Simple Efficient Routes for the Preparation of Pyrazoleamines and Pyrazolopyrimidines: Regioselectivity of Pyrazoleamines Reactions with Bidentate Reagents

Moustafa Sherief Moustafa, ${ }^{1, *}$ Saleh Mohammed Al-Mousawi, ${ }^{1}$ Mohamed Hilmy Elnagdi ${ }^{2}$

${ }^{1}$ Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060 Kuwait
2 Department Chemistry, Faculty of Science, Cairo University, P.O. Box 12613 Giza - Egypt

* Corresponding author's e-mail address: mostafa_msm@hotmail.com

RECEIVED: September 11, $2015 *$ REVISED: March 8, $2016 *$ ACCEPTED: March 8, 2016

Abstract

Simple and efficient routes for the preparation of 2-amino-5-phenyl-4,5-dihydrofuran-3-carbonitrile (12), 2-oxo-5-phenyl-tetrahydro-furan-3-carbonitrile (13) and the 3,5-diaminopyrazole derivative 2 h were developed. The results of the reactivity profiles of 12 and 2 h are reported and the previously investigated reaction of pyrazole-3,5-diamine (2 b) with acrylonitrile to yield compound (31), a $\mathrm{N}-1$ acylation product, is currently justified by using X-ray crystallographic analysis. Taken together, the observation of alkenes and alkynes substitution when reacting with 3,5 -diaminopyrazole derivative 2 h is explained by the terminal electron withdrawing group. This pattern of substitution is attributed to involvement of sterically unhindered electrophiles primarily at the N-1 position.

Keywords: diamino pyrazoles, reduction, Michael addition, pyrazolopyrimidines, cyclic enamines.

INTRODUCTION

T was suggested in the early publications ${ }^{[1]}$ that malononitrile (1a) reacts with hydrazine monohydrate to yield 3,5-diaminopyrazole (2a). Later on, Sato, ${ }^{[2]}$ Taylor, Hartke ${ }^{[3]}$ and Elnagdi et al. ${ }^{[4-6]}$ found that the product of this process is actually the dicyano-amino-pyrazole 4, formed via initial dimerization of malononitrile (1a) to yield the enamino-nitrile 3 that subsequently reacts with hydrazine to form 4 (Scheme 1).

3,5-Diaminopyrazole (2a) was also prepared through reaction of the bis-imidate 5 with hydrazine hydrate. ${ }^{[7]}$ In addition, it was observed that malononitrile (1a) reacts with aromatic diazonium salts to form the corresponding arylhydrazones 1b that undergo condensations with hydrazine hydrate to yield arylazo-3,5-diaminopyrazoles 2b. ${ }^{[5]}$ The end products were recognized as patents due to their potential applications as dyes for keratin fibers and antimicrobial agents. ${ }^{[6,8-10]}$ In related studies, mono-substituted
malononitriles 1b-f were shown to be useful for the efficient synthesis of diaminopyrazoles 2b-f. ${ }^{[11-14]}$ However, the formation of $\mathbf{2 g}$ via reaction of phenacyl malononitrile (1g) with hydrazine hydrate could not be repeated in our hands. ${ }^{[15-17]}$ Treatment of $\mathbf{1 g}$ with hydrazine hydrate in ethanolic solution as described by Abdelrazek et al. ${ }^{[15-17]}$ or in absence of solvent in dry condition as suggested recently ${ }^{[18]}$ has only result in the formation of 6 in 97% yield. What is more, the use of dry conditions was claimed even though hydrazine hydrate already contains one molecule of water.

Elnagdi et al. showed that this reaction instead forms $\mathbf{6}$ or $\mathbf{7}$ or a mixture of both substances. Moreover, the claim that heating arylazo-3,5-diaminopyrazoles $\mathbf{2 b}$ in the presence of sulfuric acid leads to formation of 3,5-diaminopyrazole (2a) has never been validated. ${ }^{[10]}$ Relatedly,,it has been shown repeatedly that reaction of $\mathbf{2 b}$ with $\mathrm{H}_{2} \mathrm{SO}_{4}$ in acetic acid yields the bis-acetamido-pyrazole 8. ${ }^{[10,19-22]}$

In the light of the difficulties encountered in this kind of synthesis, only limited number of studies have been

$\mathbf{a}, \mathrm{R}=\mathrm{H} ; \mathbf{b}, \mathrm{R}=\mathrm{NNHAr} ; \mathrm{c}, \mathrm{R}=i-\operatorname{Pr} ; \mathbf{d}, \mathrm{R}=\mathrm{CH}_{2}-i-\mathrm{Bu}$
$\mathbf{e}, \mathrm{R}=\mathrm{Ph}, \mathbf{f}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph} ; \mathbf{g}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{COPh}, \mathbf{h}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{CHOHPh}$
Scheme 1. Reaction of hydrazine hydrate with derivatives of compound 1.
conducted to explore the chemistry of 4 -substituted pyrazole-3,5-diamines. For example, Elnagdi et al. reported that arylazo-3,5-diaminopyrazoles $\mathbf{2 b}$ reacts with acrylonitrile, ethyl acrylate and phenylisothiocyanate to generate products arising from nucleophilic addition to ring nitrogen, ${ }^{[23]}$ while reactions of electron poor alkenes and alkynes with 3,5-diaminopyrazoles have been suggested to yield products resulting from initial addition to the exocyclic amine moieties,. In this study, we revealed a new and simple route for the preparation of dihydrofuran
derivative (12). In addition, we described how this substance reacts with hydrazine hydrate to afford the novel 3,5 -diaminopyrazole derivative 2 h . Finally, we have explored the reactivity profile of $\mathbf{2 h}$ with various electrons withdrawing group substituting the alkenes and alkynes.

RESULTS AND DISCUSSION

In studies targeting the synthesis of diaminopyrazoles, we found that reaction of a mixture of phenacyl bromide (9),

Scheme 2. Formation of compounds 12 and 13.

Scheme 3. Formation of compounds $2 \mathrm{~h}, 14$ and 15.
malononitrile (1a) and sodium borohydride in an aqueous solution containing sodium acetate at $0^{\circ} \mathrm{C}$ for 1 h produces dihydrofuran derivative (12) as the sole isolated product in 85\% yield (Scheme 2). However, with a longer reaction time (4 h) and higher temperature $\left(25^{\circ} \mathrm{C}\right.$), tetrahydrofuran derivative (13) was formed. It is assumed that both 12 and 13 are formed by pathways in which initial nucleophilic substitution reaction between malononitrile (1a) and phenacyl bromide (9) occurs in accordance to the previously described manner ${ }^{[19]}$ to yield adduct 10. In-situ reduction of 10 then produces alcohol 11 that cyclizes to generate 12. After a while, 12 undergoes hydrolysis to produce lactone 13, where the structure was assigned by using X-ray crystallographic tools (see supporting information: Figure 1, Tables 1, 2).

Dihydrofuran derivative (12) was observed to react readily with hydrazine hydrate to yield the 3,5-diamino-
pyrazole derivative 2h (Scheme 3). In contrast, tetrahydrofuran derivative (13) reacts with hydrazine hydrate to yield pyrazolone 14 and with benzenediazonium chloride to form 5-phenyl-3-(2-phenylhydrazono)-dihydrofuran-2(3H)-one (15). The structures of $\mathbf{2 h}, \mathbf{1 4}$, and 15 were assigned by using X-ray crystallography (see supporting information: Figures 2-4, Tables 3-8).

Furthermore, we found that the thioglycolic acid (16) added to dihydrofuran derivative (12) produced the Z-stereoisomer of 5-phenyl-dihydrofuran-thiazolidin (18) rather than its E-isomer 19 (Scheme 4), a finding that is confirmed by the X-ray crystallographic analysis (See supporting information: Figure 5, Tables 9,10).

In a similar pattern, $\mathbf{2 h}$ reacted with enaminone $\mathbf{2 0}$ to phenylpyrazolo[1,5-a]pyrimidine derivative (21)
(Scheme 5), and the structure was identified using X-ray crystallographic methods (See supporting information:

Scheme 4. Formation of compound 18.

Scheme 5. Formation of compounds 21 and 23.

Figure 6, Tables 11, 12). Additionally, reaction of $\mathbf{2 h}$ with the benzylidine-malononitrile $\mathbf{2 2}$ generated phenylpyrazo-lo[1,5-a]pyrimidine 23.

In contrast to the above processes which likely took place via pathways that began with Michael addition of the 5-amino group in $\mathbf{2 h}$ to the electron deficient alkenes $\mathbf{2 0}$ and $\mathbf{2 2}$, reaction of $\mathbf{2 h}$ with ethyl propiolate (24a) occured by a route involving initial addition of the ring nitrogen of $\mathbf{2 h}$ to the ?-position of the alkyne moiety. This pathway lead to formation of pyrazolo[1,5-a]pyrimidine (26a, $R=H$), and the structure was assigned by using X-ray crystallographic tools. Similarly, reaction of $\mathbf{2 h}$ with diethyl acetylene dicarboxylate (24b, $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$) was completed by initial $\mathrm{N}-1 \mathrm{ni}$ trogen addition to generate 26b (Scheme 6), a conclusion based on ${ }^{1} \mathrm{H}$ NMR analysis (See supporting information: Figure 7, Tables 13, 14).

Reaction of diaminopyrazole $\mathbf{2 h}$ with acrylonitrile (27) occurred by initial Michael addition of the ring N-1 nitrogen to afford dihydropyrazolo[1,5-a]pyrimidine (29), most likely via the intermediate 28 (Scheme 7).

To demonstrate, Elnagdi et al. proposed that aminopyrazoles react with sterically unhindered electrophiles preferentially by using ring nitrogen as nucleophilic centers.

Scheme 6. Formation of compounds 26.

Scheme 8. Formation of compounds 31 and 33.

Scheme 7. Formation of compound 29.

Scheme 9. Formation of compound 37.

Forty years ago, Elnagdi et al. worked on the reaction of compound (2b) with acrylonitrile (27) forming the N-1 alkylated product 31 (Scheme 8). ${ }^{[23]}$ This product proved to be identical with that formed by reaction of phenylhydrazono malononitrile (1b) with 3-hydrazinylpropanenitrile (30).

Moreover, reaction of 31 in refluxing acetic acid produces the fused prymidone 33. We have repeated these reactions in order to generate samples of $\mathbf{3 1}$ and $\mathbf{3 3}$ for Xray crystallographic analysis to prove unambiguously the earlier structural assignments (See supporting information: Figures 8, 9, Tables 15-18).

