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ABSTRACT. In this paper we will give a similar factorization as in
[3,4], where Svrtan and Meljanac examined certain matrix factorizations
on Fock-like representation of a multiparametric quon algebra on the free
associative algebra of noncommuting polynomials equipped with multi-
parametric partial derivatives. In order to replace these matrix factor-
izations (given from the right) by twisted algebra computation, we first
consider the natural action of the symmetric group Sy, on the polynomial
ring Ry, in n2 commuting variables X, ; and also introduce a twisted group
algebra (defined by the action of Sy, on R,) which we denote by A(Sy).
Here we consider some factorizations given from the left because they will
be more suitable in calculating the constants (= the elements which are
annihilated by all multiparametric partial derivatives) in the free algebra
of noncommuting polynomials.

1. INTRODUCTION

Following the papers [3,4] by Meljanac and Svrtan, where an explicit
Fock-like representation of a multiparametric quon algebra on the free asso-
ciative algebra of noncommuting polynomials equipped with multiparametric
partial derivatives (see also [2]) is constructed, our task here is to replace
the ‘nonobvious’ matrix level factorizations by ‘somewhat’ simpler algebraic
manipulations in a twisted group algebra A(S,,).

Similar factorizations in ordinary group algebra were used by Zagier in one
parameter case ([8]) and in [3] in the multiparameter case the factorizations
were given on the matrix level for the sake of Hilbert space realizability of
multiparametric quon algebras. We are motivated by a different problem
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(computation of constants in multiparametric quon algebras), therefore the
factorizations here are algebraically much simpler.

More general factorizations in braid group algebra we can find in [1].

In order to construct A(S,) we first consider the natural action of the
symmetric group S, on the polynomial ring R,, in n? commuting variables
Xap and let A(S,) = R, x C[S,] be the associated (twisted) group algebra.
Further, we give some factorizations of certain canonical elements in A(S),)
in terms of simpler elements of A(S),,). Then by representing .A(S,) on the
free unital associative complex algebra B (= the algebra of noncommuting
polynomials) by using multiparametric partial derivatives, we obtain more
easily some matrix factorizations. Similarly, we can apply some factorizations
in A(Sy,) in the problem of computing constants (i.e the elements which are
annihilated by all multiparametric partial derivatives) in the algebra B. This
will be elaborated in the forthcoming paper. The explicit formulas for basic
constants in the subspaces of B up to total degree four are given in [7].

2. THE ALGEBRA A(S,)

Let S,, denote the symmetric group on n letters, i.e S, is the set of all
permutations of a set M = {1,2,...,n} equipped with a composition as the
binary operation on S,, (where the permutations are regarded as bijections
from M to itself). Note that the groups S,, n > 3 are not abelian.

Let X = {X, | 1 < a,b < n} be aset of n? commuting variables X,; and
let R, := C[X4p | 1 < a,b < n] denote the polynomial ring, i.e the commuta-
tive ring of all polynomials in n? variables X, over the set C (of complex
numbers), with 1 € R, as a unit element of R,,.

First, let S,, act on the set X as follows

(21) g-Xab = Xg(a) g(b) g.
This action of S, on X induces the action of S,, on R, given by
(2.2) g.p(. .. ;Xaln .. ) Zp(. .. an(a)g(b)7 .. .)g

for every g € S,, and any p € R,,.

In what follows we are going to study a kind of twisted group algebra,
which we denote by A(S,,) and call it a twisted group algebra of the symmetric
group S, with the coefficients in the polynomial ring R,,.

Recall that the usual group algebra C[S,] = {ZUGS" Co0 | Co € (C} of the
symmetric group S, is a free vector space (generated with the set S,,), where
the multiplication is given by

<Z cg(f) : (Z dTT> = Y (codr)or.

gES, TESH o, TES,

Here we have used the simplified notation o7 for the composition o o 7, i.e
the product of ¢ and 7 in S,.
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Now we define more general group algebra
(2.3) A(Sp) :== R, x C[S,]

a twisted group algebra of the symmetric group 5,, with coefficients in the
polynomial ring R,,.

