
No osim toga što su važne kao ribljia hrana, ličinke hironomidia interesantna su još i jednog drugog stanovišta. Mnogi čitaoci znamo da limnologo lozi razlikuju (u sred. Evropi) 3 tipa jezera: oligotrofn, eutrofn i distrofn. Thiessenmann je na temelju brojnih istraživanja našao, da u svakom tipu jezera dolaze upravo određene hironomidne ličinke i one to jezero karakteriziraju.

Radi svoje veće ili manje osjetljivosti prema količini prisutnog kisika, hironomidne ličinke imaju ulogu indikatora i pri biološkim analizama odpadnih voda (ima vrsta, koje su prilagođene na velike, a druge opet na minimalne količine kisika).

Ma da se je, kako smo rekli, o hironomidima mnogo pisalo, još uvijek ima u vezi s njima vrlo mnogo problema, koji treba da se riješe.

Što je međutim od svih tih istraživanja važno za praksu i što ribogojac o toj životinjskoj skupini treba da znađe, posebno o onima, koje žive u šaranskog ribnjaku?

U prvom redu, kao što je već napriliče naglašeno, treba upoznati njihov oblik, zatim promatrati gdje žive, kako se hrane, koliko dugo žive kao ličinke u ribnjaku, njihov godišnji ciklus (koliko generacija na 1 godinu) i t. d. Za ribogojca su svakako najinteresantnije one, koje u godini dana imaju po nekoliko generacija, jer to znači više ličinki u godini dana, a u krajnjoj liniji više hrane za ribu. Kad se dobro upozna život tih ličinki, njihova biologija, onda treba pokušati utjecati na njihov razvoj t. j. stvoriti takve vanjske uvjete, koji će pogodovati njihovom masovnom razvitku.

Jedno je već sigurno utvrđeno (naročito zaslužom njemačkog ribarskog biologa Wundera), da je za optimalni razvitak hironomidnih ličinki, kako onih u obalnoj zoni, tako i onih, koje žive na dnu, neophodno potrebno prisustvo mekog vodnog biha, koje ličinkama služi i kao podloga i kao izvor hrane.

Po svojoj velikoj i mnoostranoj ulozi, koju imaju u životu slatkih voda, hironomidi za služju da postanu sve više predmet naučnog istraživanja.

Dragica Stanić-Mayer

OPAŽANJA KOD PREVOZA ŠARANA U SPECIJAL-VAGONIMA POMOĆU KISIKA

U martu o. g. Poduzeće za uzgoj šarana Našice izvršilo je prevoz šaranskog mlađa u specijal-vagonu bez upotrebe motora, već pomoću kisika. Pošto sam pratio taj vagon, vršio sam opažanja o stanju kisika i ugljepline kiseline u vodi, o funkcionaliranju aparata za snabdevanje vode sa kisikom i o potrošnji kisika.

Ova opažanja, kao i potrebna mjerenja vršena su često u prakštice svihe u cilju da se na osnovu dobivenih podataka, koje ovdje iznosit, uvjeri naše ribnjacare u prednosti prevažanja žive ribe samo sa kisikom i da se ukaže na nedostatke i na greške koje pri tome mogu da nastanu u pogledu aparature, potrošnje kisika, kako bi se time mogli koristiti naši ribnjacari, te da bi time poboljšao način prevoza živih riba kod nas.

Ovdje iznomisim te podatke i opažanja, ali da bi čitaoci, a naročito naši ribnjacari mogli bolje da upoznaju značaj tih podataka i kasnije ih koristiti u svojoj praksi, opisat će uslove disanje riba i kretanje stanja kisika u vodi u ovisnosti od vanjskih faktora.

Kako je poznato ribe dišu škrgama. U njima se vrši ona ista funkcija kao i u plućima kod šivovaca t. j. uzimanje kisika za osvježavanje krvi i izlučivanje ugljične kiseline, samo s tom razlikom, što sasvim uzimaju za disanje kisik iz zraka, a riba može uzimati za disanje samo onaj kisik koji se nalazi apsorbiran u vodi.