Finally, it was reported previously that ethyl cyanoacetate (34) reacts with phenacyl bromide (9) to form compound (35), ${ }^{[24]}$ which is transformed to 36 under reduction conditions (Scheme 9). Our attempts to reproduce 35 by following the reported procedure ${ }^{[24]}$ were not successful ${ }^{[25]}$ We have carried out X-ray crystallographic analysis of the end product of this process (See supporting information: Figure 10, Tables 19, 20), and found out that in fact 37 and not 35 was produced, a likely consequence of the greater reactivity of $\mathbf{3 5}$ over $\mathbf{3 4}$ toward $\mathbf{9}$ which leads to bis-alkylation to afford 37. Elnagdi et al. suggested earlier that the interaction of 34 with 9 should produce compound (37). ${ }^{[26]}$

CONCLUSIONS

Polyfunctionalized heterocycles have played a key role in the synthesis of many biologically interesting substances over the last decades. For instance, cyclic non-aromatic enaminonitriles and enaminoesters, are well/known for their high yield and wide applications. In the studies described above, we have uncovered a new and efficient route for the preparation of a substituted diamino-pyrazole $\mathbf{2 h}$ that began with the readily obtainable 2 -amino-5-phe-nyl-4,5-dihydrofuran-3-carbonitrile (12). Moreover, we
have shown that this substance participates in Michael addition reactions via pathways in which both the ring and exocyclic amino nitrogens serve as nucleophiles depending upon the steric requirements of the electrophile. Specifically, the reactions with sterically unhindered electrophiles were undertaken selectively at the ring nitrogen of $\mathbf{2 h}$. The existence of this dual reactivity profile suggests that caution should be exercised in assigning structures to the products of this type of reactions.

EXPERIMENTAL SECTION

General

Melting points are reported uncorrected and were determined with a Sanyo (Gallaenkamp) instrument. Infrared spectra were recorded using KBr pellets and a Jasco FT-IR 6300 instrument and absorption bands are reported in cm^{-} ${ }^{1}$. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were determined by using a Bruker DPX instrument at 400 MHz or 600 MHz for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and 100 MHz for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and either CDCl_{3} or DMSO-d6 solutions with TMS as internal standards. Chemical shifts are reported in ppm. Mass spectra and accurate mass measurements were made using a GCMS DFS Thermo spectrometer with the EI (70 EV) mode. All reactions were monitored by using TLC with 1:1 ethyl acetate-petroleum ether as eluent and were carried out until starting materials were completely consumed. Single crystals suitable for X-ray diffraction technique were grown by solvent evaporation method. The data were collected at room temperature (296K). In the case of compounds $\mathbf{2 h}, \mathbf{1 5}, \mathbf{1 8}, \mathbf{2 6 a}$ and $\mathbf{3 0}$, the crystal data collections were done by Bruker X8 Prospector diffractometer using Cu-K? radiation. The reflection frames were then integrated with the Bruker SAINT Software package using a narrow-frame algorithm. Finally, the structure was solved and refined using the Bruker SHELXTL Software Package. The data collections of compounds 13, 14, 21, 33 and 37
were made on a Rigaku R-AXIS RAPID II diffractometer using filtered Mo-K α radiation. Crystal clear software package was employed here to generate hkl and p4p files. The structures were then solved by direct methods using "Crystal Structure" crystallographic software package except for refinement, which was performed using SHELXL-97. In all cases, the non-hydrogen atoms were refined an isotropically. In the case of 26a the molecule has a chiral center at C7. The molecule is not enantiomeric pure and hence the crystal data showed positional disorder for oxygen atom attached to C7. This disorder has been refined successfully after applying PART instruction. The basic crystallographic information of all the crystal samples discussed in this study can be found at www.ccdc.cam.ac.uk. The molecular structure information obtained from single crystal X-diffraction method is in perfect agreement with the predicted synthetic protocol and other characterization techniques like NMR and mass spectroscopy.

General procedure for the syntheses of 12 and 13.

A solution of phenacyl bromide ($1.99 \mathrm{~g}, 0.01 \mathrm{~mol}$) and malononitrile ($0.66 \mathrm{~g}, 0.01 \mathrm{~mol}$) in aqueous sodium acetate solution (1.64 g NaOAc soluble in $25 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) was cooled to 0 ${ }^{\circ} \mathrm{C}$. Sodium borohydride ($0.756 \mathrm{~g}, 0.02 \mathrm{~mol}$) was added and the mixture was stirred for 1 h (followed by TIC). The reaction was quenched by addition to ice- $\mathrm{H}_{2} \mathrm{O}$ and 1 M HCl and the formed solids were quickly collected by filtration and recrystallized from EtOH to give 12 as colorless crystals. When the reaction mixture was kept at room temperature with stirring for $\mathbf{4}$ h only $\mathbf{1 3}$ was formed and then collected by filtration and recrystallized from EtOH to give colorless crystals.
2-amino-5-phenyl-4,5-dihydrofuran-3-carbonitrile (12)
Yield 85 \% (1.5 g); m.p. 135-137 ${ }^{\circ} \mathrm{C} ;$ Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$ (186.2): C, 70.95; H, 5.41; N, 15.04. Found: C, 70.88; H, 5.36; N, 15.13. El-HRMS: $m / z=186.0\left(\mathrm{MH}^{+}\right)$; $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$ requires: $m / z=186.2\left(\mathrm{MH}^{+}\right)$; IR $\tilde{v} / \mathrm{cm}^{-1}: 3346$, 3243 (NH_{2}), 2258 (CN); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta / p p m: 2.68$ (dd, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, J=4 \mathrm{~Hz}, \mathrm{CH}$), 3.20 (dd, 1 H , $J=8.0 \mathrm{~Hz}, J=4 \mathrm{~Hz}, \mathrm{CH}), 5.63(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{CH}), 7.12(\mathrm{br}$, $2 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 7.33-7.42 (m,5H, Ph-H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta / \mathrm{ppm}: 167.7,140.6,128.6$ (2C), 128.3, 125.7 (2C), 120.0, 82.2, 46.3, 36.6. MS m/z (\%): 186 $\left(\mathrm{M}^{+}, 100\right), 169(45), 143(60), 115(65), 106(15), 89(10), 77$ (20).

2-oxo-5-phenyl-tetrahydrofuran-3-carbonitrile (13) Yield 73 \% (1.3 g); m.p. 121-122 ${ }^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}$ (187.2): C, 70.58; $\mathrm{H}, 4.85$; $\mathrm{N}, 7.48$. Found: C, 70.35; H, 4.90; N, 7.59. EI-HRMS: $m / z=187.0\left(\mathrm{MH}^{+}\right)$; $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}$ requires: $m / z=187.2\left(\mathrm{MH}^{+}\right)$; IR $\tilde{v} / \mathrm{cm}^{-1}: 2258(\mathrm{CN})$, 1769 (CO); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta / \mathrm{ppm}: 2.50-2.65$ (m, 1H, CH), 2.98-3.05 (m, 1H, CH), 4.70-4.75 (m, 1H, CH),
5.51-5.55 (m, 1H, CH), 7.39-7.53 (m, 5H, Ph-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta / \mathrm{ppm}: 169.1,129.0,128.6$ (2C), 126.7 (2C), 125.9, 80.6, 40.0, 34.7, 33.3. MS m/z (\%): 187 $\left(\mathrm{M}^{+}, 100\right), 143(75), 105(70), 77(35)$. CCDC 993584 contains the supplementary crystallographic data.

Synthesis of 2-(3,5-diamino-1H-pyrazol-4-yl)-1-phenylethanol (2 h)

A mixture of 12 ($1.86 \mathrm{~g}, 0.01 \mathrm{~mol}$) and hydrazine monohydrate $(1.00 \mathrm{~g}, 0.02 \mathrm{~mol})$ in EtOH $(25 \mathrm{~mL})$ was stirred at reflux for 3-6 h (completion assessed by TLC). The mixture was cooled and poured into ice-water. The solid was collected by filtration and crystallized from EtOH to give white crystals of 2h. Yield $82 \%(1.7 \mathrm{~g})$; m.p. 178-180 ${ }^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$ (218.2): C, $60.53 ; \mathrm{H}, 6.47 ; \mathrm{N}, 25.67$. Found: C, 60.61; H, 6.45; N, 25.75. El-HRMS: $m / z=218.1\left(\mathrm{MH}^{+}\right)$; $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$ requires: $m / z=218.2\left(\mathrm{MH}^{+}\right)$; IR $\tilde{v} / \mathrm{cm}^{-1}: 3469$ $(\mathrm{OH}), 3346(\mathrm{NH}), 3289,3129\left(\mathrm{NH}_{2}\right), 3029,3030\left(\mathrm{NH}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta / \mathrm{ppm}: 2.33-2.50(\mathrm{~mm}, 2 \mathrm{H}$, CH_{2}), 4.22 (br, 4H, $2 \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 4.57 (d, $1 \mathrm{H}, \mathrm{J}$ $=4.0 \mathrm{~Hz}, \mathrm{CH}), 5.35\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 7.19-7.40 (m, 5H, Ph-H), 9.97 (br, 1H, NH, $\mathrm{D}_{2} \mathrm{O}$ exchangeable); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta / \mathrm{ppm}: 150.1,146.8,128.2$, 126.9, 126.2, 86.3, 74.3, 32.9; MS m/z (\%): 218 ($\mathrm{M}^{+}, 60$), 200 (5), 111 (100), 96 (15), 77 (15), 70 (5). CCDC 993585 contains the supplementary crystallographic data.

Synthesis of 3-amino-4-(2-hydroxy-2-phenylethyl)-1,2-di-hydropyrazol-5-one (14)

A mixture of $13(1.87 \mathrm{~g}, 0.01 \mathrm{~mol})$ and hydrazine monohydrate ($1.00 \mathrm{~g}, 0.02 \mathrm{~mol})$ in $\mathrm{EtOH}(25 \mathrm{~mL})$ was stirred at reflux for 3-6 h (completion assessed by TLC). The mixture was cooled and poured into ice-water. The solid was collected by filtration and crystallized from EtOH to give white crystals of 14. Yield 75 \% (1.6 g); m.p. 205-207 ${ }^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ (219.2): C, 60.26; H, 5.98; $\mathrm{N}, 19.17$. Found: C, 60.31; H, 5.86; N, 19.02. EI-HRMS: $m / z=319.09\left(\mathrm{MH}^{+}\right)$; $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires: $m / z=219.24\left(\mathrm{MH}^{+}\right)$; IR $\tilde{v} / \mathrm{cm}^{-1}: 3383$ (OH), 3306, 3217 (NH_{2}), 3082 (NH), 3059 (NH), 1620 (CO); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta / \mathrm{ppm}: 2.35$ (dd, $1 \mathrm{H}, \mathrm{J}=12$ $\mathrm{Hz}, J=6 \mathrm{~Hz}, \mathrm{CH}), 2.49(\mathrm{dd}, 1 \mathrm{H}, J=12 \mathrm{~Hz}, J=6 \mathrm{~Hz}, \mathrm{CH}), 4.67-$ $4.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.82$ (br, 2H, NH2, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), 6.90 (br, 1H, OH, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), 7.17-7.38 (m,5H, Ph-H), 8.97 (br, 2H, 2NH, D 2 O exchangeable); ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) $\delta / \mathrm{ppm}: 173.0,158.8,146.4,128.1$ (2C), 126.7, 126.1 (2C), 84.2, 74.0, 32.7. MS: m/z (\%) 219 ($\mathrm{M}^{+}, 10$), 201 (100), 172 (10), 130 (10), 112 (50), 99 (30), 77 (40). CCDC 993586 contains the supplementary crystallographic data.

