru u kojem su ispitanici boravili, kao i o načinu i trajanju prijevoza ispitanika. Na izloženost ugljik-monoksidu utječe također način i trajanje pripremanja obruka.

Poseban problem onečišćenja unutrašnje atmosfere ugljik-monoksidom jest pušenje, posebice u javnim i poslovnim zgradama i prostorijama. Dok za pušače koncentracija koju nalazimo u unutrašnjoj atmosferi predstavlja tek čitan doprinos njihовоj osobnoj izloženosti, za nepu- šače, tzv. pasivno pušenje, predstavlja značajnu dio njihove osobne iz- loženosti.

Za ugljik-monoksidu možemo reći da predstavlja izrazit problem onečišćenja unutrašnje atmosfere, dok je doprinos onečišćenja vanjske atmosfere relativno malen osim u blizini prometnica i dimnjaka (16).

Izraziti alinitet hemoglobina spram ugljik-monoksidu dovodi do formiranja karboksihemoglobina u krvi i posredno do slabijeg vezanja ki- sika. Slabija opaska kisikom ima za posljedicu mnoge fiziološke potše- koće i smetnje, a u krajinom slučaju može dovesti i do smrti. Poseben problem pri trovanju ugljik-monoksidom je u tome što se radi o plinu bez buje i mirisa koji je nemoguće otkriti njihom, što onemogućava pro- vodobno poduzimanje mjera za susbijanje otrovanja.

S obzirom na štetnost za zdravlje, pa čak iznimno i opasnost za život, problem ugljik-monoksidu u unutrašnjoj atmosferi se intenzivno pro- uzava (17, 18).

Gomilanje ugljik-monoksidu u zatvorenom prostoru, u prisutnosti ak- tivnog izvora prikazano je slijeđećim primjerom. Promatrane su koncentracije CO u dvije identične prostorije, volumena 85 m³ u kojima boraviti 25 ljudi. U jednoj od njih se popušti 100 cigareta na sat, dok se u drugoj ne puši. Faktor miješanja u obje prostorije iznosi 1/3. Kao varijabla je uzeta veličina izmje- ne zraka u prostoriju, te je računata koncentracija za različita vremena. Rezultati su prikazani na slici 1. Pokazuje se izra- zita ovisnost koncentracije o veličini izmjene zraka u prostoriji i vidljiv je da pri malom broju izmjena dolazi do značajnog gomilanja CO u prostoriji gdje se puši. Svakako treba naglasiti da ove vrijednosti pri- kazuju prosječnu ekspoziciju nepušača u takvoj prostoriji, a ne pušača koji direktno inhaliiraju dim cigarete.
Sumpor-dioksid

Sumpor-dioksid je onećišćenje unutrašnje atmosfere koje najčešće penetrira izvana. Nastaje izgaranjem goriva koje sadrži sumpor poput ugljena i tekućih goriva. Osim penetracije izvana može nastati kao posljedica neispravnih kućnih ložišta i neadekvatnih dimnjaka. Njegova se koncentracija u zatvorenom prostoru relativno brzo snižava reakcijom s materijalima u kućanstvu (sl. 4), te na taj način dovedi ih do materijalnih šteta nagrizanjem i oštećivanjem površina i ubrzavanjem procesa korozije.

Po djelovanju na zdravlje ljudi sumpor-dioksid spada u nadražljivce gornjih disnih putova. Postoje indijice da pri duljem djelovanju prosje-

čnih koncentracija već od 70 do 80 µg m⁻³ može doći do opstrukcije dišnih putova i konačno do kroničnog bronhitisa (19). Izloženost je izračunata na temelju podataka da ispitanci borave oko 30%/v vremena va
ni pri srednjoj godišnjoj koncentraciji od 150 do 170 µg m⁻³ i 70%/v vre
mena u prostorijama sa četiri puta nižom koncentracijom.

Omjer prošječne koncentracije sumpor-dioksida u unutrašnjoj atmos
ferti u odnosu na vanjsku, opada s povišenjem koncentracije. Dok se sumpor-dioksid u vanjskoj atmosferi mjeri i izučava kao jedan od os
novnih polutanata, u unutrašnjoj mu se atmosferi ne pridaje veće zna
čenje.