Here x denotes the semidirect product. The elements of the set A(S),)
are the linear combinations

> pigi with p; € Ry,
gi€Sn

and the multiplication in A(S,) is given by

(2.4) (p191) - (P292) := (p1 - (91-P2)) 9192,

where g;.ps is defined by (2.2) and g1gs is the product of g; and go in S,,.
It is easy to see that the algebra A(S),) is associative but not commutative.
Let
I(g9) = {(a,b) | 1 <a <b<n,g(a) >g()}

denote the set of inversions of g € .5,,.
Then to every g € S,, we associate a monomial in the ring R,, defined by

(2.5) Xy = H Xav | = H Xab |

(a,b)el(g—1) a<b,g=*(a)>g1(b)

1

which encodes all inversions of g~* (and of g too).

More generally, for any subset A C {1,2,...,n} we will use the notation
(26) Xq = H Xav - Xoa = H X{a,b}a
(a,b)EAXA, a<b (a,b)EAX A, a<b
where
(2.7) *X*{a7 b} = Xab - Xba-

DEFINITION 2.1. To each g € S,, we assign a unique element g* € A(Sy,)
defined by

(2.8) g =Xgyg
with X4 defined by (2.5).
In what follows we will use the elements g* € A(S,,) defined by (2.8).

THEOREM 2.2. For every g3, g5 € A(Sy,) we have

(2.9) 91 - 95 = X (91, 92) (9192)",
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where the multiplication factor is given by
(2.10)

X(g1,92) = H Xiapy | = H X{g1(a), 91(0)}
(a.b)€1 (g7 I\ ((9192)~ 1) (a.b)€I(g1)N (g5 ")

PROOF. By using the notations (2.8) and abbreviating g1g2 = g we have
9192 = (X, 91) - (Xg; 92) = (Xg, - 91 Xg5) g

(X Il Xe@aw]9

(e.d)el(g; ")

= Xg1 : H Xab g
(917 ' (a),97 1 (B))€EI (95 ")

= Xg1' H Xab - H Xav | g

(a,b)€I(g= )\ (g5 ") (ba)el(gy \I(g1)
= || R 11 X I Xa
(a,b)EI(g7h) (a,b)el(g=)NI(g; ") (a,b)€l(g™t)

H Xba g

(a,)€I(g7 "\ (g~1)

= II Xap - II Xpa o [ Xev)g

(a,b)€I(gy \I(g—1) (a,b)€T(gy \I(g—1) (a,b)EI(g—1)
= H X{a,b} - H Xavg | = X(91,92) 9"
(a,b)€I(gy NI (g~ 1) (a,b)EI(g—1)

Here we have used the following properties

H Xap = H Xab - H Xab;

(a,b)€I((g192)71) (a,b)€I((g192)~)NI (g7 ") (a,b)€I((g192) )\ (g7 ")
H Xab = H Xab : H Xab
(a,b)el(g7 ") (a,b)eI(gr I\ ((9192)~ 1) (a,b)eI(gy )NI((g192)~ 1)
and the proof is finished. O

COROLLARY 2.3.
(2.11) 9195 = (9192)" if 1(g192) = l(g1) + 1(92)
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where 1(g) := CardI(g) is the length of g € Sy,.

PROOF. It is easy to see that in the case I(g1) + I(g2) = I(g192) we have
X (g1,92) =1, so (2.9) implies (2.11). O

The factor X (g1,92) takes care of the reduced number of inversions in the
group product of g1, g2 € Sy.

EXAMPLE 2.4. Let g1 = 132, go = 312 € S3. Then g192 = 213,1(¢g1) = 1,
I(g2) = 2, l(g192) = 1. Note that ¢g;* =132, g5 ' = 231, so
g1 95 = (X2391) - (X13X2392) = X23X12X32 9192 = X231 X12 9192
On the other hand we have: (g192)* = X12 g192, since (g1g2) ™! = 213. Thus
we get g7 - g5 = X2,3) (9192)* and X (g1,92) = X{2, 3.
EXAMPLE 2.5. For g1 = 132, go = 231 we have g1g2 = 321, l(¢91) = 1,

I(g2) = 2, I(g1g2) = 3. Further g;' =132, g;* = 312 and (g192) ! = 321, so
we get:

97 - 95 = (Xas391) - (X12X1392) = Xo3X13X12 0192,
(9192)* = X12X13X239192. Thus g7 - g5 = (9192)" and X(g1,92) = 1.