Synthesis of 5-phenyl-3-(2-phenylhydrazono)-dihydrofu-ran-2(3H)-one (15)

A cold solution of benzenediazonium chloride (0.01 mol) was prepared by adding a solution of sodium nitrite $(0.7 \mathrm{~g}$
in 10 mL H H) to a cold solution of aniline hydrochloride ($0.93 \mathrm{~g}, 0.01 \mathrm{~mol}$ of aniline in 5 mL concentrated HCl) with stirring at room temperature. The resulting solution was then added to a cold solution of $13(1.87 \mathrm{~g}, 0.01 \mathrm{~mol})$ in ethanol (50 mL) containing sodium acetate (2 g). The mixture was stirred for 1 h and then filtered. The solid was crystallized from EtOH to give 15 as yellow crystals, yield 78% (2.0 g); m.p. $162-164{ }^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ (266.3): C, 72.17; H, 5.30; N, 10.52. Found: C, 72.13; H, 5.44; N, 10.51. EI-HRMS: $m / z=266.1\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires: $m / z=$ 266.3 (MH ${ }^{+}$); IR $\tilde{v} / \mathrm{cm}^{-1}: 3267$ (NH), 1747 (CO); ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta / \mathrm{ppm}: 2.85$ (dd, $1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, J=8, \mathrm{CH}$), 3.51 (dd, 1H, J = $12 \mathrm{~Hz}, J=8, \mathrm{CH}), 5.76-5.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 6.92-7.44 (m, 10H, Ph-H), 10.24 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta / \mathrm{ppm}: 166.7,143.8$, 140.54, 130.10, 129.24 (2C), 128.8 (2C), 128.51, 125.83 (2C), 121.51, 113.72 (2C), 76.36, 33.47. MS m/z (\%): 266 ($\mathrm{M}^{+}, 100$), 246 (10), 236 (10), 189 (15), 171 (75), 145 (10), 105 (25), 92 (55), 77 (60). CCDC 993587 contains the supplementary crystallographic data.

Synthesis of (2-(2-oxo-5-phenyl-dihydrofuran-3(2H)-yli-dene)thiazolidin-4-one (18)

A mixture of 12 ($1.86 \mathrm{~g}, 0.01 \mathrm{~mol}$) and thioglycolic acid (16) $(0.92 \mathrm{~g}, 0.01 \mathrm{~mol})$ in $\mathrm{EtOH}(25 \mathrm{~mL})$ was stirred at reflux for 3-6 h (completion assessed by TLC). The mixture was cooled and poured into ice-water. The solid was collected by filtration and crystallized from AcOH to give yellow crystals of 18. Yield 80 \% (2.0 g); m.p. 190-192 ${ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ (261.3): C, 59.76; H, 4.24; N, 5.36; S, 12.27 . Found: C, 59.71; H, 4.20; N, 5.28; S, 12.40. EI-HRMS: $m / z=$ $261.0\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ requires: $m / z=261.3\left(\mathrm{MH}^{+}\right) ; \mathrm{IR}$ च̃/cm ${ }^{-1}$: 3197 (NH), 1744 (CO), 1722 (CO); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta / \mathrm{ppm}: 2.75-2.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.37-3.43$ (m, 1H, CH), 3.88 (s, 2H, CH2), 5.58 (dd, 1H, J = $4 \mathrm{~Hz}, J=8$, $\mathrm{CH}), 7.32-7.43(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 11.5\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta / \mathrm{ppm}: 175.0$, 170.8, 149.7, 141.0, 128.7 (2C), 128.2, 125.6 (2C), 93.2, 77.4, 35.3, 32.3. MS m/z (\%): 261 (${ }^{+}, 40$), 155 (55), 127 (100), 115 (20), 85 (10), 77 (15), 54 (20). CCDC 993588 contains the supplementary crystallographic data.

Synthesis of 2-(2-amino-7-phenylpyrazolo[1,5-a]pyrim-idin-3-yl)-1-phenylethanol (21)

A mixture of $\mathbf{2 h}(2.18 \mathrm{~g}, 0.01 \mathrm{~mol})$ and enaminone $\mathbf{2 0}$ (1.75 g, 0.01 mol) in EtOH (25 mL) in presence of piperidine (1 mL) was stirred at reflux for $3-5 \mathrm{~h}$. (completion assessed by TLC). The mixture was cooled and poured into ice-water. The solid was collected by filtration and crystallized from AcOH to give yellow crystals of 21. Yield $84 \%(2.7 \mathrm{~g})$; m.p. 186-188 ${ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$ (330.3): C, 72.71 ; H, 5.49; N, 16.96. Found: C, 72.72; H, 5.47; N, 16.81. EI-HRMS: $m / z=330.1\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$ requires: $m / z=330.3\left(\mathrm{MH}^{+}\right)$;

IR $\tilde{v} / \mathrm{cm}^{-1}: 3483$ (OH), 3387, $3284\left(\mathrm{NH}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta / \mathrm{ppm}: 2.87-2.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.89-4.93(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 5.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $5.60(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 6.77 (d, $1 \mathrm{H}, \mathrm{J}=4, \mathrm{CH}$), 7.19-8.24 (m, 10H, Ph-H), 8.24 (d, 1H, J = 4, CH); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta / p p m: 159.8,148.1,147.2,145.8,143.5,131.4$, $130.4,129.0(2 \mathrm{C}), 128.3$ (2C), 127.8 (2C), 126.6, 125.8 (2C), 104.0, 90.1, 72.7, 32.1. MS m/z (\%): 330 ($\mathrm{M}^{+}, 10$), 312 (5), 223 (100), 208 (25), 181 (20), 155 (10), 129 (5), 103 (25), 77 (10). CCDC 993589 contains the supplementary crystallographic data.

Synthesis of 2,7-diamino-3-(2-hydroxy-2-phenylethyl)-5-

 phenylpyrazolo[1,5-a]pyrimidine-6-carbonitrile (23) A mixture of $\mathbf{2 h}(2.18 \mathrm{~g}, 0.01 \mathrm{~mol})$ and benzylidenemalononitrile 22 ($1.54 \mathrm{~g}, 0.01 \mathrm{~mol}$) in EtOH (25 mL) in presence of piperidine (1 mL) was stirred at reflux for $3-5 \mathrm{~h}$ (completion assessed by TLC). The mixture was cooled and poured into ice-water. The solid was collected by filtration and crystallized from dioxane to give yellow crystals of 23. Yield 68 \% (2.5 g); m.p. 200-202 ${ }^{\circ} \mathrm{C} ;$ Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}$ (370.1): C, 68.09; H, 4.90; N, 22.69. Found: C, 68.22; H, 5.12; N, 22.75. EI-HRMS: $m / z=370.1\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}$ requires: $m / z=370.4\left(\mathrm{MH}^{+}\right) ; \mathrm{IR} \tilde{v} / \mathrm{cm}^{-1}: 3439(\mathrm{OH}), 3290,3184\left(\mathrm{NH}_{2}\right)$, 3131, $3081\left(\mathrm{NH}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ / ppm : 2.82-2.92 (m, 2H, CH 2), 4.92 (br, 1H, CH), 5.65 (br, 1H, OH, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), 5.69 (br, $2 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 7.17-7.74 (m, 10H, Ph-H), 8.14 (br, $\mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta / \mathrm{ppm}: 160.7,157.0$ 148.6, 145.4, 137.7, 129.6, 128.3 (2C), 128.1 (2C), 127.7 (2C), 126.6, 125.9 (2C), 117.2, 93.9, 72.3, 69.6, 31.9, 21.0. MS m/z (\%): 370 ($\mathrm{M}^{+}, 5$), 352 (10), 265 (5), 264 (25), 263 (100), 248 (10), 77 (5).
General procedure for the Syntheses of 26a and 26b

Mixtures of $\mathbf{2 h}(2.18 \mathrm{~g}, 0.01 \mathrm{~mol})$ and ethyl propiolate or diethylacetylene dicarboxylate (24a,b) (0.01 mol) in EtOH $(25 \mathrm{~mL})$ in presence of piperidine (1 mL) were stirred at reflux for 3-5 h (completion assessed by TLC). The mixtures were cooled and poured into ice-water. The solids were collected by filtration and crystallized from EtOH to give yellow crystals of 26a or dark red crystals of 26b.

2-Amino-3-(2-hydroxy-2-phenylethyl)pyrazolo[1,5-a]py-rimidin-5(4H)-one (26a)

Yield 80 \% (2.1 g); m.p. 268-270 ${ }^{\circ} \mathrm{C} ;$ Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ (270.2): C, 62.21; H, 5.22; $\mathrm{N}, 20.73$. Found: C, 62.25; H, 5.34; N, 20.82. El-HRMS: $m / z=270.1\left(\mathrm{MH}^{+}\right)$; $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: $m / z=270.2\left(\mathrm{MH}^{+}\right)$; IR $\tilde{v} / \mathrm{cm}^{-1}: 3413$ (OH), 3309, 3206 (NH_{2}), 3124 (NH), 1678 (CO); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta / \mathrm{ppm}: 2.50-2.74$ (m, 2H, CH 2), 4.66 (d, 1H, $\mathrm{J}=8.0 \mathrm{CH}$), 5.27 (br, 2H, $\mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 5.46-5.48 (d, $2 \mathrm{H}, \mathrm{J}=8.0, \mathrm{CH}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 7.20-7.46 (m,
$5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$), 8.02 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $11.41\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ / ppm : $160.3,158.8,145.6,138.7,137.9,127.7$ (2C), 126.6, 125.9 (2C), 99.5, 86.4, 72.7, 30.7. MS m/z (\%): $270\left(\mathrm{M}^{+}, 10\right), 163$ (100), 148 (10), 122 (10), 107 (5), 85 (15), 79 (10). CCDC 993590 contains the supplementary crystallographic data.