Količina kisika u vodi nije stalna, već se ona mijenja pod utjecajem raznih faktora. Glavni od tih je temperatura vode. Sa promjenom temperature vode mijenja se i zasićenost vode sa kisikom, tako da je temperatura voda, srodna izazivanja, to je zasićenje veće, a po- višenjem temperature, sadržaj je kisika manji.

Da se vidi u kakovoj je odnosu temperatura vode sa sadržajem kisika navesti će nekoliko podataka.

<table>
<thead>
<tr>
<th>Temperature vode</th>
<th>0°C zašćenost</th>
<th>vode sa kisikom je 14,54 mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>2°C</td>
<td>13,79</td>
<td></td>
</tr>
<tr>
<td>6°C</td>
<td>12,41</td>
<td></td>
</tr>
<tr>
<td>10°C</td>
<td>11,25</td>
<td></td>
</tr>
<tr>
<td>14°C</td>
<td>10,23</td>
<td></td>
</tr>
<tr>
<td>18°C</td>
<td>9,45</td>
<td></td>
</tr>
<tr>
<td>22°C</td>
<td>8,74</td>
<td></td>
</tr>
<tr>
<td>26°C</td>
<td>8,11</td>
<td></td>
</tr>
<tr>
<td>30°C</td>
<td>7,52</td>
<td></td>
</tr>
</tbody>
</table>
Sadržaj kisika u vodi izražava se u miligrama na 1 litru vode, a može se i u cm³. Broj cm³ kisika u 1 litru dobije se tako, da se broj miligrama pomnoži sa 0,7.

Kako se iz gornje tabele vidi kod povišenja temperature od 0 do 30°C smanjuje se normalno sadržaj kisika na oko polovinu.

| Šaran od 1 kg, u vodi od 2°C troši za 1 sat 7,1 mg, odnosno 5 cm³ kisika. |
|---|---|---|---|---|
| "| "| "| "| "| 5°C| "| 1 | "| 14,2| "| 10| " |
| "| "| "| "| "| 10°C| "| 1 | "| 35,5| "| 25| " |
| "| "| "| "| "| 15°C| "| 1 | "| 57-71| "| 40-50| " |

Prema tome se kod povišenja temperature vode od 2 do 15°C povećava potrošak kisika kod šaranu za 10 puta.

Viša temperatura ne škodi direktno šaranu, već jedino je štetno to, što ona uplivšće na smanjenje kisika u vodi i na veću potrošnju kisika, a to je od bitne važnosti kod prevoza žive ribe. Riba je tada zbijena u uskom prostoru sa malo vode i ona brzo potroši onu zalihu kisika koja se nalazi u toj vodi. Kad joj počne ponistivati kisika diše se na površinu i zijeva (gusiši se). Šaran počne zijevat ljed na sadržaj kisika u vodi spane sa oko 3 mg/l, a zimi kad miruje, tek kad kisik spane na oko 1 mg/l. Kod sadržaja kisika od 7 mg/l (5 cm³ šaran imade ljeti, a pogotovo zimi, povoljne uslove za disanje, a ne škodi mu ako se ta količina poveća i za 2 do 3 puta. Ovo je potrebno znati kad se prevozi živu ribu i treba nastojati da sadržaj kisika u vodi sa ribom ne spane ispod 7 mg/l, a i da se ne poveća iznad 20 mg/l, jer veći sadržaj također škodi riječ. Stoga da ne dođe ni do previšne smanjenja, a ni povećanje kisika, trebalo bi za vrijeme prevoza kontrolirati sadržaj kisika u vodi, odnosno odrediti norme koliko se smije danakav, kisika kod stanovite količine ribe i temperature u 1 satu. Davanje kisika se regulira pomoću manometara.