Dušikovi oksidi

Dušikovi oksidi (pretežno NO i NO₂) nastaju sintezom dušika i kisika iz zraka kao posljedica procesa izgaranja pri visokim temperaturama (20, 21). To se događa najčešće pri upotrebi plinskih peći i štednjaka, te benzinskih i diesel-motorja. Pušenje je također jedan od uzroka njihove prisutnosti u zatvorenom prostoru, no u usporedbi s količinama NO koje nastaju gorenjem plinskih plamenika, doprinos pušenja je gotovo zanemariv. Pri samom procesu formiranja dušikovih oksida sivara se relativno više NO, no on se postepeno oksidira u NO₂.

Po djelovanju na zdravlje ljudi NO je vrlo inertan, dok je NO₂ koji je slabije topiv od SO₂, nadražljivac donjih dišnih putova. Postoje indikcije da djeca koja žive u kućama s plinskim štednjakom češće boluju od bolesti dišnih organa (22), što upućuje na moguće kronično djelovanje pri dugotrajnoj izloženosti NO₂.

Konzentracije u zatvorenom prostoru bez unutrašnjih izvora su niže od uzlilk u vanjskoj atmosferi što je posljedica reakcija dušikovih oksida s materijalima u domaćinstvu.

Formaldehid

Konzentracije formaldehida su redovito više u unutarnjoj negoli u vanjskoj atmosferi.

Formaldehid zauzima važno mjesto među polutanima atmosfere zbog široke primjene i izrazite štetnosti za zdravlje. Djeluje kao nadražljivac sluznica, a stupanj djelovanja ovisi o koncentraciji i o vremenu izlože
nosti. Kratkotrajna izloženost dovodi do nadražaja očiju, nosa i grla.

172
Učestala ili produžena izloženost dovodi, osim već do prije navedenih simptoma, do kašlja, povraćanja, glavobolja, slabosti, umora i nadražaja kože.

Sklonost formaldehida reakcijama s bjelančevinama govori o njegovoj mogućoj kancerogenosti.

Uzročna veza između koncentracije formaldehida u zatvorenom prostornom i navedenih zdravstvenih posljedica česta je tema ispitivanja u noću vrijeme (24, 25, 26, 27, 28, 29).

Azbest

Karakteristike kao što su trajnost, čvrstoća vlakana, izvrsna svojstva toplinske, električne, pa i izuzetne izolacije dovele su do široke upotrebe azbesta, prvenstveno u građevinarstvu i industriji opremanja stanova i zgrada.

Trajnost vlakana azbesta ostaje sačuvana pri svim načinima upotrebe, a isto tako i unutar čovječjeg organizma.

Upotrebljava se za pokrivanje strupova, zidova i podova, pri izradi papira, tkanina, filtrata, zaptivki, cimento, ploča, cijevi i izolacijskih materijala. Nanoši se također u obliku „sprava“.

Materijali koji sadrže azbest velo lako ga opuštaju. Do toga dolazi najčešće pri oštećenju ili naprezanju, bilo mehaničkom, bilo termičkom.

Karakteristika azbesta je velik omjer dužine spray promjera vlakana. S obzirom na dimenzije vlakana vrijeme zadržavanja u mirnom zraku iznosi od nekoliko sati do nekoliko dana. Ovo se vrijeme može produžiti vanjskim uzrocid, turbulencijom, promjenama struju van zraka itd.

Česticice azbesta ulaze u tijelo najčešće kroz respiratorni trakt, ali mogu ući i preko probavnog trakta. Dalje se distribuiraju tijelom limfnim, odnosno krvožilnim sistemom.

Iako ne postoji određena granica veličina, smatra se da opasnost za zdravlje ljudi predstavljaju vlakna kraća od 5 μm i promjera manjeg od 2,5 μm, koja zbog svojih malih dimenzija relativno lako prodiru u respiratorni trakt.

Djelovanje na zdravlje može biti višestruko. Najčešće je kronično i česta su duga latentna razdoblja.

Od posljedica benignog djelovanja treba spomenuti promjene na koži, dok se maligno manifestira u obliku raka pluća, mezotelioma, raka organsa probavnog trakta itd. Pušenje povećava rizik pojava raka pluća (30).