We denote by ¢4, 1 < a < b <n the following cyclic permutation in 5,

k 1<k<a—1 or b+1<k<n
(2.12) tap(k) =< b k=a
k—1 a+1<k<b

which maps btob—1tob—2--- toatoband fixesalll <k <a—1and
b+ 1 <k <n (compare with notation of ¢, in [3]).
Let tp, denote the inverse of ¢, ;. Then

k 1<k<a—-1 or b+1<k<n
(2.13) tha(k) =< k+1 a<k<b-1
a k =0.

Then the sets of inversions are given by
I(tap) = {(a,7) | a+1<j < b},
I(tya) = {(i,0) [a < i <b—1},

so the corresponding elements in .A(S,,) have the form

(2.14) tio=1{ II Xiv]tas

(2.15) tra= Xaj | tha-
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REMARK 2.6. Observe that if b=a then t , =id (where I(tqq) = 0).
In the case b = a4+ 1 we have t4441 = tat1, and we also denote it by
to(=taat1), 1 <a <n—1 (the transposition of adjacent letters a and a +1).
Now it is easy to see that t} = X, 41 ta, with I(t,) = {(a,a +1)}.

Theorem 2.2 implies the following more specific properties that will be
presented in the following four corollaries.
COROLLARY 2.7. For each 1 < a <n —1 we have
(2.16) (t2)? = X{q,a41} id.
Here we have used that #,t, =id and X4 a11) = Xaat+1 " Xat1a-
COROLLARY 2.8 (Braid relations). We have
(@) th-th - th=th -ty -tiy  foreach 1<a<n-—2,
(13) ¢ -ty =15 -th foreach 1<a,b<n-—1 with |a—>bl>2.

COROLLARY 2.9. For each g € S, 1 <a <b<n we have

9" tha = 1T Xiga), 9t | (9tv,a)”
a<j<b, g(a)>g(j)

In the case g € S; x Sp—j, 1 <j <k <n we have
(2.17) g -tz’j = (gtr ;)"
Compare (2.17) with Corollary 2.3.

COROLLARY 2.10 (Commutation rules). We have
() th - th e =8 5 iy o1k if 1<k<m<p<n.
(i) Let wp(=mnn—1---21) be the longest permutation in S,. Then for
every g € S, we have

(gwn)* w:z = w; ’ (wng)* = H X{a,b} g*-
a<b, g~ (a)<g=1(b)

3. DECOMPOSITIONS OF CERTAIN CANONICAL ELEMENTS IN A(S,,)

Here we will decompose any permutation g in S, into cycles.

Observe first that any permutation g € S,, can be represented uniquely as
g = gitg, 1 with g1 € S1xS,—1 and 1 < k; <n. Then g(k1) = g1(tx, 1(k1)) =
g1(1) =1, so k1 should be g=*(1).

Subsequently, the permutation g; € S X.5,,_1 can be represented uniquely
as g1 = gatky,2 With go € S1 xS x Sp_2 and 2 < ks < n. Then g1(k2) =
92(try 2(k2)) = g2(2) = 2 implies k2 = g;'(2).

By repeating the above procedure for every 1 < j < n we can deduce that
the permutation g;_; € 5{71 X Sp—j+1 can be represented uniquely as g;—1 =
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gjtr,.; with g; € S % S,_j and j < k; < n, where g;_1(k;) = gj(tr; 5 (kj)) =
g;(j) = j implies k; = gjill (7). Thus we get the decomposition:

—
(3.1) 9= thn ey vt oty tigotia [ = [T th
1<j<n

ExAMPLE 3.1. By applying the decomposition (3.1) on all permutations
in S5 = {123,132, 312,321,231, 213} we obtain
123 = t33ta2t1,1, 132 =t33t32t1,1, 312 =133l32l21,
321 = t33t32t3,1, 231 =133l22t31, 213 =133t22t21,
so the corresponding elements in the algebra A(S3) are given by
123" =t33-t59-t7, 132" =t33-t30-174, 312" =t35-t35 157,
321" =t35 15,131, 231" =t33-1t55 157, 213" =133t 15;.
The following calculation shows the general situation, which will be used later

in many calculations. Assume that of =>_ 9ESs g*. Then we get

* * g% * * * * * * * *
az = E g =t33-typ 111 Flz3-l39 -1t 1+t335:-135 15,
geSs

+t33 130 151 Tl33 150 131 H133 150 154
= (t53) - (t5o- (51 + 151 +111) +t5o- (thy +t5, +111))
(t53)  (t52+155) - (t51 + 5, +17 1)

i.e
(3.2) of = B; - 5 - 3,
where we have used the notations
Bi =133 (=id);
Bs =135 +15, (=13, +id);
By =ts,+t5, +11, (=t5, +15, +id).