Kod prevoza ribe vodu se može zasićivati kisikom na 2 načina i to: mehanički, to jest pomoću miješanja, pri čemu se ona zasićuje sa kisikom iz zraka ili iz razvreno dajemo u vodu kisik iz boca za kisik.

U t. zv. specijal-vagonima sa ugrađenim bazenima za vodu u kojima se prevozi živa riba, zasićivanje sa kisikom vrši se kod nas redovno tako, da se sa motornom pumpom, koja je ugrađena u vagonu, pumpa voda sa dna bazena i sa jakim mlažom ubacuje na površinu. Time se stalno mijenja voda i ona se pri tome mehanički zasićuje sa kisikom. Na ovaj način se ribu može prevažati i više dana, bez većih gubitaka, uz uslov da njezini utovareni ribe, da je niska temperatura i da se vodu mijenjalo za vrijeme prevoza.

Kod uporabe motorne pumpe postoji opasnost da motor stane usijed vatra i tada prestane zasićivanje vode sa kisikom, pa ako bi takvo stanje dulje potrajalo, riba bi uginula. Za taj slučaj ima o svakom vagonu više boca sa kisikom, koje se stave u pogon. Prema tome bi se moglo prevažati ribu i samo sa kisikom bez motornog pogona, ali se kod nas ublažilo da se prevaža ribu samo sa motornim pogonom. Pitanje je koji je način bolji, sigurniji i jeftiniji.

Kod uporabe motorne pumpe voda se u bazenu nalazi stalno u cikluzilju. Riba mora da se stalno bori, da bi se održala protiv tog strujanja, slično kao što se čovjek bori protiv vjetra. Ona pri tome troši mnogo energije i dođe na određene sva izmora i oslabljenja. Kako će riba izdržati ovakav transport ovisi o veličini ribe i od kondicije u kojoj se nalazi. Starija, jača riba, lakše izdrži, nego mlada, nejaka. U jesen je riba mnogo jača, jer je uhranjena, nego na proljeće, jer se preko zime glađovala i oslabila. Ako mladu nasadnu ribu prevažamo u rano proljeće sa motornim pogonom, ona će jako oslabiti i ukoliko dođe živa, nalaziti će se u lošoj kondiciji, pa će kasnije uginuti kad dođe u ribnjak. Osim toga riba, budući da mora biti stalno u pokretu, troši mnogo više kisika, nego kad miruje.

Kad prevozimo ribu samo sa kisikom nema toga strujanja vode, uslijed toga ona ne troši toliko energije, a u vezi s tim troši manje kisika. Davanje kisika ribe može se regulisati tako, da riva imade stalno dovoljno kisika, dok kod motornog pogona to nije moguće. Riba dođe na određene u mnogo boljoj kondiciji, jer nije toliko izmora kao kod motornog pogona. Danas, kad se kod nas može dobiti dovoljno kisika, troškovi prevoza sa kisikom, ako se štedljivo postupa, manji su nego sa motorom.

Rukovodeči se time direktor područja Našice Anton Josip odlučio je da preveže šranski mlad za svoje ribnjake iz Prižedoru u Bosni do Čačina u Podravini, u specijal-vagonu, bez upotrebe motora, samo sa kisikom. Radi bojanz da ne bi došlo do uguštanja riječi, jer naši pratioci vagona nemaju u tome iskustva, a da bi se pri tome steklo potrebna iskustva, koja će se moći u budućem koristiti, direktor Anton me je zamolao da bi prati taj prevoz i pri tome kontrolirao stanje kisika u vodi i zdravstveno stanje riječi. Ja sam rado prihvatio taj poziv, jer me je interesiralo, a želio sam da i sam stekem neka iskustva po tome pitanju. Ovdje ćemo podatke i izvršnim mjerenjima vode i svog ovlaštenja.