Radon i potomci

Zadnjih se godina intenzivno izučavaju razine koncentracija radona u unutrašnjoj atmosferi. Porast koncentracije je izravna posljedica smučenja bržine izmjećena zraka u toplinski izoliranim zgradama i prostorijama. Radon i njegovi potomci pokazuju tipičan primjer kumuliranja polutanata u zatvorenom prostoru.

173
Smatra se da su glavni izvor radona građevni materijali kao i zemljište na kojem je zgrada izgrađena. Beton je u usporedbi s tlo relativno slab izvor, no i to ovisi o vrsti upotrebljenog cementa, šljunka i pije
ska. Red veličine omjera doprinosa koncentracije radona u zraku između betona i tla je 1:10 (4).

Ispitivanja su pokazala da postoje velike varijacije u razinama koncentracije od zgrade do zgrade. Variabilnost ovisi o vrsti izvora. Za podzem
nu vodu se kreće od 1:1 000, za tlo 1:20, utjecaj meteoroloških faktora do
vodi do varijabilnosti od 1:10. razlike u načinu projektiranja zgrada od
1:3 itd.

Pri traženju mogućeg izvora treba uvijek krenuti od onog za koji po
stoji najveća utvrđena varijabilnost. Naime, postoji najveća vjerojatnost
da će njegov doprinos ukupnoj koncentraciji prevladati.

Imisija radona u unutrašnjim atmosferu može se smanjiti izborom gra
đevnog materijala, izborom zemljišta, upotrebom difuzijskih barijera, te
zatvaranjem pora na površinama zidova, podova i stropova. No, navedene
metode su nespektčne i skupe, osobito u starijim zgradama. Jctinije i la
kše je ukloniti već postojeći radon iz zraka.

Najjednostavnija i vrlo djelotvorna metoda za uklanjanje radona je
obična ventilacija prostorija, tj. izmjena već postojećeg zraka sa zrakom
niske ili suhte koncentracije radona. Uz samo jednu izmjenu na sat kon
centracija pada na manje od 1% vršne koncentracije u neventiliranoj
prostoriji. Očito manjak ove metode uklanjanja radona iz unutrašnje at
mosfero je povećanje utroška energije potrebne za grijanje prostorije.

Druga vrlo djelotvorna metoda je filtracija zraka u prostorijama. Pri
tom postupku se ne eliminira radon, već njegovi potomci koji postoje
u obliku slobodnih iona i pokazuju izrazitu tendenciju adsorpcije na po
stojče aerosole, odnosno na zidove i ostale materijale u prostoriji. Dje
lotvornost adsorpcije ovisi o koncentraciji aerosola i njihovoj raspodjeli
po veličini. Filtracijom se odstranjuju aerosoli s već nakupljenim potom
cima radona. Smanjenje koncentracije aerosola filtriranjem ima za ne
gativnu posljedicu opadanje brzine izdvajanja potomaka radona iz zraka.
Da bi se uklonio ovaj problem, koncentracija aerosola se može odr
živati konstantnom umjetnim putem. Smatra se da radon i njegovi potomci izazivaju rak pluća u ljudi koji
s obzirom —— putu većim dozama od onih kojima su ljudi izloženi u
normalnoj životnoj okolini. Pri tome radon igra manju ulogu od svojih
potomaka (4). Rizik pojave karcinoma pluća povećava se ako je izlože
nost radonu kombinirana s pušenjem (30).

Mirisi

Mnoštvo organskih i anorganskih spojeva, odnosno njihovih mješavina
izaziva nadražaj osjetila mirisa, te na taj način čovjek postaje svjestan
prisutnosti tih tvari u zraku. Pragovi osjeta mirisa su najčešće vrlo ni
ski, što znači da čovjek može biti vrlo osjetljiv na stranih tvari u

174
zraku. Smatra se da je zrak koji ne podražuje osjetilo mirisa relativno zdrav i bezopasan, osim ako su prisutne štetne tvari koje se ne mogu otkriti olfaktorno poput CO ili para Hg.

Riječ se može naći na okolinu u kojoj se baš ništa ne osjeća, no niske koncentracije najčešće ne iritiraju ili se na njih može relativno brzo adaptirati (4).