Ethyl 2-amino-3-(2-hydroxy-2-phenylethyl)-5-oxo-4,5-di-hydropyrazolo-[1,5-a]-pyrimidine-7-carboxylate (26b)

Yield 69 \% (2.3 g); m.p. 258-260 으; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$ (342.3): C, 59.64; H, 5.30; N, 16.37. Found: C, 59.69; H, 5.45; N, 16.51. EI-HRMS: $m / z=324.1\left(\mathrm{MH}^{+}\right)$; $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires: $m / z=342.3\left(\mathrm{MH}^{+}\right)$; IR $\tilde{v} / \mathrm{cm}^{-1}: 3431$ (OH), 3350, 3284 (NH_{2}), 3107 (NH), 1725 (CO), 1670 (CO); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta / \mathrm{ppm}: 1.31(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 2.50-2.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.34\left(\mathrm{q}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, 4.66-4.68 (m, 1H, CH), 5.46-5.50 (m, 3H, OH, $\mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $5.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.20-7.47(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$, 11.70 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta /$ ppm: $160.3,159.6,159.1,145.5,139.8,139.1$, 127.7 (2C), 126.7, 125.9 (2C), 99.0, 87.1, 72.4, 62.5, 30.6, 13.8. MS m/z (\%): 342 ($\mathrm{M}^{+}, 10$), 235 (100), 220 (25), 194 (15), 162 (5), 111 (10), 96 (35), 79 (15).

Synthesis of 2-(2,5-diamino-6,7-dihydropyrazolo[1,5-a]pyrimidin-3-yl)-1-phenylethanol (29)

A mixture of $\mathbf{2 h}(2.18 \mathrm{~g}, 0.01 \mathrm{~mol})$ and acrylonitrile $\mathbf{2 7}$ (0.53 $\mathrm{g}, 0.01 \mathrm{~mol}$) in EtOH (25 mL) in presence of piperidine (3 mL) was stirred at reflux for 3-5 h (completion assessed by TLC). The mixture was cooled and poured into ice-water. The solid was collected by filtration and crystallized from EtOH to give white crystals of 29 . Yield $77 \%(2.0 \mathrm{~g})$; m.p. 110-112 ${ }^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$ (271.3): C, 61.98; H, 6.32; N, 25.81. Found: C, 61.86; H, 6.35; N, 25.69. EI-HRMS: $m / z=271.14\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$ requires: $m / z=271.32$ $\left(\mathrm{MH}^{+}\right) ;$IR $\tilde{v} / \mathrm{cm}^{-1}: 2406(\mathrm{OH}), 3387,3326\left(\mathrm{NH}_{2}\right), 3323,3220$ $\left(\mathrm{NH}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta / \mathrm{ppm}: 2.34-2.45(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.75\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.89(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}$, CH_{2}), 4.18 (br, $2 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $4.45(\mathrm{~m}, 1 \mathrm{H}$, CH), 4.79 (br, $2 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $5.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), 7.20-7.39 (m,5H, Ph-H); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta / \mathrm{ppm}: 153.4,146.3,128.2,127.7$ (2C), $126.4,125.7$ (2C), 118.9, 86.6, 73.7, 41.4, 32.6, 17.3. MS $m / z(\%): 271\left(\mathrm{M}^{+}, 10\right), 164$ (100), 123 (15), 111 (35), 79 (5).

Synthesis of 3-(3,5-Diamino-4-phenylazo-pyrazol-1-yl)propionitrile (31)

A mixture of diaminopyrazole derivative $\mathbf{2 b}(2.02 \mathrm{~g}, 0.01$ mol), which prepared via literature procedures, ${ }^{[22]}$ and acrylonitrile 27 ($0.53 \mathrm{~g}, 0.01 \mathrm{~mol}$) in pyridine (25 mL) as a solvent was stirred at reflux for $3-5 \mathrm{~h}$ (completion assessed by TLC). The mixture was cooled and poured into ice-water. The solid was collected by filtration and crystallized from

EtOH to give dark yellow crystals of 31. Yield 85 \% (2.1 g); m.p. 195-197 ${ }^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{7}$ (255.2): C, 56.46; H, 5.13; N, 38.41. Found: C, 56.43; H, 4.98; N, 38.45. ElHRMS: $m / z=255.12\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{7}$ requires: $m / z=255.2$ $\left(\mathrm{MH}^{+}\right)$; IR $\tilde{v} / \mathrm{cm}^{-1}: 3390,3383\left(\mathrm{NH}_{2}\right), 3345,3230\left(\mathrm{NH}_{2}\right), 2224$ (CN); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta / \mathrm{ppm}: 2.92(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $6.0 \mathrm{~Hz}, \mathrm{CH}_{2}$), $4.09\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.39\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}_{2}\right.$ proton, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), 6.06 (br, $1 \mathrm{H}, \mathrm{NH}_{2}$ proton, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), 6.72 (br, $1 \mathrm{H}, \mathrm{NH}_{2}$ proton, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), $7.21-7.72$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{Ph}-\mathrm{H}, \mathrm{NH}_{2}$ proton $\mathrm{D}_{2} \mathrm{O}$ exchangeable); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta / \mathrm{ppm}: 153.4,128.6$, $126.7,120.4,118.5,113.7,41.5,16.7 . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 271$ (M^{+}, 10), 164 (100), 123 (15), 111 (35), 79 (5). CCDC 1041079 contains the supplementary crystallographic data.

Synthesis of 2-amino-3-(phenyldiazenyl)-6,7-dihydropy-

 razolo[1,5-a]pyrimidin-5(4H)-one (33)A mixture of 31 ($2.55 \mathrm{~g}, 0.01 \mathrm{~mol}$) in acetic acid (25 mL) was stirred at reflux for 3-5 h (completion assessed by TLC). The mixture was cooled and poured into ice-water. The solid was collected by filtration and crystallized from dimethylformamide to give yellow crystals of 33. Yield $80 \%(2.0 \mathrm{~g})$; m.p. 320-322 ${ }^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}$ (256.2): C, 56.24; H, 4.72; N, 32.79. Found: C, 56.10; H, 4.54; N, 32.95. EI-HRMS: $m / z=256.10\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}$ requires: $m / z=$ $256.2\left(\mathrm{MH}^{+}\right) ;$IR $\tilde{v} / \mathrm{cm}^{-1}: 3385,3376\left(\mathrm{NH}_{2}\right), 3220(\mathrm{NH}), 1702$ (CO); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta / \mathrm{ppm}: 2.88(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $6.0 \mathrm{~Hz}, \mathrm{CH}_{2}$), 4.06 (t, 2H, J=6.0 Hz, CH2), 6.09 (br, 2H, NH2, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), 7.29-7.83 (m,5H, Ph-H), 11.35 (br, 1 H , $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) ס/ppm: 166.5, 162.2, 152.9, 146.9, 128.8 (2C), 128.1, 121.3 (2C), 113.5, 42.4, 30.4. MS m/z (\%): 255 ($\mathrm{M}^{-1}, 100$), 215 (10), 178 (50), 125 (5), 84 (10), 77 (15), 68 (30). CCDC 1041241 contains the supplementary crystallographic data.

Ethyl 2-cyano-4-oxo-2-(2-oxo-2-phenylethyl)-4-phenylbutanoate (37)

A solution of phenacyl bromide ($1.99 \mathrm{~g}, 0.01 \mathrm{~mol}$) and ethylcyanoacetate ($0.56 \mathrm{~g}, 0.005 \mathrm{~mol}$) in aqueous sodium acetate solution (1.64 g NaOAc soluble in 25 mL H O) was cooled to $0^{\circ} \mathrm{C}$. Sodium borohydride ($0.756 \mathrm{~g}, 0.02 \mathrm{~mol}$) was added and the mixture was stirred for 1 h (followed by TIC). The reaction was quenched by addition to ice- $\mathrm{H}_{2} \mathrm{O}$ and 1 M HCl and the formed solids were quickly collected by filtration and recrystallized from EtOH to give $\mathbf{3 7}$ as colorless crystals.

Yield 75 \% (2.6 g); m.p. 140-142 ${ }^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{O}_{4}$ (349.1): C, 72.19; H, 5.48; $\mathrm{N}, 4.01$. Found: C, 72.44; H, 5.52; N, 4.25. El-HRMS: $m / z=349.1\left(\mathrm{MH}^{+}\right)$; $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{O}_{4}$ requires: $m / z=349.1\left(\mathrm{MH}^{+}\right)$; IR $\tilde{v} / \mathrm{cm}^{-1}: 2250$ (CN), 1722 (CO), 1690 (CO); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) ס/ppm: $1.22\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.01\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.19$ (q, $2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CH}_{2}$), 7.56-8.02 (m, 5H, Ph-H); ${ }^{13} \mathrm{C}$ NMR (100

MHz, DMSO-d ${ }_{6}$) $\delta /$ ppm: 195.2 (2C), 168.0, 135.4 (2C), 133.9 (2C), 128.8 (4C), 128.0 (4C), 118.7, 62.3, 43.8 (2C), 41.4, 13.6. MS m/z (\%): 349 ($\mathrm{M}^{+}, 10$), 276 (10), 244 (15), 184 (10), 172 (5), 120 (10), 105 (100), 77 (35). CCDC 1447290 contains the supplementary crystallographic data.

Acknowledgment. The authors are grateful to Kuwait University Research Administration for the financial support of project SC12/13. Analytical facilities provided by GFS projects No. GS 01/01, GS 01/03, GS 01/05, GS 02/10 \& GS 03/08 are greatly appreciated.

Supplementary Information. Supporting information to the paper is enclosed to the electronic version of the article at: http://dx.doi.org/10.5562/cca2738.