Prevoz ribe izvršen je 13. i 14. III. o. g. Vagon u kojem se preveza riba bio je napušten 13. III. u jutro sa vodom iz željezničke pumpe stanice u Prižedoru. U vagonu su smeštene 10 komađa boca kisika sa kubaturom od 25 litara. U svakom bazenu kisika bilo je smješteno po 4 kom. rasprši-
vaća (cilindri od ugljene mase). Svaki je bazen dobiva kisik iz jedne boce, tako da su stalno bile u pogonu dvije boce. Oko 12 sati izvršena je analiza vode, prije nego što je dovezena riba.

Riba je dopremljena sa ribnjaka u Sančićanima, udaljenog oko 10 km. od stanice Prijelog, u baru dima od po 150 lit. vode, bez kisika po lošoj cesti, tako da je taj prevoz trajao više sati, a izvršen u više tura. Dan je bio lijep, a u jutro je bio jak mraz i led na vodi.

U 13 sati stigla je prva tura ribe od 960 kg šaraničica, koji su smješteni u oba bazena. Riba je došla oslabljena, a bilo je nešto uginule, ali se u vagonu brzo oporavila. Temperatura vode u bačvama bila je 9,5°C, a vode u vagonu 12°C, tako da razlika nije bila velika.

Jedan sat nakon što je smještena riba u bezen izvršena je analiza vode i ustanovljeno, da je temperatura vode spala na 11,5°C. Tomu će biti uzrok taj, što je došla riba iz hladnije vode u kacama. Sadržaj kisika se jako povećao jer je prati-lac uvelike jače kisik.

Druga tura ribe došla je u 17 sati, a treća u 18. Svega je bilo utovarno 2500 kg šaraničica, prosječne težine od 25 grama, prema tome je bilo oko 100.000 komada.

Vagon je stajao na stanici do polaska vlaka u 1,30 sati. Za to je vrijeme vršena analiza vode i dobiveni su ovi podaci:

<table>
<thead>
<tr>
<th>Sati</th>
<th>Temp. vode</th>
<th>Sadržaj kisika</th>
<th>Slob. CO</th>
<th>Alkalitet</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12°C</td>
<td>12,9 mg/l</td>
<td>30 mg/l</td>
<td>5,9</td>
</tr>
</tbody>
</table>

Stanje vode u bazenima prije utovara ribe 13. III.

Iz ovdih podataka vidimo, da se sadržaj kisika nakon dolaska prve ture ribe bio jako povećao, pa je stoga malo smanjeno izlaženje kisika. Sa daljnjim dolaskom ribe kisik se smanjivao i spao na 6,2 odnosno 8,2. Ova je količina dovoljna za šaranu, ali kod te količine treba biti na oprezu, pa je stoga po noći jače dodavan kisik.

Budući da u vagonu nije bilo boljeg svjetla od običnog fenjera, to se po noći, za vrijeme vožnje, nije moglo vršiti analize, već samo na stanici, gdje je bilo svjetla. Po noći se samo kontrolliralo stanje ribe, da li dolazi na površinu, a taj su posao savjesno obavljali ribarski majstor Varga i mehaničar Balta koji su također pratili vagon.

Noć je bila hladna, puhao je sjever i padao snijeg, pa je temperatura vode spala na 10°C. Van-gon je stigao u Zagreb u 7 sati i odmah po dolasku izvršena je analiza vode. U Zagrebu je bilo predviđeno da se mijenja vodo, ali budući da je ustanovljeno da imade dosta kisika, nije se mijenjalo vodo i vagon je u 8 sati krenuo dalje za Koprivnicu. Za vrijeme vožnje vršena je analiza vode.