Intenzivni mirisi uzrokuju najčešće osjećaj neugode, teško je govoriti o pravom šteti za zdravlje od mirisa kao takvog. Postoji ipak i veći broj otrovnih apopija kojih miris može poslužiti kao upozorenje na prisutnost ili sprejevajući u zraku. Granice mirisa su redovito ispod granica toksičnosti, ali mogu biti vrlo blizu.

Preme izvora mirisi se mogu podijeliti u velik broj skupina, ali u ovom kontekstu od interesa su mirisi koji se najčešće susreću u unutrašnjoj atmosferi.

Boravak ljudi u zatvorenom prostoru ima za posljedicu stvaranje mirisa od izlučevina kože, znoja, zadaha koji je posljedica pokvanih zubi, digestivnih smetnji itd. Ni jedan od navedenih mirisa ne može se okvalificirati štetnim za zdravlje, no čest je osjećaj neugode, a u osjetljivih osobama može javiti slaboću, povraćanje i sl. Ove vrste mirisa mogu se ukloniti održavanjem osobne higiene i korištenjem velikih, dobro ventiliranih prostorija za sastanke velikog broja ljudi.

Dim cigaretara sadrži oko 3 000 plinovitih sastojaka koji zajedno daju karakterističan miris. Općenito se smatra da miris koji nastaje kao posljedica pušenja predstavlja veći problem od drugih mirisa koje susrećemo u zatvorenom prostoru, kako zbog svoje agresivnosti tako i zbog učestale pojava. Zbog visokog sadržaja katana u dimu cigaretara, dim se nakuplja na površinama u prostoriji, npr. na pokućstvu, zavjesama, sazvima, odjeći stamara itd. Adsorbiранe supstance se polako tokom vremena desodoriraju i na taj način stvara sekundarni izvori mirisa.

Prilikom pripremanja hrane također se proizvodi mnoštvo mirisa koje je usprkos njihovim međusobnim razlikama lako identificirati kao »mirise kuhinje«. Ima ih neugodnih, onih koji nas ostavljaju ravnodušnima, i ugodnih. Problem se najčešće javlja kada ovu skupinu mirisa osjetimo izvan kuhinje, npr. u dnevnoj ili spavačoj sobi, jer ih tada gotovo redovno smatramo neugodnim i nepoželjnim. Moguće ih je u velikoj mjeri otkloniti upotrebom odsišnih kapa u kuhinjama. Kao i drugi mirisi ovi se rado adsorbišu na površinama u domaćinstvu, te na taj način stvaraju sekundarne izvore koji su aktivni još dugog vremena.

Mirisi koji se javljaju u kuponizama i zahodima spadaju redovito u skupinu neugodnih mirisa. U situacije je slučajevna potrebna dobra ventilacija što je u suprotnosti sa zahtjevima za štednjom energije. Recikliranje zraka uglavnom ne dolazi u obzir zbog izrazito visokog sadržaja vlage.

Općenito se mirisi uklanjaju provjetravanjem, prisilnom ventilacijom i filtriranjem zraka (uglavnom mehanizmom adsorpcije na aktivni sadržaj filtra).
Ako nema mogućnosti da se mirisi uklone na navedene načine, tada treba približiti njihovom maskiranju raznim dezodoransima koji su stvaralijaki mirisi ugodna djelovanja. Dezodoransi su sastavni dio velikog broja proizvoda. Ugrađuju se čak i u materijale poput tekstila, ne bi li prikrenuli prisutnost formaldehida. Dezodoransi, koji su u biti isto polustanti, postali su sastavni dio unutrašnje atmosfere i već su se ljudi priviknuli na njihovu prisutnost.

Ponekad loši mirisi produciran izvana. To se događa u okolinama s visokim razinama onečišćenja vatra, uzrokovanim prisutnošću industrije, ili za vrijeme loših klimatskih ili mikroklimatskih uvjeta. U takvim slučajevima sistem za ventilaciju više odmaže no što pomaže.

Razvijene su i metode za mjerenje mirisa, no one suolfaktometrijske prema tome ipak više kvalitativne no kvantitativne naravi. Pojazne točke tih metoda su definiranje intenziteta mirisa, karaktera mirisa, na temelju kojeg se klasificira, definiranje njegove prihvatljivosti ili neprihvatljivosti, te određivanje perioda trajanja mirisa.