REFERENCES

[1] R. von Rothenburg, Chem. Ber. 1894, 27, 685.
[2] T. Sato, J. Org. Chem. 1959, 24, 963.
[3] E. C. Taylor, K. S. Hartke, J. Am. Chem. Soc. 1959, 81, 2456.
[4] M. H. Elnagdi, Tetrahedron 1974, 30, 2791.
[5] M. H. Elnagdi, S. O. Abd Allah, J. Prakt. Chem. 1973, 315, 1009
[6] S. M. Fahmy, M. El-Hosami, S. El-Gamal, M. H. Elnagdi, J. Chem. Technol.Biotechnol. 1982, 32, 1042.
[7] J. A. Settepani, J. B. Stokes, J. Org. Chem., 1968, 33 2606.
[8] V. Krystof, P. Cankar, I. Frysova, J. Slouka, G. Kontopidis, P. Dzubak, M. Hajduch, J. W. F. Srovnal, Jr. de Azevedo, X. M. Orsag, M. Paprskarova, J. Rolcik, A. Latr, P. M. Fischer, M. Strnad, J. Med. Chem. 2006, 49, 6500.
[9] P. Cankar, I. Frisova, V. Krystof, R. Lenobel, J. Slouka, M. Strnad, P. M. Fishe, PCT Int. Appl. WO 2006024858, 2006
[10] M. H. Elnagdi, E. M. Kandeel, E. M. Zayed, Z. E. Kandil, J. Prakt. Chem. 1978, 320(4), 533.
[11] X. Xu, J. Van Camp, M. J. Scanio, W. H. Bunnelle, L. Shi, A. T. Osuma, D. Degoey, A. Perez-Medrano, S. Peddi, J. R. U. S. Patel, Pat. Appl. Publ., US 20120122888 A1 $20120517,2012$.
[12] A. Echevarria, M. Martin, C. Perez, I. Rozas, Arch. Pharm. 1994, 327(5), 303.
[13] N. S. Wilson, A. T. Osuma, J. A. Van Camp, X. Xu, Tet rahedron Lett. 2012, 53(34), 4498.
[14] S. M. Al-Mousawi, M. S. Moustafa, M. H. Elnagdi, Heterocycles, 2008, 75(6), 1371.
[15] F. M. Abdelrazek, A. W. Erian, K. M. H. Hilmy, Synthesis, 1986, (1), 74.
[16] N. H. Metwally, F. M. Abdelrazek, Egyptian Journal of Chemistry, 1999, 42(5), 491.
[17] T. A. Abdallah, N. H. Metwally, F. M. Abdelrazek, Afinidad, 2008, 65(537), 393.
[18] F. M. Abdelrazek, H. M. Hassaneen, E. M. Nassar, A. Jager, J. Heterocyclic Chem. 2014, 51, 475.
[19] S. M. Al-Mousawi, M. S. Moustafa, M. H. Elnagdi, Journal of Saudi Chemical Society, 2011, 15(4), 309.
[20] S. M. Al-Mousawi, M. S. Moustafa, H. Meier, H. Kolshorn, M. H. Elnagdi, Molecules, 2009, 14(2), 798.
[21] M. H. Elnagdi, J. Heterocyclic Chem. 1977, 14(1), 155.
[22] M. H. Elnagdi, Zeitschrift fuer Naturforschung, 1977, 32B(3), 307.
[23] M. H. Elnagdi, D. H. Fleita, M. R. H. El-Moghayar, Tetrahedron 1975, 31, 63.
[24] T. A. Abdallah, N. H. Metwally, F. M. Abdelrazek, Afinidad, 2008, 65(537), 393.
[25] L. Liu, Y. Liao, C. Lian, W. Yuan, X. Zhang, Tetrahedron, 2014, 70(35), 5919.
[26] S. M. Riyadh, H. M. Al-Matar, M. H. Elnagdi, Molecules, 2008, 13(12), 3140.

Figure 1. Plot of X-ray crystal structure data for 13.
Table 1: Bond lengths of compound 13

Atom	Distance (Á)	Atom	Distance (Á)
O1-C1	$1.484(6)$	O1-C4	$1.348(6)$
O2-C4	$1.205(6)$	N1-C11	$1.133(6)$
C1-C2	$1.521(7)$	C1-C5	$1.506(6)$
C2-C3	$1.529(6)$	C3-C4	$1.522(7)$
C3-C11	$1.471(6)$	C5-C6	$1.390(7)$
C5-C10	$1.383(7)$	C6-C7	$1.391(6)$
C7-C8	$1.395(7)$	C8-C9	$1.379(8)$
C9-C10	$1.387(7)$		

Table 2: Bond angles of compound 13

Atom	Angles $\left({ }^{\circ}\right)$	Atom	Angles $\left({ }^{\circ}\right)$
C1-O1-C4	$110.0(4)$	O1-C1-C2	$104.4(4)$
O1-C1-C5	$109.6(4)$	C2-C1-C5	$116.1(4)$
C1-C2-C3	$101.6(4)$	C2-C3-C4	$102.6(4)$
C2-C3-C11	$115.2(4)$	C4--C3-C11	$113.6(4)$
O1-C4-O2	$122.0(5)$	O1-C4-C3	$109.5(4)$
O2-C4-C3	$128.4(4)$	C1-C5-C6	$121.3(4)$
C1-C5-C10	$119.2(4)$	C6-C5-C10	$119.4(4)$
C5-C6-C7	$120.1(5)$	C6-C7-C8	$119.9(5)$
C7-C8-C9	$119.8(5)$	C8-C9-C10	$120.0(5)$
C5-C10-C9	$120.8(5)$	N1-C11-C3	$177.4(6)$

Figure 2. Plot of X-ray crystal structure data for $\mathbf{2 h}$.

Table 3: Bond lengths of compound 2 h

Atom	Distance (Á)	Atom	Distance (\AA)
O1-C7	$1.419(2)$	O1-H1	0.82
C9-C11	$1.377(2)$	C9-C10	$1.409(2)$
C9-C8	$1.497(2)$	N1-C10	$1.378(2)$
N1-H1A	0.86	N1-H1B	0.86
N2-C10	$1.332(2)$	N2-N3	$1.373(2)$
N3-C11	$1.334(2)$	N3-H3	0.86
N4-C11	$1.386(2)$	N4-H4A	0.86
N4-H4B	0.86	C8-C7	$1.529(2)$
C8-H8A	0.97	C8-H8B	0.97
C7-C1	$1.511(2)$	C7-H7	0.98
C1-C6	$1.377(3)$	C1-C2	$1.389(3)$
C6-C5	$1.381(3)$	C6-H6	0.93
C5-C4	$1.375(4)$	C5-H5	0.93
C4-C3	$1.382(3)$	C4-H4	0.93
C2-C3	$1.385(3)$	C2-H2	0.93
C3-H3A	0.93		

Table 4: Bond angles of compound $\mathbf{2 h}$

Atom	Angles $\left({ }^{\circ}\right)$	Atom	Angles $\left({ }^{\circ}\right)$
C7-O1-H1	109.5	C11-C9-C10	$103.68(14)$
C11-C9-C8	$128.61(16)$	C10-C9-C8	$127.61(15)$
C10-N1-H1A	120.0	C10-N1-H1B	120.0
H1A-N1-H1B	120.0	C10-N2-N3	$103.46(14)$
C11-N3-N2	$112.31(14)$	C11-N3-H3	123.8
N2-N3-H3	123.8	C11-N4-H4A	120.0
C11-N4-H4B	120.0	H4A-N4-H4B	120.0
N3-C11-C9	$107.97(16)$	N3-C11-N4	$120.46(17)$

C9-C11-N4	$131.57(17)$	C9-C8-C7	$114.33(14)$
C9-C8-H8A	108.7	C7-C8-H8A	108.7
C9-C8-H8B	108.7	C7-C8-H8B	108.7
H8A-C8-H8B	107.6	O1-C7-C1	$108.64(13)$
O1-C7-C8	$111.33(14)$	C1-C7-C8	$110.74(13)$
O1-C7-H7	108.7	C1-C7-H7	108.7
C8-C7-H7	108.7	C6-C1-C2	$118.69(16)$
C6-C1-C7	$120.53(15)$	C2-C1-C7	$120.78(16)$
C1-C6-C5	$120.81(19)$	C1-C6-H6	119.6
C5-C6-H6	119.6	C4-C5-C6	$120.6(2)$
C4-C5-H5	119.7	C6-C5-H5	119.7
C5-C4-C3	$119.19(18)$	C5-C4-H4	120.4
C3-C4-H4	120.4	C3-C2-C1	$120.40(18)$
C3-C2-H2	119.8	C1-C2-H2	119.8
C4-C3-C2	$120.3(2)$	C4-C3-H3A	119.8
C2-C3-H3A	119.8	N2-C10-N1	$119.90(15)$
N2-C10-C9	$112.57(15)$	N1-C10-C9	$127.39(15)$

Figure 3. Plot of X-ray crystal structure data for 14.

Table 5: Bond lengths of compound 14

Atom	Distance (廷)	Atom	Distance ($\mathbf{A ́)}$
O1-C2	$1.259(3)$	O2-C5	$1.436(3)$
N1-N2	$1.426(3)$	N1-C2	$1.398(4)$
N2-C3	$1.385(4)$	N3-C3	$1.350(4)$
C1-C2	$1.410(4)$	C1-C3	$1.372(4)$
C1-C4	$1.492(4)$	C4-C5	$1.529(4)$
C5-C6	$1.517(4)$	C6-C7	$1.386(4)$
C6-C11	$1.391(4)$	C7-C8	$1.391(4)$
C8-C9	$1.374(5)$	C9-C10	$1.377(5)$
C10-C11	$1.391(5)$		

Table 6: Bond angles of compound 14

Atom	Angles (${ }^{\circ}$)	Atom	Angles (${ }^{\circ}$)
N2-N1-C2	$106.8(2)$	N1-N2-C3	$106.1(2)$
C2-C1-C3	$106.2(3)$	C2-C1-C4	$125.6(3)$
C3-C1-C4	$127.8(3)$	O1-C2-N1	$121.4(3)$
O1-C2-C1	$129.7(3)$	N1-C2-C1	$108.9(2)$
N2-C3-N3	$119.1(3)$	N2-C3-C1	$111.1(3)$
N3-C3-C1	$129.8(3)$	C1-C4-C5	$115.4(3)$
O2-C5-C4	$111.5(2)$	O2-C5-C6	$112.0(2)$
C4-C5-C6	$110.8(2)$	C5-C6-C7	$120.5(3)$
C5-C6-C11	$120.5(3)$	C7-C6-C11	$118.9(3)$
C6-C7-C8	$120.5(3)$	C7-C8-C9	$120.1(3)$
C8-C9-C10	$119.9(3)$	C9-C10-C11	$120.4(3)$
C6-C11-C10	$120.1(3)$		

Figure 4. Plot of X-ray crystal structure data for $\mathbf{1 5}$.

Table 7: Bond lengths of compound 15

Atom	Distance (Á)	Atom	Distance (Á)
N1-C9	$1.284(5)$	N1-N2	$1.348(4)$
O1-C10	$1.342(5)$	O1-C7	$1.476(5)$
N2-C11	$1.391(5)$	N2-H2	0.86
O2-C10	$1.254(4)$	C14-C13	$1.349(7)$
C14-C15	$1.362(7)$	C14-H14	0.93
C13-C12	$1.391(6)$	C13-H13	0.93
C12-C11	$1.377(5)$	C12-H12	0.93
C11-C16	$1.373(6)$	C9-C10	$1.463(5)$
C9-C8	$1.490(5)$	C8-C7	$1.540(5)$
C8-H8A	0.97	C8-H8B	0.97
C7-C1	$1.520(6)$	C7-H7	0.98
C1-C2	$1.343(7)$	C1-C6	$1.396(6)$
C6-C5	$1.442(8)$	C6-H6	0.93
C5-C4	$1.358(9)$	C5-H5	0.93
C4-C3	$1.342(9)$	C4-H4	0.93
C3-C2	$1.349(7)$	C3-H3	0.93
C2-H2A	0.93	C16-C15	$1.376(6)$
C16-H16	0.93	C15-H15	0.93