Podatke mjerenja iznosim u ovoj tabeli:

<table>
<thead>
<tr>
<th>14. III.</th>
<th>Bazen I</th>
<th>Bazen II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sati</td>
<td>Temp. vode</td>
<td>Slob. kisika</td>
</tr>
<tr>
<td>7.30</td>
<td>10°C</td>
<td>10.7</td>
</tr>
<tr>
<td>11</td>
<td>8°C</td>
<td>5.8</td>
</tr>
<tr>
<td>13.30</td>
<td>8°C</td>
<td>22.5</td>
</tr>
<tr>
<td>17</td>
<td>8°C</td>
<td>16.5</td>
</tr>
<tr>
<td>24</td>
<td>7.5°C</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Kako se vidi iz ovdih podataka, kisika je u jutro bilo mnogo, naročito u bazenu II, pa se stoga nije mijenjalo vodo, ali budući da se nakupilo mnogo slob. CO, to je u Koprivnici izmijenjeno pola vode. Voda je na željezničkoj stanici u Koprivnici dolazila iz arteškog bunara. Temperatura joj je 7.5°C. Usljed toga je nakon izmjene vode pala temperatura na 8°C. Rady kratkotrajne vremena nije se moglo izvršiti analizu vode iz bunara u Koprivnici, ali na osnovu toga, što je sadržaj kisika u bazenima jako spao (na 5.5 mg/l), može se zaključiti, da u toj vodi ima veće kisika. Ovo je važno da znaju naši pratioci vagona i da ne mijenjaju posvema vodu u Koprivnici, naročito ne, kad prate vagon sa motornim pogonom.

I alkalitet vode je spao nakon mijenjanja vode (na 4), prema tome je i alkalitet koprivničke vode još manji.

Sadržaj slobodne CO spao je za skoro polovicu, jer je ona otišla sa otpuštenom vodom, a to je dobro, jer se je previše nakupilo.

Čim je konstatovano da je sadržaj kisika smanjen, pušten je jače kisik iz boce. U 11 sati vagon je krenuo dalje. Za vrijeme vožnje voda se u bazenima zasićivala sa kisikom još i mehanički, uslijed mučkanja, pa je u 13.30 sati u bazenu I, bazenu porastao na 23.5 mg/l, dakle daleko preko zasićenosti, stoga se odmah smanjilo da-ranje kisika.

Vagon je stigao u Čačine u 15.30 sati i tamo je stajao neistovaren do 24 sata, kada se počelo sa pretvoravanjem ribe iz vagona u male bazene od 2 m² u kojima je prevezena do ribnjaka u Grudnjaku.

Riba je vrlo dobro izdržala transport. Za cijelo vrijeme vožnje uginulo je oko 10 kg, a od toga je veći dio uginuo na putu od ribnjaka do stanice Prijedor.

Prevoz ribe od utovara do istovara trajao je 35 sati. Za to je vrijeme potrošeno 6 boca kisika, od kojih su bile: 2 napunjene sa kisikom na 150

Iz ovih 6 boca bilo je za vrijeme od 35 sati utrošeno 2075,2 litara kisika, poprečno na jedan sat 529,8 litara, a ta bi količina odgovarala smanjenju pritiska za 23,7 atmosfera u jednoj boci.

Kako se vidi iz podataka o mjerenju kisika za vrijeme vožnje, kisika je bilo stalno mnogo, dapače katkada i dvostruko više od normalnog zasićenja. Prema tome bi se moglo dobro proći i sa manjim utroškom kisika.

Količinu kisika koja je izlazila iz boca nije se mogla točno kontrolirati, jer manometri (talijanski) nisu bili dovoljno osjetljivi. Za vrijeme stajanja na stanici Cažinci pokušao sam kontrolirati smanjenje pritiska u bocama u 1 satu, pa sam utašavio da je za vrijeme od 18 do 24 sati smanjen pritisak za 85 atmosfera, odnosno u 1 satu za 14 atmosfera, a to bi odgovaralo 350 litara kisika. Sadržaj kisika u vodi bio je za to vrijeme od 9,5 do 16 mg/l, dakle i preko zasićenosti kod temperature od 8°C (11,83 mg/l). Treba uzeti u obzir, da je za to vrijeme vagon stajao, stoga nije bilo mehaničkog zasićivanja vode sa kisikom, kao za vrijeme vožnje. Prema tome, ako bi se prijevozno trebalo dobijati preko atmosfera na sat, to bi bilo utrošiti 490 atmosfera, a to je neto više od 3 boca po 150 atmosfera, dakako kod iste temperature vode. Dakle jedna boca normalno punjena, morala bi trajati oko 11 sati.