SINDROM «NEZDRAVIH ZGRADA»

Tegobe povrćane s boravkom u zatvorenom prostoru očuvene su šezdesetih godina ovog stoljeća, da bi se učestalost nalaza rasklonila u zadnjih desetak godina. Ovaj nagli porast učestalosti pojave tog sindroma pokazuje ovisnost o porastu broja zatvorenih prostorija s prisilnom ventilacijom i klimatizacijom. Najčešće težobe su:

- irritacija očiju, nosa i grla
- usjećaj sušnoće služnice
- svrbež
- psihički zamor
- glavobolje, kašalj, često infekcije respiratornog trakta
- preosjetljivost, promuklost
- opća slabost, vrtoglavice.

S obzirom na to da se navedeni simptomi javljaju u svim populacijama, teško je odrediti da li su posljedica onečišćenja unutrašnje atmosfere, i ako jesu, u kolikoj mjeri.

Ispitivanja izvršena u Danskoj i Švedskoj pokazuju da 15—30% pučanstva imaju simptome težobne bule kod kuće, bilo na poslu. U Švedskoj (31) uočena je visoka učestalost sindroma (10%) u dječjim vrtićima, školama i sličnim ustanovama.

Zdravstvene teškoće stanovnika različitih zemalja su vrlo slične unatoč razlikama u vrstama gradnje i načinu stanovanja. Zatvoreni se prostori mogu razlikovati prema trajanju sindroma koji se u njima pojavljuje.

Kategorija privremeno «nezdравих» zgrada odnosi se prvenstveno na nove zgrade ili novogradnjene zgrade. Simptomi jenjavaju s vremenom.
i najčešće nestaju nakon oko 6 mjeseci. Smatra se da je to posljedica isparavanja štetnih tvari iz svježih građevnih materijala upotrijebljenih pri gradnji.

U kategoriju permanentno „nezdravih“ zgrada spadaju zgrade i prostore u kojima se navedeni simptomi javljaju godinama i pokazuju se ponekad otporni na sve moguće mjere poduzete radi njihovog uklanjanja. Zajedničke karakteristike takvih zgrada su ove:

— gotovo uvijek imaju sistem za prisilnu ventilaciju koji poslužuje cije- lu zgradu ili njezine veće cjeline. Zrak koji cirkulira tim sistemom samo se djelomično obnavlja zbog štednje energije. Ponekad se pokazuje da takve zgrade imaju nezgodno smješten ulaz zraka u sistem, u blizini stalno ili povremeno aktivnog izvora onečišćenja. Zbog znatnog udjela recirkuliranog zraka u sistemu vraćaju se u optjecaj već postojeći polutaniti

— zgrade su najčešće lake konstrukcije

— podovi u prostorijama su najčešće pokriveni sagovima i tapisonom

— visina stropova u usporedbi sa starijim zgradama je manja što ima za posljedicu veći omjer površine prostorije spram njezina volumena

— prostorije su toplinski dobro izolirane, pa imaju slabu prirodnu izmjenu zraka

— vrlo često se prozori ne mogu otvarati.

Prvo, potrebno je provesti mjerenja mikrokliime u zgradama na koje se sumnja da su razlog opisanog sindroma kako bi se provjerilo da li temperatura, vlažnost i strujanje zraka unutar prostorije zadovoljavaju uvjete za udobno osjećanje ljudi, a zatim mjerenja drugih agenata na ko- je se sumnja da bi mogli biti uzročnici tegoba.

Pri ispitivanju sindroma „nezdravih zgrada usim objektivnih uzroka zdravstvenih tegoba, ne smiju se zaobliti subjektivni razlozi koji se javljaju u obliku odbojnog stava korisnika zgrade prema zgradi kao cjelini, opremi ugrađenoj u nju ili načinu ventilacije.

U Zagrebu je u zgradi nazvanoj „Zagrepecanka“ provedeno ispitivanje stava prema klimatizaciji radnog prostora (3). Anketa, koja je pri tom provedena, pokazala je da se tegobe mogu javiti i kao posljedica odboj- nog stava prema korištenju prisilne ventilacije i klimatizacije.