Table 8: Bond angles of compound 15

Atom	Angles (${ }^{\text {a }}$)	Atom	Angles (${ }^{\circ}$)
C9-N1-N2	119.4(3)	C10-O1-C7	112.0(3)
N1-N2-C11	119.3(3)	N1-N2-H2	120.4
C11-N2-H2	120.4	C13-C14-C15	118.8(4)
C13-C14-H14	120.6	C15-C14-H14	120.6
C14-C13-C12	121.5(4)	C14-C13-H13	119.2
C12-C13-H13	119.2	C11-C12-C13	119.5(4)
C11-C12-H12	120.2	C13-C12-H12	120.2
C16-C11-C12	118.6(4)	C16-C11-N2	122.5(3)
C12-C11-N2	118.9(3)	N1-C9-C10	119.0(3)
N1-C9-C8	131.9(3)	C10-C9-C8	109.0(3)
C9-C8-C7	103.4(3)	C9-C8-H8A	111.1
C7-C8-H8A	111.1	C9-C8-H8B	111.1
C7-C8-H8B	111.1	H8A-C8-H8B	109.0
O1-C7-C1	106.4(3)	O1-C7-C8	104.8(3)
C1-C7-C8	116.0(3)	O1-C7-H7	109.8
C1-C7-H7	109.8	C8-C7-H7	109.8
C2-C1-C6	120.1(5)	C2-C1-C7	122.6(4)
C6-C1-C7	117.4(4)	C1-C6-C5	117.9(6)
C1-C6-H6	121.0	C5-C6-H6	121.0
C4-C5-C6	118.3(6)	C4-C5-H5	120.9
C6-C5-H5	120.9	C3-C4-C5	121.3(6)
C3-C4-H4	119.3	C5-C4-H4	119.3

O2-C10-O1	$119.4(3)$	O2-C10-C9	$131.5(4)$
O1-C10-C9	$109.0(3)$	C4-C3-C2	$121.2(7)$
C4-C3-H3	119.4	C2-C3-H3	119.4
C1-C2-C3	$121.2(6)$	C1-C2-H2A	119.4
C3-C2-H2A	119.4	C11-C16-C15	$120.7(4)$
C11-C16-H16	119.7	C15-C16-H16	119.7
C14-C15-C16	$120.9(4)$	C14-C15-H15	119.5
C16-C15-H15	119.5		

Figure 5. Plot of X-ray crystal structure data for $\mathbf{1 8}$.

Table 9: Bond lengths of compound 18

Atom	Distance (£́)	Atom	Distance (£́)
S1-C11	$1.754(3)$	S1-C13	$1.805(3)$
O3-C12	$1.213(4)$	O2-C10	$1.223(4)$
O1-C10	$1.358(4)$	O1-C7	$1.483(4)$
C3-C4	$1.375(7)$	C3-C2	$1.388(7)$
C3-H3	0.93	C12-N1	$1.371(4)$
C12-C13	$1.508(5)$	N1-C11	$1.377(4)$
N1-H1	0.86	C11-C9	$1.344(4)$
C9-C10	$1.441(4)$	C9-C8	$1.499(4)$
C8-C7	$1.534(4)$	C8-H8A	0.97
C8-H8B	0.97	C7-C1	$1.495(4)$
C7-H7	0.98	C1-C2	$1.347(6)$
C1-C6	$1.392(5)$	C2-H2	0.93
C4-C5	$1.348(8)$	C4-H4	0.93
C13-H13A	0.97	C13-H13B	0.97
C6-C5	$1.377(6)$	C6-H6	0.93
C5-H5	0.93		

Table 10: Bond angles of compound 18

Atom	Angles (${ }^{\text {a }}$)	Atom	Angles (${ }^{\text {\% }}$)
C11-S1-C13	92.19(14)	C10-O1-C7	109.7(2)
C4-C3-C2	120.3(4)	C4-C3-H3	119.9
C2-C3-H3	119.9	O3-C12-N1	123.4(3)
O3-C12-C13	125.9(3)	N1-C12-C13	110.7(3)
C12-N1-C11	117.9(3)	C12-N1-H1	121.0
C11-N1-H1	121.0	C9-C11-N1	123.4(3)
C9-C11-S1	125.9(2)	N1-C11-S1	110.69(19)
C11-C9-C10	123.3(3)	C11-C9-C8	127.9(3)
C10-C9-C8	108.8(2)	C9-C8-C7	102.4(2)
C9-C8-H8A	111.3	C7-C8-H8A	111.3
C9-C8-H8B	111.3	C7-C8-H8B	111.3
H8A-C8-H8B	109.2	O1-C7-C1	109.9(2)
O1-C7-C8	104.8(2)	C1-C7-C8	116.4(3)
O1-C7-H7	108.5	C1-C7-H7	108.5
C8-C7-H7	108.5	C2-C1-C6	118.2(3)
C2-C1-C7	123.0(3)	C6-C1-C7	118.6(3)
C1-C2-C3	121.2(4)	C1-C2-H2	119.4
C3-C2-H2	119.4	C5-C4-C3	118.7(4)
C5-C4-H4	120.7	C3-C4-H4	120.7
C12-C13-S1	107.3(2)	C12-C13-H13A	110.3
S1-C13-H13A	110.3	C12-C13-H13B	110.3
S1-C13-H13B	110.3	H13A-C13-H13B	108.5
O2-C10-O1	121.1(3)	O2-C10-C9	129.0(3)
O1-C10-C9	109.9(3)	C5-C6-C1	120.2(4)
C5-C6-H6	119.9	C1-C6-H6	119.9
C4-C5-C6	121.4(4)	C4-C5-H5	119.3
C6-C5-H5	119.3		

Figure 6. Plot of X-ray crystal structure data for 21.

Table 11: Bond lengths of compound 21

Atom	Distance (Á)	Atom	Distance (Á)
O1-C7	1.449(3)	N1-C10	1.353(3)
N2-N3	1.372(3)	N2-C10	1.359(3)
N3-C11	1.361(3)	N3-C14	1.404(3)
N4-C13	1.312(3)	N4-C14	1.350 (3)
C1-C2	1.379(4)	C1-C6	1.380(4)
C1-C7	1.512(4)	C2-C3	$1.380(5)$
C3-C4	1.365(5)	C4-C5	1.363(6)
C5-C6	1.380 (5)	C7-C8	1.522(4)
C8-C9	1.504(4)	C9-C10	1.410(4)
C9-C14	1.379(3)	C11-C12	1.373(4)
C11-C15	1.482(4)	C12-C13	1.398(4)
C15-C16	1.378(4)	C15-C20	1.385(4)
C16-C17	1.387(4)	C17-C18	$1.368(5)$
C18-C19	1.364(6)	C19-C20	$1.389(5)$

Table 12: Bond angles of compound 21

Atom	Angles $\left({ }^{\mathbf{o}}\right)$	Atom	Angles $\mathbf{(}^{\mathbf{o}}$)
C7-O1-H1	109.5	C10-N1-H1A	120.0
C10-N1-H1B	120.0	H1A-N1-H1B	120.0
C1-C2-H2	119.5	C3-C2-H2	119.5
C2-C3-H3	120.2	C4-C3-H3	120.2
C3-C4-H4	119.6	C5-C4-H4	119.6
C4-C5-H5	120.4	C6-C5-H5	120.4
C1-C6-H6	119.2	C5-C6-H6	119.2
O1-C7-H7	109.4	C1-C7-H7	109.4
C8-C7-H7	109.4	C7-C8-H8A	108.4
C7-C8-H8B	108.4	C9-C8-H8A	108.4
C9-C8-H8B	108.4	H8A-C8-H8B	107.5
C11-C12-H12	119.9	C13-C12-H12	119.9
N4-C13-H13	117.8	C12-C13-H13	117.8
C15-C16-H16	119.6	C17-C16-H16	119.6
C16-C17-H17	120.2	C18-C17-H17	120.2
C17-C18-H18	119.8	C19-C18-H18	119.8
C18-C19-H19	119.8	C20-C19-H19	119.8
C15-C20-H20	120.0	C19-C20-H20	120.1

Figure 7. Plot of X-ray crystal structure data for 26a.

Table 13: Bond lengths of compound 26a

Atom	Distance (Á)	Atom	Distance (Å)
C1-C2	$1.380(3)$	C1-C6	$1.387(3)$
C1-C7	$1.511(3)$	C8-C9	$1.498(3)$
C8-C7	$1.532(3)$	C8-H8A	0.97
C8-H8B	0.97	C7-O1A	$1.454(3)$
C7-O1B	$1.556(8)$	C7-H7A	0.98
C7-H7B	0.98	O1A-H7B	0.5461
O1A-H1A	0.82	O1B-H1B	0.82
O2-C11	$1.243(3)$	N3-C14	$1.335(3)$
N3-N2	$1.377(2)$	O4-C16	$1.281(3)$
O4-H4C	0.82	O3-C16	$1.171(4)$
N1-C10	$1.372(3)$	N1-C11	$1.372(3)$
N1-H1	0.86	C9-C10	$1.370(3)$
C9-C14	$1.412(3)$	N2-C13	$1.353(3)$
N2-C10	$1.370(3)$	C12-C13	$1.349(3)$
C12-C11	$1.440(3)$	C12-H12	0.93
C2-C3	$1.398(4)$	C2-H2	0.93
C3-C4	$1.354(5)$	C3-H3	0.93
C4-C5	$1.378(5)$	C4-H4	0.93
C5-C6	$1.380(4)$	C5-H5	0.93
C6-H6	0.93	C14-N4	$1.373(3)$
C13-H13	0.93	N4-H4A	0.86
N4-H4B	0.86	C16-C15	$1.5289(19)$
C15-H15A	0.96	C15-H15B	0.96
C15-H15C	0.96		

Table 14: Bond angles of compound 26a

Atom	Angles (${ }^{\circ}$)	Atom	Angles (${ }^{\text {a }}$)
C2-C1-C6	118.4(2)	C2-C1-C7	122.0(2)
C6-C1-C7	119.6(2)	C9-C8-C7	112.42(17)
C9-C8-H8A	109.1	C7-C8-H8A	109.1
C9-C8-H8B	109.1	C7-C8-H8B	109.1
H8A-C8-H8B	107.9	O1A-C7-C1	111.20(18)
O1A-C7-C8	104.19(16)	C1-C7-C8	112.25(17)
O1A-C7-O1B	125.6(4)	C1-C7-O1B	102.1(3)
C8-C7-O1B	101.1(4)	O1A-C7-H7A	109.7
C1-C7-H7A	109.7	C8-C7-H7A	109.7
O1B-C7-H7A	16.1	O1A-C7-H7B	13.0
C1-C7-H7B	113.4	C8-C7-H7B	113.4
O1B-C7-H7B	113.4	H7A-C7-H7B	97.4
C7-O1A-H7B	23.8	C7-O1A-H1A	109.5
H7B-O1A-H1A	89.2	C7-O1B-H1B	109.5
C14-N3-N2	103.86(16)	C16-O4-H4C	109.5
C10-N1-C11	123.19(18)	C10-N1-H1	118.4
C11-N1-H1	118.4	C10-C9-C14	103.55(17)
C10-C9-C8	127.60(18)	C14-C9-C8	128.82(17)
C13-N2-C10	123.09(18)	C13-N2-N3	126.00(18)
C10-N2-N3	110.91(16)	C13-C12-C11	121.2(2)
C13-C12-H12	119.4	C11-C12-H12	119.4
O2-C11-N1	120.2(2)	O2-C11-C12	123.8(2)
N1-C11-C12	115.96(19)	C9-C10-N2	108.44(17)
C9-C10-N1	134.16(19)	N2-C10-N1	117.40(17)
C1-C2-C3	120.0(3)	C1-C2-H2	120.0
C3-C2-H2	120.0	C4-C3-C2	120.9(3)
C4-C3-H3	119.5	C2-C3-H3	119.5
C3-C4-C5	119.6(3)	C3-C4-H4	120.2
C5-C4-H4	120.2	C6-C5-C4	120.2(3)
C6-C5-H5	119.9	C4-C5-H5	119.9
C5-C6-C1	120.9(3)	C5-C6-H6	119.6
C1-C6-H6	119.6	N3-C14-N4	120.84(18)
N3-C14-C9	113.23(17)	N4-C14-C9	125.88(19)
C12-C13-N2	119.1(2)	C12-C13-H13	120.4
N2-C13-H13	120.4	C14-N4-H4A	120.0
C14-N4-H4B	120.0	H4A-N4-H4B	120.0
O3-C16-O4	123.6(3)	O3-C16-C15	123.2(3)
O4-C16-C15	113.1(3)	C16-C15-H15A	109.5
C16-C15-H15B	109.5	H15A-C15-H15B	109.5
C16-C15-H15C	109.5	H15A-C15-H15C	109.5
H15B-C15-H15C	109.5		

Figure 8. Plot of X-ray crystal structure data for $\mathbf{3 0}$.