Therefore, we can conclude that the element af € A(S3) given by af =
> ges, 9 can be written in the product form (3.2).

In the next theorem we will prove that the element o € A(S,) given
by o) = deSn g*, n > 1 can be decomposed into the product of simpler
elements of the algebra A(S,,) which we denote by 3y _, ., foreach 1 <k <n.

DEFINITION 3.2. For every 1 < k < n we define

—
(3.3) Brks1 =ttt qpt  Ftepptte [ = Z ok
k<m<n
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REMARK 3.3. Now it is easy to see that
Bri=thittn g1+t +t, (f k=1),
1 =ttt ottt F 5, (if k=2),

B3 =ttty 1pnottnon o (f k=n-2),
B3 =tpnattn 1, (f k=n-1),
Bi =1t ,(=id) (if k=n).
THEOREM 3.4. Let o be the following canonical element in A(Sy) :
(3.4) =) g
gESn

Then o} has the following factorization

(3.5) ap=81-85-85 | = T[ Biwnr

1<k<n

PROOF. By considering decomposition (3.1) of g € S,, and the property
(2.17) we can write:

Ot: = Z g* = Z (gltkl,l)* = Z gftzm

gEeS, g1ES1XSn—1 g1E€S1XSn-1
1<ki1<n 1<ki1<n
= gl . tkl,l
g1E€ES1XSn-1 1<ki<n
* *
= E (92ths,2)" | - E 7981
G2€SE X Sp_2 1<k1<n
2<ka<n
— * * «
= E 93 |- E U2 | - E Uir 1
g2ESEXSn_2 2<kz<n 1<ki1<n
- ( knan) ’ kn—hn_l e k2,2 : k171
n—1<kp_1<n 2<ka<n 1<ki1<n
—
_ B
- n—k+1
1<k<n

and the proof is finished. O
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Let us introduce some new elements in the algebra A(S,) by which we will
reduce By .1, 1 <k <n— 1. The motivation is to show that the element

af € A(S,) can be expressed in turn as products of yet simpler elements of
the algebra A(S),).

DEFINITION 3.5. For every 1 < k < n—1 we define the following elements
in the algebra A(Sy)

+—
Trotorr = (id =ty ) - (id =ty 1) - (id = i1 ) = H (id —t}, 1)
k+1<m<n
ki = (id = ()2 8 ) - (id = (67 1 pgr) -+ (id = (85)* Bogr )
—
= I Gd— &) tr)
k4+1<m<n

where (t;)? is given by (2.16) and t;,, ., = id.

PROPOSITION 3.6. For every 1 < k < n —1 we have the following factor-
ization

-1
ﬁfszﬂ = 5;7“1 : (7:;7k+1) .

PROOF. Let 5;—1@4-1,;0 = Z;;mq) tfmk for every k < p <n. Then we
obtain: o

«— —
* . * o * * *
n—k+1,p (id — ch) = Z 2 Z ko tp

k<m<p k<m<p
— —
g% * * * * *
=ty + Z bk — Z bk tp ke = Uk tpok
k<m<p-—1 k+1<m<p
— —
_ * * *
= E mk E Uk ok
k<m<p-—1 k+1<m<p
— —
_ * *\2 gk *
- E tm,k - E (tk) tp,kJrl tmfl,k
k<m<p-—1 k+1<m<p
«— «—
_ * *\2 p* *
= E bk — E (te)" ty k1 bk
k<m<p-—1 k<m<p-—1
—
. . *\2 g% *
= E (id — (t:)* ty gy1) ~ b
k<m<p-—1

= (id — (t5)* th k1) Bre kst
ie

(3.6) B ky1p - (id—1t5 ) = (id — (tr)? k1) B kiipo1-
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for every k < p < n. Note that Br*z—k+1,k =14d and B:L—k-i-l,n = /B:L—k-i-l’ SO
for p = n the identity (3.6) is given by

(3.7) By - (id =) = (id = (t5)* 1 1) B pprn—1-

By multiplying (3.7) from right to left with (id — t;‘klyk) e (id - t,”;+27k) .
(id — terLk) and by using above identities (3.6) for all £ < p < n—11itis
easy to check that
B ppr - (id =t ) - (id—th_y x) - (id = thyop) - (id =ty s)
= (id = (t5) t i) -+ (id = (60)* th s ppn) - (id — (85))
ie
5:;—k+1 'V:L—kﬂ = 5:;—k+1

for every 1 < k < n — 1 whence arises the identity of the Proposition 3.6. O

EXAMPLE 3.7. By applying (3.5) and Proposition 3.6 we will illustrate
the factorization of o € A(Sy) in cases n = 2,3,4 (recall that 57 = id).