Nadalje sam opazio da svi raspršivači ne propuštaju jednako kisik. U jednom bazenu od 4 raspršivača, 3 su dobro propuštali kisik, a jedan slabio. Da bi i kroz ovaj izlazio bolje kisik, trebalo je jače pustiti kisik, pa je tada potrošak bio odviše velik.

Iz ovoga vidimo, da kod prevoza riba sa kisikom, treba imati dobro osjetljive manometre i dobro rasprašivače kisika.

Na osnovu svega toga možemo zaključiti da je prevoz žive ribe sa kisikom, ne samo bolji i sigurniji od onoga sa motornim pogonom, već je i jeftiniji. Poradaj toga trebalo bi i kod nas, kao što to danas rade Nijemci, prevoziti živu ribu samo sa kisikom.

Da se vidi kakvo je stanje kisika u vodi kod prevoza pomoću motorne pumpe, navesti ću još ovaj slučaj, 7. IV. o. g. preveženo je u jednom vagonu oko 1000 kg šaranskog mlada (1-2 dkg) iz Draganića u Novi Sad. Snabdevanje vode sa kisikom vršeno je samo sa motorom pumpom. Prijevoz sveka sam sa dr. Sladovićem, kemičarom Instituta za slatkovodno ribarstvo u Zagrebu, utovaru i pratio vagon do Zagreba. Za to vrijeme izvršeno je nekoliko analiza i ustanovljeno sljedeće:

Riba je stigla sa ribnjaka u kacama sa vodom koja je imala 15,5°C. Nakon utovara, u 18 sati, izvršena je analiza vode iz vagona i ustanovljeno sljedeće: Temperatura vode se je povišila od 9,5°C na 11°C, jer je došla riba iz toplje vode. Sadržaj kisika je spao na 8,18 mg/l.

Vagon je krenuo iz Draganića u 19 sati i stigao u Zagreb u 20 sati. Po dolasku u Zagreb kontrolirano je stanje kisika i ustanovljeno, da je jako spao i to u jednom bazenu na 3,57 mg/l a u drugom na 4,21 mg/l. Budući da je to vrlo mala količina, a kod motornog pogona nema mogućnosti povećanja sadržaja kisika, moralo se već u Zagrebu mijenjati vodu. Napisao tako da smo vidjeli kod prevoza samo sa kisikom iz Prijedora, voda se mijenjala tek nakon 21 sat vožnje, a to je radi nestašice kisika, već radi toga, što se nakupilo mnogo ugljične kiseline, a sadržaj kisika se mogao po volji regulirati.

Da bi se prevoz ribe pomoću kisika mogao vršiti sigurno i racionalno, obzirom na potrošak kisika, trebalo bi našlo pravo rješenje, koji su u većini slučajeva samo mehaničari i glavnu pažnju posvećuju tome da im motor dobro radi, teoretski i praktički osposobljen za prevoz ribe sa uporabom kisika.

J. Plančić

Još neka opažanja o trbušnoj vodenoj bolesti

Stara većsta tema, ali tema o kojoj neće biti dovoljno napisano, dok trbušna vodena bolest ne pretrane da hara po našim ribnjacima. Izgleda da su istraživanja ove bolesti dospela u jednu fazu, iz koje se ne vidi skoro rešenje problema. Pitanje je li to bacil, virus, ili nešto drugo, koje nam se postavlja ponovno u poslednje vreme, ne predstavlja veliki napredak u suzbijanju ove zarazne bolesti. Na drugoj strani praktičari sa zebnom pomisljaju na probele, na eventualnu ponovnu pojavu bolesti, na strašna uginuća koja bi mogla dobro da okrenje proizvodnju.

35