Table 15: Bond lengths of compound 30

Atom	Distance (Á)	Atom	Distance (${ }_{\text {(}}$)
N1-N2	1.275(2)	N1-C1	1.422(2)
N2-C7	1.371(2)	C7-C8	1.392(3)
C7-C9	1.434(2)	N4-C8	1.336(2)
N4-N5	1.401(2)	N4-C10	1.442(2)
C9-N5	1.318(3)	C9-N6	1.355(2)
N3-C8	1.374(2)	N3-H3A	0.86
N3-H3B	0.86	C4-C5	1.371(3)
C4-C3	1.378(4)	C4-H4	0.93
C5-C6	1.387(3)	C5-H5	0.93
C6-C1	1.387(3)	C6-H6	0.93
C1-C2	1.379(3)	C10-C11	1.520(3)
C10-H10A	0.97	C10-H10B	0.97
C11-C12	1.455(3)	C11-H11A	0.97
C11-H11B	0.97	C12-N7	1.142(3)
N6-H6A	0.86	N6-H6B	0.86
C2-C3	1.388(3)	C2-H2	0.93
C3-H3	0.93		

Table 16: Bond angles of compound 30

Atom	Angles (${ }^{\text {a }}$)	Atom	Angles (${ }^{\text {a }}$)
N2-N1-C1	113.43(16)	N1-N2-C7	115.24(16)
N2-C7-C8	122.91(16)	N2-C7-C9	132.26(17)
C8-C7-C9	104.67(15)	C8-N4-N5	112.19(15)
C8-N4-C10	129.34(15)	N5-N4-C10	118.46(15)
N5-C9-N6	122.46(17)	N5-C9-C7	111.44(16)
N6-C9-C7	126.09(17)	C9-N5-N4	104.58(14)
C8-N3-H3A	120.0	C8-N3-H3B	120.0

H3A-N3-H3B	120.0	C5-C4-C3	$119.7(2)$
C5-C4-H4	120.2	C3-C4-H4	120.2
C4-C5-C6	$120.7(2)$	C4-C5-H5	119.7
C6-C5-H5	119.7	C5-C6-C1	$119.8(2)$
C5-C6-H6	120.1	C1-C6-H6	120.1
C2-C1-C6	$119.36(19)$	C2-C1-N1	$116.14(18)$
C6-C1-N1	$124.50(19)$	N4-C8-N3	$123.37(17)$
N4-C8-C7	$107.11(15)$	N3-C8-C7	$129.46(17)$
N4-C10-C11	$112.02(17)$	N4-C10-H10A	109.2
C11-C10-H10A	109.2	N4-C10-H10B	109.2
C11-C10-H10B	109.2	H10A-C10-H10B	107.9
C12-C11-C10	$110.10(19)$	C12-C11-H11A	109.6
C10-C11-H11A	109.6	C12-C11-H11B	109.6
C10-C11-H11B	109.6	H11A-C11-H11B	108.2
N7-C12-C11	$177.0(3)$	C9-N6-H6A	120.0
C9-N6-H6B	120.0	H6A-N6-H6B	120.0
C1-C2-C3	$120.4(2)$	C1-C2-H2	119.8
C3-C2-H2	119.8	C4-C3-C2	$120.1(2)$
C4-C3-H3	120.0	C2-C3-H3	120.0

Figure 9. Plot of X-ray crystal structure data for 33.

Table 17: Bond lengths of compound 33

Atom	Distance (\&́)	Atom	Distance (Á)
O1-C9	$1.228(4)$	N1-N2	$1.285(3)$
N1-C1	$1.423(4)$	N2-C7	$1.368(4)$
N3-C8	$1.373(4)$	N3-C9	$1.356(4)$
N4-N5	$1.405(3)$	N4-C8	$1.329(4)$
N4-C11	$1.438(4)$	N5-C12	$1.326(4)$
N6-C12	$1.358(4)$	C1-C2	$1.381(4)$
C1-C6	$1.385(4)$	C2-C3	$1.379(5)$
C3-C4	$1.372(5)$	C4-C5	$1.365(5)$
C5-C6	$1.380(5)$	C7-C8	$1.392(4)$
C7-C12	$1.433(4)$	C9-C10	$1.495(4)$
C10-C11	$1.515(4)$		

Table 18: Bond angles of compound 33
Atom
N2-N1-C1
C8-N3-C9
N5-N4-C11
N4-N5-C12
N1-C1-C6
C1-C2-C3
C3-C4-C5
C1-C6-C5
N2-C7-C12
N3-C8-N4
N4-C8-C7
O1-C9-C10
C9-C10-C11
N5-C12-N6
N6-C12-C7

Angles $\left(^{\boldsymbol{o}}\right.$)	Atom	Angles $\mathbf{~}^{\boldsymbol{o}}$) $112.3(3)$
N1-N2-C7	$115.5(3)$	
$122.6(3)$	N5-N4-C8	$111.9(2)$
$122.5(2)$	C8-N4-C11	$123.4(3)$
$104.1(2)$	N1-C1-C2	$124.5(3)$
$116.2(3)$	C2-C1-C6	$119.3(3)$
$119.6(3)$	C2-C3-C4	$121.1(3)$
$119.3(3)$	C4-C5-C6	$120.6(3)$
$120.1(3)$	N2-C7-C8	$122.5(3)$
$133.6(2)$	C8-C7-C12	$103.8(3)$
$121.1(2)$	N3-C8-C7	$130.7(3)$
$108.2(3)$	O1-C9-N3	$121.6(3)$
$121.6(3)$	N3-C9-C10	$116.8(3)$
$117.1(2)$	N4-C11-C10	$109.3(2)$
$122.7(3)$	N5-C12-C7	$112.0(2)$
$125.4(3)$		

Figure 10. Plot of X-ray crystal structure data for 37.

Table 19: Bond lengths of compound 37

Atom	Distance (Á)	Atom	Distance ($(\mathbf{\AA})$
O1-C7	$1.219(3)$	O2-C11	$1.215(3)$
O3-C19	$1.200(2)$	O4-C19	$1.322(3)$
O4-C20	$1.462(2)$	N1-C18	$1.138(3)$
C1-C2	$1.386(3)$	C1-C6	$1.393(3)$
C1-C7	$1.486(3)$	C2-C3	$1.387(3)$
C3-C4	$1.381(4)$	C4-C5	$1.373(4)$
C5-C6	$1.366(4)$	C7-C8	$1.507(3)$
C8-C9	$1.543(3)$	C9-C10	$1.548(3)$
C9-C18	$1.476(3)$	C9-C19	$1.537(3)$
C10-C11	$1.512(3)$	C11-C12	$1.492(3)$
C12-C13	$1.394(3)$	C12-C17	$1.388(3)$
C13-C14	$1.380(3)$	C14-C15	$1.376(3)$
C15-C16	$1.374(3)$	C16-C17	$1.379(3)$
C20-C21	$1.475(3)$		

Table 20: Bond angles of compound $\mathbf{3 7}$

Atom	Angles $\left({ }^{\mathbf{o}}\right)$	Atom	Angles $\left.\mathbf{(}^{\mathbf{o}}\right)$
C19-O4-C20	$116.18(12)$	C2-C1-C6	$119.07(17)$
C2-C-C7	$123.06(16)$	C6-C1-C7	$117.87(16)$
C1-C2-C3	$120.16(18)$	C2-C3-C4	$119.6(2)$
C3-C4-C5	$120.3(3)$	C4-C5-C6	$120.3(3)$
C1-C6-C5	$120.5(2)$	O1-C7-C1	$120.95(17)$
O1-C7-C8	$119.91(17)$	C1-C7-C8	$119.13(15)$

C7-C8-C9	$114.94(14)$	C8-C9-C10	$106.57(13)$
C8-C9-C18	$109.35(13)$	C8-C9-C19	$109.64(13)$
C10-C9-C18	$109.32(14)$	C10-C9-C19	$109.93(13)$
C18-C9-C19	$111.87(13)$	C9-C10-C11	$114.53(14)$
O2-C11-C10	$120.24(16)$	O2-C11-C12	$121.39(16)$
C10-C11-C12	$118.36(15)$	C11-C12-C13	$122.39(16)$
C11-C12-C17	$118.39(16)$	C13-C12-C17	$119.20(17)$
C12-C13-C14	$119.87(17)$	C13-C14-C15	$120.34(19)$
C14-C15-C16	$120.1(2)$	C15-C16-C17	$120.19(19)$
C12-C17-C16	$120.26(18)$	N1-C18-C9	$175.77(17)$
O3-C19-O4	$125.42(15)$	O3-C19-C9	$120.18(15)$
O4-C19-C9	$114.40(13)$	O4-C20-C21	$111.04(15)$

${ }^{1} \mathrm{H}$ NMR for compound $\mathbf{1 2}$

${ }^{1} \mathrm{H}$ NMR for compound $\mathbf{1 2}$

${ }^{3} \mathrm{C}$ NMR for compound $\mathbf{1 2}$
186.0788
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{1} \mathrm{~N}_{2}$