(i) In the case n = 2 we have o} = 35 and

g = (id - (t7)%) - (id —t5,) "

(#4) For n =3 we have af = (5 - 35, where

By = (id — (t7)2 - t55) - (id — (t5)%) - (id —t5,) " - (id —t5,) "

(tit) For n =4 we have o} = 33 - 5 - 5, where

By = (id — (t5)%) - (id — t55) ",

1

LEMMA 3.8. We have

(’L) tz,a =tin- t2+1,a+1 “tn,1, 1<a<b<n,
(1) X{a,at+1} 9d = t1,n - X{at1,a42} *Tn1; 1<a<n-—1.
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PRrROOF. (i) By (2.12), (2.13) and (2.15) we get

tl,n . tz+17a+1 . tn,l = tl,n . H Xa+1j tb—i—l,a—i—l . tn,l
a+2<j<b+1

= H Xaj tl,n : tb+1,a+1 ' tn,l = tzf,a-
a+1<j<b

Here we have used tp,4 = t1,ntp+1,0+1tn,1 (vecall that ¢y , = t;’ll).
(73) Directly from the definition of ¢; ,, :

tl,n : X{a+1, a+2} ° tn,l = X{a,aJrl} : tl,n : tn,l = X{a,a+1} id
(this is equivalent to (%)% = t1,, - (t5,1)? - tn,1)- O

REMARK 3.9. The elements 6 _, , € A(Sp), 1 <k < n-1 from
Definition 3.5 can be rewritten as:

w1 = (id — X pa1y 1) - (id — Xpo b1y b1 pg1)

o (id = Xpg b1y togopsr) - (6d — X sy togrng)

or shorter
+—
(3.8) O a1 = H (id — Xk, k1) by oy 1) -
k+1<m<n

Our next goal is to give a formula for the inverse of o. In order to do this we
first need to determine the inverse of 5271@“ forall 1 <k <n—1, because

(@) = G e ()T s ()

Let us introduce a more accurate label

-1

(3.9) :Lkarl,n = 5;7“1
where 67 _, | is given by (3.8).
Let us denote by
Des(o):={1<i<n-—-1]o(i)>0c(i+1)}

the descent set of a permutation o € S,,.
Let des(o) = Card(Des(c)) be the number of descents of o.
Note that for g € S¥ x S,,_p

Des(g)={k+1<i<n-—1|g)>gi+1)}.
ProrosIiTION 3.10. The inverse of 5:7,@“7”, 1<k<n—1 is given by
the formula

(3.10) (G

= (Ankarl,n)il : (ErszJrl,n)
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where

Ap—psin = (id = Xpp ny1y) - (id = Xgp kg1 ns2y) - (id = Xgo b, n) 5

* o *
Cn—k+ln ‘= Z wn*kJrl,n(g) g
gESE XS,k
and
Wn—k+1,n(9) == H Xk, kt1, ..., i}
i€Des(g—1)

PRrROOF. By (3.8) and (3.9) we have

—

ki = (1d = X b1y thpyr) - H (id — Xk, k1) topr1)

k+1<m<n-—1

or shortly
(3.11) Op—ky1n = (id = Xk k1) tn7k+1) Onkt1n—1
where
+—
6Z—k+1,n—1 = H (id - X{lm k+1} t:n,k+1)
k+1<m<n-—1
+—
=ty H (id = X (i1, b42) g 1hr2) | - tn

k+1<m<n-—1

+—

=t1pn- H (id — X{ht1, o2} t:,l7k+2) tn1 =tin O gy tni
k+2<m<n

Here we have used property (ii) of the Lemma 3.8. Thus we obtain
;szkJrl,n = (id - X{k, k+1} tr*z,kﬂ) ) tl,n ) 5:;4@,71 ’ tn,l
i.e the identity
—-1 . -1
(57*1—k+1,n) (id = X g, ka1 t:z,k+1) =l (5;—kan) “in1

which takes the form:

—1 « . * -1 %
(Ap—k+1,n) Cn—k+1,n" (ld — Xk, k+1} tn,k+1) = t1,n (An—k,n) “Ep—k,ntn.1

s

or
* . * . *
(3:12) &5 _pprn - (id = X w1y o pgr) = (1d = X k1, n)) ~ Eniitin—1
where
Er*z—kJrl,n—l =tin- E:sz,n “tn,1,

. —1
id — X{k, k+1,...,n} — Ankarl,n ' tl,n ' (Anfk,n) : tn,l-
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To prove the formula (3.10) (by induction), it suffices to prove the identity
(3.12). Notice that (3.12) is equivalent to

. . -1
nbrin = (1= X wr1, o)) Enoprrnt - (1 = Xorpy thppn) -
We first calculate

* * _ * *
En—k+1,n 'X{k,k+1} bkl = E Wn—k+1,n(0) g 'X{k, k+1} bkt
UGSfXSn_k

* *
= Z Wn—k+1,0(0) * Xk, ok+1)} 0 T kg1
UGSfXSn,k

= Z Wn—kt1,n(0) * Xk, o (k1))

JES{“ XSh—k

H X, ok+1)) (0 tnkr1)"
k+1<j<o(k+1)

= > wakrn@) ] Xgetsny @tnxin)*
TESEXSh_k k<j<o(k+1)

= Z wn7k+1,n(gt7:jg+1)' H X gmn 97
gESF X Sp_k k<j<g(n)

where we used that ¢ = oty k41 implies o= gt;’lkﬂ, so o(k+1)=g(n).
On the other hand, by the formula

(3.13) Des(tnis197") = (Des(g™ )\ {g(n)}) U{g(n) =1}  if g(n)<n

where

Des(g~")\{g(n)} = Des(g~') when g(n)=n, g(n) ¢ Des(g™")

we obtain

wnkitn@t i) I X omn

k<j<g(n)
= II Xk st iy 1L Xtioomn
i€Des(tn k+1 97 1) k<j<g(n)
= > Xekhtt, it Xkt g1y L1 X o)
i€Des(tn k1 97 1) o B k<j<g(n)
i;ég(n)tll if i=g(n)—1
= Z Xk b1, ooyi} - Xk k41, .0, g(0)}
i€Des(tn kp19 ")
i#g(n)—1

{ Wn—k+1,n(9) if g(n)<n
Xk, kt1, n} *Wn-ktr1n(g) if g(n) =n.
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Therefore

* *
Cn—k+1,n " X{k, k+1} tn,k-{-l

_ ZgGS{“xSn,,C wn—k-i-l,n(g) g* if g(n) <n
desfxsn,k Xk kt1,.n} " Wnktr1n(9)g" if g(n) =n
:{ En—kt1n if g(n)<n
Xk kt1, on} " En_pi1n i g(n)=n.

Finally, we get

* . * % * *
Enkarl,n : (Zd - X{k, k+1} tn,kJrl) - Enkarl,n - Enkarl,n : X{k, k+1} tn,kJrl

= Z Wn—k+1,n(9) 9" + Z Wn—k+1,n(9) 9"

gEST X S gESE X Sn_i

g(n)<n g(n)=n

= Y Wkt = Y. Xk okt en) Wnokira(9) g

gEST X Sn_k gEST XSk
g(n)<n g(n)=n
. *
= (Zd*X{k,k-i-l,...,n}) : Z wnkarl,n(g)g
gESF XS, 1
g(n)=n

_ . *
= (Zd = Xk, k41, n}) "Cn—k+ln—1

where we have used that

> wnknlg) ()
g €S XSp_t
g'(n)=n
= Z tin (tn,l ) Wn—k+17n(gl) (gl)* “t1in) tna

g’ ESFXSn_k
!
g'(n)=n

= tl,n : Z Wn—k,n (g) g* : tn,l

g€Sf+1XSn,—k—1
. * . *
=lin- Cn—kn " lna = En—k+1lmn—1-

This proves (3.12) and the proof of the Proposition 3.10 is now completed.
O

The matrix factorizations from the right given in [3,4] one can replace by
twisted algebra factorizations (from the right). But here we have presented
the factorizations from the left because they are more suitable for computing
constants in multiparametric algebra of noncommuting polynomials (this will
be treated in a forthcoming paper).



(1]

(2]

(3]

(4]
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