Anketa je pokazala:

— postoji razlika u stavu među spolovima; žene imaju negativniji stav

— pokazuje se ovisnost stava o dobi, no ta ovisnost nije statistički značajna

— negativan stav je češći u osoba s nižom ili srednjom stručnom spre- mom, negoli u onih s visokom

— stav prema klimatizaciji je povezan s općim stavom prema promje- nama i novinama

— negativan stav pomalo jenjava s vremenom provedenim u zgradi
stav ne ovisi o napućenosti prostorija, odnosno o broju osoba po jednom modulu, što ponovo govori u prilog subjektivnim, a ne objektivnim razlozima.

Potrebno je naglasiti da su usporedno s ispitivanjem stava izvršena mjerenja mikroklima u zgradi. Rezultati mjerenja temperature, vlaznosti i strujanja zraka bili su unutar područja koje zadovoljava pojam "udobnosti" ljudi.

KAKO UTJEČATI NA KVALITETU ZRAKA U PROSTORIJAMA?

Faktori gradnje

Već pri projektiranju i gradnji novih zgrada moguće je utjecati na buduću kvalitetu zraka u zgradi. Potrebno je zadovoljiti niz uvjeta za koje postoje kvantitativni ili samo kvalitativni pokazatelji o utjecaju na kvalitetu zraka.

Pri određivanju smještaja zgrade treba voditi računa o lokalnim strujanjima zraka, o namjeni prostora i o blizini eventualnog većeg izvora onečišćenja. Strujanje zraka oko zgrade ovisi će o geometriji okolnog terena, u smještaju i veličini susjednih zgrada, rasporedu okolne vegetacije, te o obliku i veličini zgrade koja se projektira.

Ispitivanja utjecaja brzine vjetra, kao i njegova smjera s obzirom na zgradu, pokazala su da se uz površinu zgrade stvaraju područja sniženog tlaka, što omogućava penetraciju plinova iz dimnjaka ili izvoda ventilacijskog sistema natrag u zgradu kroz mjesta koja dobro ne zaptivaju poput prozora, vrata, ulaza ventilacijskog sistema itd. Utjecaj brzine vjetra može se u većoj ili manjoj mjeri smanjiti ovisno o veličini i smještaju zgrade, postavljanjem zastitnog zelenog pojasa. Dodatna će korist biti smanjenje huke koja prolazi u knji iz smjera gdje je postavljena vegetacija.

Potrebno je uzeti u obzir i namjenu zgrade, broj njezinih budućih korisnika, te vrijeme i način njezina korištenja. Gustoća naseljenosti je jedan od pokazatelja buduće kvalitete unutrašnje atmosfere, te ju je pri projektiranju nužno uzeti u obzir. Kod velike gustoće potrebno je u prostoru onečišćenja zraka uzeti i produkte metabolizma ljudi kao što su CO2, H2O, razni vonji i slično.

Materijali i način njihove ugradnje utječu na više načina na kvalitetu zraka. Treba paziti na njihov izbor i kroniti se onih koji bi mogli otpuštati štetne tvari u zrak. U državi Massachusetts zabranjena je npr. upotreba urea—formaldehidnih pjena za izolaciju (31), a u Nizozemskoj je ograničena upotreba materijala koji otpuštaju formaldehid u toj mjeri da koncentracija u zraku prostorije premašuje 120 µg m⁻³ (32).

Provjetravanje zgrada i štednja energije

Pri projektiranju zgrade primjenjuju se odgovarajući standardi koji u stvari čine kompromis između zadovoljavanja zahtjeva za štednjom

178
energije potrebne za grijanje prostorija i iznosa izmjene zraka koji će osigurati potrebnu kvalitetu zraka u prostoriji.

Smatra se da donja granica iznosa izmjene zraka treba iznositi 0,5 l·m⁻³·h⁻¹ da ne bi došlo do gomilašanja štetnih tvari u zraku iznad snošljivih koncentracija, kako bi se izbjegla pretjerana vlažnost, spriječio razvoj plijesni i ujedno utrošak energije sveo na zadovoljavajuću mjeru. U SR Njemačkoj ta vrijednost iznosi 0,8 l·m⁻³·h⁻¹. U Švedskoj se kao standard uzima 3 l·m⁻³·h⁻¹ pri napritisku prostorije od 50 Pa za jednokatnice, odnosno 1 l·m⁻³·h⁻¹ za trokatne zgrade (33).