100
95
90

85 80

75
70
65

ㅇ
30
25

$$
20
$$

$$
\begin{array}{r}
20 \\
15 \\
10 \\
10 \\
5 \\
5 \\
0
\end{array}
$$

$186.065 \quad 186.070 \quad 186.075$

High resolution mass spectra for compound 12

Current Data Parameters NAME EXPNO PROCNO

F2 - Acquisition Parameters	
Date_ 20160112	
Time	23.25
INSTRUM	spect
PROBHD	5 mm PABBO $\mathrm{BB}-$
PULPROG	zg30
TD	65536
SOLVENT	DMSO
NS	128
DS	2
SWH	12335.526 Hz
FIDRES	0.188225 Hz
AQ	2.6563926 sec
RG	114
DW	40.533 usec
DE	20.00 usec
TE	297.6 K
D1	1.00000000 sec
TDO	1
$=$ =	CHANNEL $\mathrm{f1}========$
SFO1	600.1337060 MHz
NUC1	1H
P1	10.60 usec
PLW1	27.82500076 W
F2 - Processing parameters	
SI	32768
SF	600.1300000 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0
PC	1.00

13C decoupled spetctrum Moustafa MSSTO in

${ }^{13} \mathrm{C}$ NMR for compound $\mathbf{1 3}$

High resolution mass spectra for compound $\mathbf{1 3}$

Current Data | Parameters |
| :--- |
| Mspyrazami |

EXPNO
PROCNO

${ }^{1} \mathrm{H}$ NMR for compound $\mathbf{2 h}$

${ }^{1}$ H NMR for compound $\mathbf{2 h}$

13C decoupled spectrum Moustafa MSZh in DMSO

Current Data Parameters NAME
EXPNO PROCNO

Date
Time $\quad 7.44$
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG zgpg30

SOLVENT	DMSO
NS	10240
DS	4

SWH $\quad 36057.691 \mathrm{~Hz}$
FIDRES $\quad 0.550197 \mathrm{~Hz}$ RG DE
DE
TE
D11

SFO1
P1
P1
$======$ CHANNEL $\mathrm{f} 2=======$
SFO2 600.1324005 MHz

NUC2
CPDPRG[2 waltz6
PCPD2
PLW2
PLW12
PLW13 . 8250007 W
27.82500076 W 0.63804001 W 0.31264001 W

- Processing parameter 150. 32768 EM
1.00 Hz
1.40
${ }^{13}$ C NMR for compound 2h

C: IXcalibur $1 .$. IHRMS-ms-PYRAZAMI-c1

High resolution mass spectra for compound $\mathbf{2 h}$

${ }^{1} \mathrm{H}$ NMR for compound $\mathbf{1 4}$

1H spectra MOSTAFA MS_aminone in DMSO

 $\dot{\sim} \times \dot{\sim} \stackrel{\sim}{\sim} \stackrel{y}{*}$ N

${ }^{1} \mathrm{H}$ NMR for compound $\mathbf{1 4}$

${ }^{13} \mathrm{C}$ NMR for compound 14

13C decoupled spectra MOSTAFA MS_aminone in DMSO

${ }^{13} \mathrm{C}$ NMR for compound $\mathbf{1 4}$

GC MS DFS- Thermo Project No: GS01/03
219.0999
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}_{3}$

${ }^{1}$ H NMR for compound 15

1H spectra Mostafa copling Z in DMSO

${ }^{1}$ H NMR for compound 15

NAME Data Parameters EXPNO
PROCNO
PROCNO
F2 - Acquisition Parameter

========= CHANNEL $\mathrm{f} 2========$	
CPDPRG2	waltz16
NUC2	1 H
PCPD2	100.00 usec
PL2	-4.50 dB
PL12	18.00 dB
PL13	21.00 dB
SFO2	400.1316005 MHz

Processing parameters
32768
100.6128162 MH

EM
0
1.00 Hz

0
1.40
1.40
${ }^{13} \mathrm{C}$ NMR for compound 15

${ }^{13} \mathrm{C}$ NMR for compound 15

13C decoupled spectra Mostafa MS couplingZ in DMSO

${ }^{13} \mathrm{C}$ NMR for compound 15

High resolution mass spectra for compound 15
$1 H$ spectrum Moustafa $M S$ mercapto in DMSO

${ }^{1} \mathrm{H}$ NMR for compound $\mathbf{1 8}$

${ }^{1} \mathrm{H}$ NMR for compound 18

CORER

${ }^{13} \mathrm{C}$ NMR for compound $\mathbf{1 8}$
261.0454

${ }^{1}$ H NMR for compound 21

	$\infty 6 \wedge 6$ in MNHO のののの
内n กn	サー

${ }^{1}$ H NMR for compound 21

${ }^{13}$ C NMR for compound 21

13C decoupled spectra Mostafa MS enamino in DMSO

${ }^{13} \mathrm{C}$ NMR for compound 21

High resolution mass spectra for compound 21

Current Data Parameters NAME EXPNO PROCNO

F2 - Acquisition Parameters	
Date_	20140122
Time	14.37
INSTRUM	spect
PROBHD	5 mm DUL $13 \mathrm{C}-1$
PULPROG	2 g 30
TD	65536
SOLVENT	DMSO
NS	16
DS	2
SWH	8278.146 Hz
FIDRES	0.126314 Hz
AQ	3.9584243 sec
RG	406.4
DW	60.400 usec
DE	6.00 usec
TE	673.2 K
D1	1.00000000 sec
TD0	1
$========$ CHANNEL $\mathrm{fi}========$	
NUC1	1 H
P1	9.00 usec
PL1	-4.50 dB
SFO1	400.1324710 MHz

E2 - Processing parameters

SI	32768
SF	400.1300000 MHz

SF	400.1300000
WDW	EM

SSB
LB
GB
0.30 Hz

0
1.00

${ }^{1}$ H NMR for compound 23

1H spectra mostafa MS aminopy 1 in DMSO

${ }^{1} \mathrm{H}$ NMR for compound 23

ta Parameters

F2 - Acquisition Parameters
Date_ 20140123
Time 16.26

$$
\begin{aligned}
& \text { INSTRUM } \quad \text { spect } \\
& \text { PROBHD } \quad 5 \mathrm{~mm} \text { PABO BB- }
\end{aligned}
$$

$$
\begin{array}{lr}
\text { PROBHD } & 5 \mathrm{~mm} \text { PABBO BB- } \\
\text { PULPROG } & \text { zgpg30 }
\end{array}
$$

TD	65536
SOLVENT	DMSO

NS
DS
SIDRES
AQ
RG
DE
D1
D11
========
CHANNEL $\mathrm{f1}======$ NUC1 150.9178979
PI
PLW1
===ッ== 78.13500214 W
$===$
SFO2

NUC2

NUC2
PCPD2
PLW2
PLW2
2 - Processing parameters $\begin{array}{lr}\text { SI } & 32768 \\ \text { SF } & 150.9028824 \\ \text { WDW } & \text { EN }\end{array}$ SSB 0
$\begin{array}{ll}0 & 1.00 \\ 0 & 1.00\end{array}$

ぁでしIT—

${ }^{13} \mathrm{C}$ NMR for compound 23

C:XXcaliburl...Isaleh\HRMS-MSaminopy1-c1
1/28/2014 8:32:21 AM
HRMS-MSaminopy1-c1 \#71 RT: 7.78 AV: 1 NL: 6.23E5 $\mathrm{T}:+\mathrm{c}$ El Full ms [$359.50-385.50$]

High resolution mass spectra for compound 23

1H spectra Mosatafa MS et prop in DMSO

${ }^{1} \mathrm{H}$ NMR for compound 26a

1H spectra Mosatafa MS et prop in DM:

${ }^{1} \mathrm{H}$ NMR for compound 26a

13C decoupled spectra Mostafa MS Et prop in DMSO

${ }^{13} \mathrm{C}$ NMR for compound 26a

${ }^{13} \mathrm{C}$ NMR for compound 26 a

HRMS-ms-ETPROP-c1 \#34 RT: 6.59 AV: 1 NL: 3.23E4
270.1111

High resolution mass spectra for compound 26a

1H spectra Mostafa MS DEADL in DMSO

${ }^{1}$ H NMR for compound 26b

13C decoupled spectra Mostafa MS deadL in DMSO

${ }^{13} \mathrm{C}$ NMR for compound $\mathbf{2 6 b}$

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{4}$

High resolution mass spectra for compound 26b

1H spectrum Moustafa MS Acrilo in DMSO

${ }^{1}$ H NMR for compound 29

$$
\begin{aligned}
& m \quad \\
& \text {-1 } \\
& m \\
& \dot{n} \dot{n}
\end{aligned}
$$

$\begin{array}{ll}6 & \text { MNo } \\ \infty & 0 \text { on } \\ \cdots & \text { an } \infty \\ \dot{r} & \text { mim } \\ & \end{array}$

C:UcaliburlDatalsalehIHRMS-MSacrilo-c1
3/24/2014 1:43:42 PM
HRMS-MSacrilo-c1 \#47 RT: 6.94 AV: 1 NL: 2.32E6
T: + c El Full ms [259.50-300.50]
271.1427

High resolution mass spectra for compound 29

13C decoupled spetctrum Moustafa MS NG1 in DMSO

${ }^{1} \mathrm{H}$ NMR for compound 31

${ }^{1}$ H NMR for compound 31

High resolution mass spectra for compound $\mathbf{3 1}$

${ }^{1}$ H NMR for compound 33

n
o
0
0

 $\dot{\sim} \times \dot{\sim}$ $\sim \sim \sim \sim \sim \sim$

${ }^{1} \mathrm{H}$ NMR for compound 33

13C decoupled spectrum Moustafa MSNG2 in DMSO

${ }^{13} \mathrm{C}$ NMR for compound 33

13C decoupled spectrum Moustafa MSNG2 in DMSO

${ }^{13} \mathrm{C}$ NMR for compound 33

High resolution mass spectra for compound $\mathbf{3 3}$

${ }^{1} \mathrm{H}$ NMR for compound 37

${ }^{13} \mathrm{C}$ NMR for compound 37

13C decoupled spectrum Moustafa MS25 in DMSO

${ }^{13} \mathrm{C}$ NMR for compound 37

13C decoupled spectrum Moustafa MS25 in DMSO

Mু	$\bullet_{\infty}^{6} 0_{0}$	$\stackrel{\text { 앙 }}{ }$		
¢ ${ }_{\text {m }}^{\text {m }}$	$\stackrel{\sim}{\infty}$	\cdots	m.	
$\stackrel{\text { m }}{\sim}$	$\underset{\sim}{\sim}$	$\stackrel{-}{-}$	กั่	
11	$1 /$	1	6	

${ }^{13} \mathrm{C}$ NMR for compound 37
349.1309
$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}_{1}$
100
9
100
95
90
85

80
75
75
70
75
65
$\begin{array}{r}70 \\ 65 \\ 6 \\ \hdashline\end{array}$
$\mathrm{H}_{4} \mathrm{~N}_{1}$

A O O G O
\square
$\mathrm{T}:+\mathrm{c}$ El Full ms [324.50-390.50]

30
30