Smatra se da je potrebno 0,35 L s⁻¹ svježeg zraka na 1 m² površine poda pri prosječnoj višini tavanice, odnosno da treba osigurati 4 L s⁻¹ po osobi kako bi se koncentracija CO₂ održala na zadovoljavajućoj razini u stambenim prostorijama. Izvodi iz kuhinje i kupaonica trebali bi izbacivati zrak protokom od 10 L s⁻¹, a ukoliko kupaonice nemaju mogućnost provjetravanja, tada bi taj iznos trebalo povećati na 30 L s⁻¹.

Pokazalo se da smanjenje broja izmjenjena zraka za 0,1 h⁻¹ dovodi do smanjenja utroška energije od 1 000 do 2 000 kWh godišnje za grijanje prosječne obiteljske zgrade u klimi sjeverne Evrope (13).

ZAKLJUČCI

Dosadašnja su istraživanja pokazala da su ljudi često izloženi višim koncentracijama onečišćenja u zatvorenom negoli na otvorenom prostoru. Ako još uzemo u obzir da čovjek u zatvorenom prostoru prođe prosječno 80% vremena i da se u unutrašnjoj atmosferi javljaju i oni polutantri koji ne nalazimo na otvorenom prostoru, možemo slobodno zaključiti da izdavanje onečišćenja unutrašnje atmosfere treba dati primarno značenje pri ocjeni utjecaja onečišćenja zraka na zdravlje stanovnika.

Istraživanja onečišćenja unutrašnje atmosfere i modeliranje njegova nastajanja i nestajanja u ovisnosti o utjecaju faktorima treba voditi donošenju normativa za izgradnju, opremu i provjetravanje zgrade, te preporuka, standarda, pa i zabranu za proizvodnju i prodaju materijala i uređaja namijenjenih za potrebu u zatvorenom prostoru. Potrebno je odrediti koji su proizvodi i pod kojim uvjetima podobni za ugradnju i za zgrade. Pri tom treba uzeti u obzir da li aktivnost izvora opada s vremenom ili ne, koliko je izdošnost izvora i u vezi s time koliki je potrebni brz iznajma zraka u prostoriji. Kao suprotni ograničavajući faktor treba uzeti štednju energije potrebne za grijanje prostorija.

Da bi se mogle poduzeti konkretna mjere za očuvanje kvalitete unutrašnje atmosfere, potrebno je učiniti ovo:

- definirati polutante važne za određenu zemlju ili regiju
- definirati razlike hipoteze unutrašnjih atmosfere kako s obzirom na namjenu tako i s obzirom na način gradnje prostorija i upotrijebljene vrste materijala

179
— definirati prihvatljivi stupanj aeracije s obzirom na štednju energije za grijanje prostora
— izvršiti mjerenja koja bi dovela do direktnih pokazatelja o međusobnoj ovisnosti navedenih elemenata
— uskladiti zahtjeve očuvanja kvalitete unutrašnje atmosfere sa zahtjevima štednje energije i dati prijedlog optimalnog broja izmjena zraka, tipa izgradnje, kao i ograničenje upotrebe onih materijala koji pri danom stupnju aeracije predstavljaju izvore onečišćenja s previškom aktivnošću.

Jedan od važnih koraka pri očuvanju unutrašnje atmosfere bila bi standardizacija uređaja za grijanje i pripremu hrane kao i odsisnih sistema za te uređaje.

Pažnju treba posvetiti i ukusu, ponašanju i zahtjevima stanara, koji mogu izborom namještaja i ostale opreme za uređenje stambenog ili poslovnog prostora stvoriti probleme i u dobro projektiranim stanovima i uređima. Ovi problemi koji su najčešće posljedica neznanja mogu se riješiti odgojem i pravilnim informiranjem (obavijenim osnaživanjem sastava proizvoda, uputama o upotrebi rukovanju, upozoravanjem na moguće probleme preko sredstava javnog informiranja itd.).

Literatura

Summary

INDOOR AIR POLLUTION

The importance of indoor air pollution in evaluating personal exposure to air pollutants is pointed out and the most important indoor air pollutants and their sources are discussed. The time dependence of pollutant concentrations and their modelling are described. The "Sick building syndrome" and its sources are dealt with, so is the link between the quality of indoor atmosphere and the conservation of energy.

Institute for Medical Research and Occupational Health, Zagreb

Received for publication February 17, 1983